mesa/src/gallium/drivers/iris/iris_state.c
2019-02-21 10:26:06 -08:00

3080 lines
112 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include <errno.h>
#if HAVE_VALGRIND
#include <valgrind.h>
#include <memcheck.h>
#define VG(x) x
#ifndef NDEBUG
#define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
#endif
#else
#define VG(x)
#endif
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#include "pipe/p_screen.h"
#include "util/u_inlines.h"
#include "util/u_format.h"
#include "util/u_framebuffer.h"
#include "util/u_transfer.h"
#include "util/u_upload_mgr.h"
#include "i915_drm.h"
#include "nir.h"
#include "intel/compiler/brw_compiler.h"
#include "intel/common/gen_l3_config.h"
#include "intel/common/gen_sample_positions.h"
#include "iris_batch.h"
#include "iris_context.h"
#include "iris_pipe.h"
#include "iris_resource.h"
#define __gen_address_type struct iris_address
#define __gen_user_data struct iris_batch
#define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
static uint64_t
__gen_combine_address(struct iris_batch *batch, void *location,
struct iris_address addr, uint32_t delta)
{
uint64_t result = addr.offset + delta;
if (addr.bo) {
iris_use_pinned_bo(batch, addr.bo, addr.write);
/* Assume this is a general address, not relative to a base. */
result += addr.bo->gtt_offset;
}
return result;
}
#define __genxml_cmd_length(cmd) cmd ## _length
#define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
#define __genxml_cmd_header(cmd) cmd ## _header
#define __genxml_cmd_pack(cmd) cmd ## _pack
#define _iris_pack_command(batch, cmd, dst, name) \
for (struct cmd name = { __genxml_cmd_header(cmd) }, \
*_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
_dst = NULL; \
}))
#define iris_pack_command(cmd, dst, name) \
_iris_pack_command(NULL, cmd, dst, name)
#define iris_pack_state(cmd, dst, name) \
for (struct cmd name = {}, \
*_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
__genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
_dst = NULL)
#define iris_emit_cmd(batch, cmd, name) \
_iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
#define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
do { \
uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
for (uint32_t i = 0; i < num_dwords; i++) \
dw[i] = (dwords0)[i] | (dwords1)[i]; \
VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
} while (0)
#include "genxml/genX_pack.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_bits.h"
#define MOCS_WB (2 << 1)
UNUSED static void pipe_asserts()
{
#define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
/* pipe_logicop happens to match the hardware. */
PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
/* pipe_blend_func happens to match the hardware. */
PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
/* pipe_blend_func happens to match the hardware. */
PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
/* pipe_stencil_op happens to match the hardware. */
PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
/* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
#undef PIPE_ASSERT
}
static unsigned
translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
{
static const unsigned map[] = {
[PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
[PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
[PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
[PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
[PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
[PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
[PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
[PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
[PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
[PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
[PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
[PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
[PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
};
return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
}
static unsigned
translate_compare_func(enum pipe_compare_func pipe_func)
{
static const unsigned map[] = {
[PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
[PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
[PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
[PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
[PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
[PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
[PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
[PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
};
return map[pipe_func];
}
static unsigned
translate_shadow_func(enum pipe_compare_func pipe_func)
{
/* Gallium specifies the result of shadow comparisons as:
*
* 1 if ref <op> texel,
* 0 otherwise.
*
* The hardware does:
*
* 0 if texel <op> ref,
* 1 otherwise.
*
* So we need to flip the operator and also negate.
*/
static const unsigned map[] = {
[PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
[PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
[PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
[PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
[PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
[PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
[PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
[PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
};
return map[pipe_func];
}
static unsigned
translate_cull_mode(unsigned pipe_face)
{
static const unsigned map[4] = {
[PIPE_FACE_NONE] = CULLMODE_NONE,
[PIPE_FACE_FRONT] = CULLMODE_FRONT,
[PIPE_FACE_BACK] = CULLMODE_BACK,
[PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
};
return map[pipe_face];
}
static unsigned
translate_fill_mode(unsigned pipe_polymode)
{
static const unsigned map[4] = {
[PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
[PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
[PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
[PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
};
return map[pipe_polymode];
}
static struct iris_address
ro_bo(struct iris_bo *bo, uint64_t offset)
{
/* Not for CSOs! */
return (struct iris_address) { .bo = bo, .offset = offset };
}
static uint32_t *
stream_state(struct iris_batch *batch,
struct u_upload_mgr *uploader,
unsigned size,
unsigned alignment,
uint32_t *out_offset)
{
struct pipe_resource *res = NULL;
void *ptr = NULL;
u_upload_alloc(uploader, 0, size, alignment, out_offset, &res, &ptr);
struct iris_bo *bo = iris_resource_bo(res);
iris_use_pinned_bo(batch, bo, false);
*out_offset += iris_bo_offset_from_base_address(bo);
pipe_resource_reference(&res, NULL);
return ptr;
}
static uint32_t
emit_state(struct iris_batch *batch,
struct u_upload_mgr *uploader,
const void *data,
unsigned size,
unsigned alignment)
{
unsigned offset = 0;
uint32_t *map = stream_state(batch, uploader, size, alignment, &offset);
if (map)
memcpy(map, data, size);
return offset;
}
#define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
#define cso_changed_memcmp(x) \
(!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
static void
iris_init_render_context(struct iris_screen *screen,
struct iris_batch *batch,
struct iris_vtable *vtbl,
struct pipe_debug_callback *dbg)
{
iris_init_batch(batch, screen, vtbl, dbg, I915_EXEC_RENDER);
/* XXX: PIPE_CONTROLs */
iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
#if 0
// XXX: MOCS is stupid for this.
sba.GeneralStateMemoryObjectControlState = MOCS_WB;
sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB;
sba.SurfaceStateMemoryObjectControlState = MOCS_WB;
sba.DynamicStateMemoryObjectControlState = MOCS_WB;
sba.IndirectObjectMemoryObjectControlState = MOCS_WB;
sba.InstructionMemoryObjectControlState = MOCS_WB;
sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB;
#endif
sba.GeneralStateBaseAddressModifyEnable = true;
sba.SurfaceStateBaseAddressModifyEnable = true;
sba.DynamicStateBaseAddressModifyEnable = true;
sba.IndirectObjectBaseAddressModifyEnable = true;
sba.InstructionBaseAddressModifyEnable = true;
sba.GeneralStateBufferSizeModifyEnable = true;
sba.DynamicStateBufferSizeModifyEnable = true;
sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
sba.IndirectObjectBufferSizeModifyEnable = true;
sba.InstructionBuffersizeModifyEnable = true;
sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
sba.SurfaceStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SURFACE_START);
sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
sba.GeneralStateBufferSize = 0xfffff;
sba.IndirectObjectBufferSize = 0xfffff;
sba.InstructionBufferSize = 0xfffff;
sba.DynamicStateBufferSize = 0xfffff;
}
iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
rect.ClippedDrawingRectangleXMax = UINT16_MAX;
rect.ClippedDrawingRectangleYMax = UINT16_MAX;
}
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
GEN_SAMPLE_POS_1X(pat._1xSample);
GEN_SAMPLE_POS_2X(pat._2xSample);
GEN_SAMPLE_POS_4X(pat._4xSample);
GEN_SAMPLE_POS_8X(pat._8xSample);
GEN_SAMPLE_POS_16X(pat._16xSample);
}
iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
/* XXX: may need to set an offset for origin-UL framebuffers */
iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
/* Just assign a static partitioning. */
for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
alloc._3DCommandSubOpcode = 18 + i;
alloc.ConstantBufferOffset = 6 * i;
alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
}
}
}
static void
iris_launch_grid(struct pipe_context *ctx, const struct pipe_grid_info *info)
{
}
static void
iris_set_blend_color(struct pipe_context *ctx,
const struct pipe_blend_color *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
}
struct iris_blend_state {
/** Partial 3DSTATE_PS_BLEND */
uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
/** Partial BLEND_STATE */
uint32_t blend_state[GENX(BLEND_STATE_length) +
BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
bool alpha_to_coverage; /* for shader key */
};
static void *
iris_create_blend_state(struct pipe_context *ctx,
const struct pipe_blend_state *state)
{
struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
uint32_t *blend_state = cso->blend_state;
cso->alpha_to_coverage = state->alpha_to_coverage;
iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
/* pb.HasWriteableRT is filled in at draw time. */
/* pb.AlphaTestEnable is filled in at draw time. */
pb.AlphaToCoverageEnable = state->alpha_to_coverage;
pb.IndependentAlphaBlendEnable = state->independent_blend_enable;
pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
pb.SourceBlendFactor = state->rt[0].rgb_src_factor;
pb.SourceAlphaBlendFactor = state->rt[0].alpha_func;
pb.DestinationBlendFactor = state->rt[0].rgb_dst_factor;
pb.DestinationAlphaBlendFactor = state->rt[0].alpha_dst_factor;
}
iris_pack_state(GENX(BLEND_STATE), blend_state, bs) {
bs.AlphaToCoverageEnable = state->alpha_to_coverage;
bs.IndependentAlphaBlendEnable = state->independent_blend_enable;
bs.AlphaToOneEnable = state->alpha_to_one;
bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
bs.ColorDitherEnable = state->dither;
/* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
}
blend_state += GENX(BLEND_STATE_length);
for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_state, be) {
be.LogicOpEnable = state->logicop_enable;
be.LogicOpFunction = state->logicop_func;
be.PreBlendSourceOnlyClampEnable = false;
be.ColorClampRange = COLORCLAMP_RTFORMAT;
be.PreBlendColorClampEnable = true;
be.PostBlendColorClampEnable = true;
be.ColorBufferBlendEnable = state->rt[i].blend_enable;
be.ColorBlendFunction = state->rt[i].rgb_func;
be.AlphaBlendFunction = state->rt[i].alpha_func;
be.SourceBlendFactor = state->rt[i].rgb_src_factor;
be.SourceAlphaBlendFactor = state->rt[i].alpha_func;
be.DestinationBlendFactor = state->rt[i].rgb_dst_factor;
be.DestinationAlphaBlendFactor = state->rt[i].alpha_dst_factor;
be.WriteDisableRed = !(state->rt[i].colormask & PIPE_MASK_R);
be.WriteDisableGreen = !(state->rt[i].colormask & PIPE_MASK_G);
be.WriteDisableBlue = !(state->rt[i].colormask & PIPE_MASK_B);
be.WriteDisableAlpha = !(state->rt[i].colormask & PIPE_MASK_A);
}
blend_state += GENX(BLEND_STATE_ENTRY_length);
}
return cso;
}
static void
iris_bind_blend_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
ice->state.cso_blend = state;
ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
}
struct iris_depth_stencil_alpha_state {
/** Partial 3DSTATE_WM_DEPTH_STENCIL */
uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
/** Complete CC_VIEWPORT */
uint32_t cc_vp[GENX(CC_VIEWPORT_length)];
/** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE */
struct pipe_alpha_state alpha;
};
static void *
iris_create_zsa_state(struct pipe_context *ctx,
const struct pipe_depth_stencil_alpha_state *state)
{
struct iris_depth_stencil_alpha_state *cso =
malloc(sizeof(struct iris_depth_stencil_alpha_state));
cso->alpha = state->alpha;
bool two_sided_stencil = state->stencil[1].enabled;
/* The state tracker needs to optimize away EQUAL writes for us. */
assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
wmds.StencilFailOp = state->stencil[0].fail_op;
wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
wmds.StencilTestFunction =
translate_compare_func(state->stencil[0].func);
wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
wmds.BackfaceStencilTestFunction =
translate_compare_func(state->stencil[1].func);
wmds.DepthTestFunction = translate_compare_func(state->depth.func);
wmds.DoubleSidedStencilEnable = two_sided_stencil;
wmds.StencilTestEnable = state->stencil[0].enabled;
wmds.StencilBufferWriteEnable =
state->stencil[0].writemask != 0 ||
(two_sided_stencil && state->stencil[1].writemask != 0);
wmds.DepthTestEnable = state->depth.enabled;
wmds.DepthBufferWriteEnable = state->depth.writemask;
wmds.StencilTestMask = state->stencil[0].valuemask;
wmds.StencilWriteMask = state->stencil[0].writemask;
wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
/* wmds.[Backface]StencilReferenceValue are merged later */
}
iris_pack_state(GENX(CC_VIEWPORT), cso->cc_vp, ccvp) {
ccvp.MinimumDepth = state->depth.bounds_min;
ccvp.MaximumDepth = state->depth.bounds_max;
}
return cso;
}
static void
iris_bind_zsa_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
struct iris_depth_stencil_alpha_state *new_cso = state;
if (new_cso) {
if (cso_changed(alpha.ref_value))
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
if (cso_changed(alpha.enabled))
ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
}
ice->state.cso_zsa = new_cso;
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
}
struct iris_rasterizer_state {
uint32_t sf[GENX(3DSTATE_SF_length)];
uint32_t clip[GENX(3DSTATE_CLIP_length)];
uint32_t raster[GENX(3DSTATE_RASTER_length)];
uint32_t wm[GENX(3DSTATE_WM_length)];
uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
bool flatshade; /* for shader state */
bool clamp_fragment_color; /* for shader state */
bool light_twoside; /* for shader state */
bool rasterizer_discard; /* for 3DSTATE_STREAMOUT */
bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
bool line_stipple_enable;
bool poly_stipple_enable;
enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
uint16_t sprite_coord_enable;
};
static void *
iris_create_rasterizer_state(struct pipe_context *ctx,
const struct pipe_rasterizer_state *state)
{
struct iris_rasterizer_state *cso =
malloc(sizeof(struct iris_rasterizer_state));
#if 0
point_quad_rasterization -> SBE?
not necessary?
{
poly_smooth
force_persample_interp - ?
bottom_edge_rule
offset_units_unscaled - cap not exposed
}
#endif
cso->flatshade = state->flatshade;
cso->clamp_fragment_color = state->clamp_fragment_color;
cso->light_twoside = state->light_twoside;
cso->rasterizer_discard = state->rasterizer_discard;
cso->half_pixel_center = state->half_pixel_center;
cso->sprite_coord_mode = state->sprite_coord_mode;
cso->sprite_coord_enable = state->sprite_coord_enable;
cso->line_stipple_enable = state->line_stipple_enable;
cso->poly_stipple_enable = state->poly_stipple_enable;
iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
sf.StatisticsEnable = true;
sf.ViewportTransformEnable = true;
sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
sf.LineEndCapAntialiasingRegionWidth =
state->line_smooth ? _10pixels : _05pixels;
sf.LastPixelEnable = state->line_last_pixel;
sf.LineWidth = state->line_width;
sf.SmoothPointEnable = state->point_smooth;
sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
sf.PointWidth = state->point_size;
if (state->flatshade_first) {
sf.TriangleStripListProvokingVertexSelect = 2;
sf.TriangleFanProvokingVertexSelect = 2;
sf.LineStripListProvokingVertexSelect = 1;
} else {
sf.TriangleFanProvokingVertexSelect = 1;
}
}
iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
rr.CullMode = translate_cull_mode(state->cull_face);
rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
rr.DXMultisampleRasterizationEnable = state->multisample;
rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
rr.GlobalDepthOffsetEnablePoint = state->offset_point;
rr.GlobalDepthOffsetConstant = state->offset_units;
rr.GlobalDepthOffsetScale = state->offset_scale;
rr.GlobalDepthOffsetClamp = state->offset_clamp;
rr.SmoothPointEnable = state->point_smooth;
rr.AntialiasingEnable = state->line_smooth;
rr.ScissorRectangleEnable = state->scissor;
rr.ViewportZNearClipTestEnable = state->depth_clip_near;
rr.ViewportZFarClipTestEnable = state->depth_clip_far;
//rr.ConservativeRasterizationEnable = not yet supported by Gallium...
}
iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
/* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
* the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
*/
cl.StatisticsEnable = true;
cl.EarlyCullEnable = true;
cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
cl.ForceUserClipDistanceClipTestEnableBitmask = true;
cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
cl.GuardbandClipTestEnable = true;
cl.ClipMode = CLIPMODE_NORMAL;
cl.ClipEnable = true;
cl.ViewportXYClipTestEnable = state->point_tri_clip;
cl.MinimumPointWidth = 0.125;
cl.MaximumPointWidth = 255.875;
if (state->flatshade_first) {
cl.TriangleStripListProvokingVertexSelect = 2;
cl.TriangleFanProvokingVertexSelect = 2;
cl.LineStripListProvokingVertexSelect = 1;
} else {
cl.TriangleFanProvokingVertexSelect = 1;
}
}
iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
/* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
* filled in at draw time from the FS program.
*/
wm.LineAntialiasingRegionWidth = _10pixels;
wm.LineEndCapAntialiasingRegionWidth = _05pixels;
wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
wm.StatisticsEnable = true;
wm.LineStippleEnable = state->line_stipple_enable;
wm.PolygonStippleEnable = state->poly_stipple_enable;
}
/* Remap from 0..255 back to 1..256 */
const unsigned line_stipple_factor = state->line_stipple_factor + 1;
iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
line.LineStipplePattern = state->line_stipple_pattern;
line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
line.LineStippleRepeatCount = line_stipple_factor;
}
return cso;
}
static void
iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
struct iris_rasterizer_state *new_cso = state;
if (new_cso) {
/* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
if (cso_changed_memcmp(line_stipple))
ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
if (cso_changed(half_pixel_center))
ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
ice->state.dirty |= IRIS_DIRTY_WM;
}
ice->state.cso_rast = new_cso;
ice->state.dirty |= IRIS_DIRTY_RASTER;
}
static uint32_t
translate_wrap(unsigned pipe_wrap)
{
static const unsigned map[] = {
[PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
[PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
[PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
[PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
[PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
[PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
[PIPE_TEX_WRAP_MIRROR_CLAMP] = -1, // XXX: ???
[PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1, // XXX: ???
};
return map[pipe_wrap];
}
/**
* Return true if the given wrap mode requires the border color to exist.
*/
static bool
wrap_mode_needs_border_color(unsigned wrap_mode)
{
return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
}
static unsigned
translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
{
static const unsigned map[] = {
[PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
[PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
[PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
};
return map[pipe_mip];
}
struct iris_sampler_state {
struct pipe_sampler_state base;
bool needs_border_color;
uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
};
static void *
iris_create_sampler_state(struct pipe_context *pctx,
const struct pipe_sampler_state *state)
{
struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
if (!cso)
return NULL;
STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
unsigned wrap_s = translate_wrap(state->wrap_s);
unsigned wrap_t = translate_wrap(state->wrap_t);
unsigned wrap_r = translate_wrap(state->wrap_r);
cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
wrap_mode_needs_border_color(wrap_t) ||
wrap_mode_needs_border_color(wrap_r);
iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
samp.TCXAddressControlMode = wrap_s;
samp.TCYAddressControlMode = wrap_t;
samp.TCZAddressControlMode = wrap_r;
samp.CubeSurfaceControlMode = state->seamless_cube_map;
samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
samp.MinModeFilter = state->min_img_filter;
samp.MagModeFilter = state->mag_img_filter;
samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
samp.MaximumAnisotropy = RATIO21;
if (state->max_anisotropy >= 2) {
if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
samp.AnisotropicAlgorithm = EWAApproximation;
}
if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
samp.MaximumAnisotropy =
MIN2((state->max_anisotropy - 2) / 2, RATIO161);
}
/* Set address rounding bits if not using nearest filtering. */
if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
samp.UAddressMinFilterRoundingEnable = true;
samp.VAddressMinFilterRoundingEnable = true;
samp.RAddressMinFilterRoundingEnable = true;
}
if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
samp.UAddressMagFilterRoundingEnable = true;
samp.VAddressMagFilterRoundingEnable = true;
samp.RAddressMagFilterRoundingEnable = true;
}
if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
samp.ShadowFunction = translate_shadow_func(state->compare_func);
const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
samp.LODPreClampMode = CLAMP_MODE_OGL;
samp.MinLOD = CLAMP(state->min_lod, 0, hw_max_lod);
samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
//samp.BorderColorPointer = <<comes from elsewhere>>
}
return cso;
}
static void
iris_bind_sampler_states(struct pipe_context *ctx,
enum pipe_shader_type p_stage,
unsigned start, unsigned count,
void **states)
{
struct iris_context *ice = (struct iris_context *) ctx;
gl_shader_stage stage = stage_from_pipe(p_stage);
assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
/* Assemble the SAMPLER_STATEs into a contiguous chunk of memory
* relative to Dynamic State Base Address.
*/
void *map = NULL;
u_upload_alloc(ice->state.dynamic_uploader, 0,
count * 4 * GENX(SAMPLER_STATE_length), 32,
&ice->state.sampler_table_offset[stage],
&ice->state.sampler_table_resource[stage],
&map);
if (unlikely(!map))
return;
struct pipe_resource *res = ice->state.sampler_table_resource[stage];
ice->state.sampler_table_offset[stage] +=
iris_bo_offset_from_base_address(iris_resource_bo(res));
for (int i = 0; i < count; i++) {
struct iris_sampler_state *state = states[i];
/* Save a pointer to the iris_sampler_state, a few fields need
* to inform draw-time decisions.
*/
ice->state.samplers[stage][start + i] = state;
if (state)
memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
map += GENX(SAMPLER_STATE_length);
}
ice->state.num_samplers[stage] = count;
ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
}
struct iris_sampler_view {
struct pipe_sampler_view pipe;
struct isl_view view;
/** The resource (BO) holding our SURFACE_STATE. */
struct pipe_resource *surface_state_resource;
unsigned surface_state_offset;
};
/**
* Convert an swizzle enumeration (i.e. PIPE_SWIZZLE_X) to one of the Gen7.5+
* "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
*
* SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
* 0 1 2 3 4 5
* 4 5 6 7 0 1
* SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
*
* which is simply adding 4 then modding by 8 (or anding with 7).
*
* We then may need to apply workarounds for textureGather hardware bugs.
*/
static enum isl_channel_select
pipe_swizzle_to_isl_channel(enum pipe_swizzle swizzle)
{
return (swizzle + 4) & 7;
}
static struct pipe_sampler_view *
iris_create_sampler_view(struct pipe_context *ctx,
struct pipe_resource *tex,
const struct pipe_sampler_view *tmpl)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
struct iris_resource *itex = (struct iris_resource *) tex;
struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
if (!isv)
return NULL;
/* initialize base object */
isv->pipe = *tmpl;
isv->pipe.context = ctx;
isv->pipe.texture = NULL;
pipe_reference_init(&isv->pipe.reference, 1);
pipe_resource_reference(&isv->pipe.texture, tex);
/* XXX: do we need brw_get_texture_swizzle hacks here? */
isv->view = (struct isl_view) {
.format = iris_isl_format_for_pipe_format(tmpl->format),
.base_level = tmpl->u.tex.first_level,
.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1,
.base_array_layer = tmpl->u.tex.first_layer,
.array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
.swizzle = (struct isl_swizzle) {
.r = pipe_swizzle_to_isl_channel(tmpl->swizzle_r),
.g = pipe_swizzle_to_isl_channel(tmpl->swizzle_g),
.b = pipe_swizzle_to_isl_channel(tmpl->swizzle_b),
.a = pipe_swizzle_to_isl_channel(tmpl->swizzle_a),
},
.usage = ISL_SURF_USAGE_TEXTURE_BIT,
};
void *map = NULL;
u_upload_alloc(ice->state.surface_uploader, 0,
4 * GENX(RENDER_SURFACE_STATE_length), 64,
&isv->surface_state_offset,
&isv->surface_state_resource,
&map);
if (!unlikely(map))
return NULL;
struct iris_bo *state_bo = iris_resource_bo(isv->surface_state_resource);
isv->surface_state_offset += iris_bo_offset_from_base_address(state_bo);
isl_surf_fill_state(&screen->isl_dev, map,
.surf = &itex->surf, .view = &isv->view,
.mocs = MOCS_WB,
.address = itex->bo->gtt_offset);
// .aux_surf =
// .clear_color = clear_color,
return &isv->pipe;
}
struct iris_surface {
struct pipe_surface pipe;
struct isl_view view;
/** The resource (BO) holding our SURFACE_STATE. */
struct pipe_resource *surface_state_resource;
unsigned surface_state_offset;
// uint32_t surface_state[GENX(RENDER_SURFACE_STATE_length)];
};
static struct pipe_surface *
iris_create_surface(struct pipe_context *ctx,
struct pipe_resource *tex,
const struct pipe_surface *tmpl)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
struct pipe_surface *psurf = &surf->pipe;
struct iris_resource *res = (struct iris_resource *) tex;
if (!surf)
return NULL;
pipe_reference_init(&psurf->reference, 1);
pipe_resource_reference(&psurf->texture, tex);
psurf->context = ctx;
psurf->format = tmpl->format;
psurf->width = tex->width0;
psurf->height = tex->height0;
psurf->texture = tex;
psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
psurf->u.tex.level = tmpl->u.tex.level;
unsigned usage = 0;
if (tmpl->writable)
usage = ISL_SURF_USAGE_STORAGE_BIT;
else if (util_format_is_depth_or_stencil(tmpl->format))
usage = ISL_SURF_USAGE_DEPTH_BIT;
else
usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
surf->view = (struct isl_view) {
.format = iris_isl_format_for_pipe_format(tmpl->format),
.base_level = tmpl->u.tex.level,
.levels = 1,
.base_array_layer = tmpl->u.tex.first_layer,
.array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
.swizzle = ISL_SWIZZLE_IDENTITY,
.usage = usage,
};
/* Bail early for depth/stencil */
if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
ISL_SURF_USAGE_STENCIL_BIT))
return psurf;
void *map = NULL;
u_upload_alloc(ice->state.surface_uploader, 0,
4 * GENX(RENDER_SURFACE_STATE_length), 64,
&surf->surface_state_offset,
&surf->surface_state_resource,
&map);
if (!unlikely(map))
return NULL;
struct iris_bo *state_bo = iris_resource_bo(surf->surface_state_resource);
surf->surface_state_offset += iris_bo_offset_from_base_address(state_bo);
isl_surf_fill_state(&screen->isl_dev, map,
.surf = &res->surf, .view = &surf->view,
.mocs = MOCS_WB,
.address = res->bo->gtt_offset);
// .aux_surf =
// .clear_color = clear_color,
return psurf;
}
static void
iris_set_sampler_views(struct pipe_context *ctx,
enum pipe_shader_type p_stage,
unsigned start, unsigned count,
struct pipe_sampler_view **views)
{
struct iris_context *ice = (struct iris_context *) ctx;
gl_shader_stage stage = stage_from_pipe(p_stage);
unsigned i;
for (i = 0; i < count; i++) {
pipe_sampler_view_reference((struct pipe_sampler_view **)
&ice->state.textures[stage][i], views[i]);
}
for (; i < ice->state.num_textures[stage]; i++) {
pipe_sampler_view_reference((struct pipe_sampler_view **)
&ice->state.textures[stage][i], NULL);
}
ice->state.num_textures[stage] = count;
// XXX: ice->state.dirty |= (IRIS_DIRTY_BINDING_TABLE_VS << stage);
}
static void
iris_set_clip_state(struct pipe_context *ctx,
const struct pipe_clip_state *state)
{
}
static void
iris_set_polygon_stipple(struct pipe_context *ctx,
const struct pipe_poly_stipple *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.poly_stipple, state, sizeof(*state));
ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
}
static void
iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
{
struct iris_context *ice = (struct iris_context *) ctx;
ice->state.sample_mask = sample_mask;
ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
}
static void
iris_set_scissor_states(struct pipe_context *ctx,
unsigned start_slot,
unsigned num_scissors,
const struct pipe_scissor_state *states)
{
struct iris_context *ice = (struct iris_context *) ctx;
ice->state.num_scissors = num_scissors;
for (unsigned i = 0; i < num_scissors; i++) {
ice->state.scissors[start_slot + i] = states[i];
}
ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
}
static void
iris_set_stencil_ref(struct pipe_context *ctx,
const struct pipe_stencil_ref *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.stencil_ref, state, sizeof(*state));
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
}
struct iris_viewport_state {
uint32_t sf_cl_vp[GENX(SF_CLIP_VIEWPORT_length) * IRIS_MAX_VIEWPORTS];
};
static float
viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
{
return copysignf(state->scale[axis], sign) + state->translate[axis];
}
#if 0
static void
calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
float m00, float m11, float m30, float m31,
float *xmin, float *xmax,
float *ymin, float *ymax)
{
/* According to the "Vertex X,Y Clamping and Quantization" section of the
* Strips and Fans documentation:
*
* "The vertex X and Y screen-space coordinates are also /clamped/ to the
* fixed-point "guardband" range supported by the rasterization hardware"
*
* and
*
* "In almost all circumstances, if an objects vertices are actually
* modified by this clamping (i.e., had X or Y coordinates outside of
* the guardband extent the rendered object will not match the intended
* result. Therefore software should take steps to ensure that this does
* not happen - e.g., by clipping objects such that they do not exceed
* these limits after the Drawing Rectangle is applied."
*
* I believe the fundamental restriction is that the rasterizer (in
* the SF/WM stages) have a limit on the number of pixels that can be
* rasterized. We need to ensure any coordinates beyond the rasterizer
* limit are handled by the clipper. So effectively that limit becomes
* the clipper's guardband size.
*
* It goes on to say:
*
* "In addition, in order to be correctly rendered, objects must have a
* screenspace bounding box not exceeding 8K in the X or Y direction.
* This additional restriction must also be comprehended by software,
* i.e., enforced by use of clipping."
*
* This makes no sense. Gen7+ hardware supports 16K render targets,
* and you definitely need to be able to draw polygons that fill the
* surface. Our assumption is that the rasterizer was limited to 8K
* on Sandybridge, which only supports 8K surfaces, and it was actually
* increased to 16K on Ivybridge and later.
*
* So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
*/
const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
if (m00 != 0 && m11 != 0) {
/* First, we compute the screen-space render area */
const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
/* We want the guardband to be centered on that */
const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
/* Now we need it in native device coordinates */
const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
/* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
* flipped upside-down. X should be fine though.
*/
assert(ndc_gb_xmin <= ndc_gb_xmax);
*xmin = ndc_gb_xmin;
*xmax = ndc_gb_xmax;
*ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
*ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
} else {
/* The viewport scales to 0, so nothing will be rendered. */
*xmin = 0.0f;
*xmax = 0.0f;
*ymin = 0.0f;
*ymax = 0.0f;
}
}
#endif
static void
iris_set_viewport_states(struct pipe_context *ctx,
unsigned start_slot,
unsigned num_viewports,
const struct pipe_viewport_state *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_viewport_state *cso =
malloc(sizeof(struct iris_viewport_state));
uint32_t *vp_map = &cso->sf_cl_vp[start_slot];
// XXX: sf_cl_vp is only big enough for one slot, we don't iterate right
for (unsigned i = 0; i < num_viewports; i++) {
iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
vp.ViewportMatrixElementm00 = state[i].scale[0];
vp.ViewportMatrixElementm11 = state[i].scale[1];
vp.ViewportMatrixElementm22 = state[i].scale[2];
vp.ViewportMatrixElementm30 = state[i].translate[0];
vp.ViewportMatrixElementm31 = state[i].translate[1];
vp.ViewportMatrixElementm32 = state[i].translate[2];
/* XXX: in i965 this is computed based on the drawbuffer size,
* but we don't have that here...
*/
vp.XMinClipGuardband = -1.0;
vp.XMaxClipGuardband = 1.0;
vp.YMinClipGuardband = -1.0;
vp.YMaxClipGuardband = 1.0;
vp.XMinViewPort = viewport_extent(&state[i], 0, -1.0f);
vp.XMaxViewPort = viewport_extent(&state[i], 0, 1.0f) - 1;
vp.YMinViewPort = viewport_extent(&state[i], 1, -1.0f);
vp.YMaxViewPort = viewport_extent(&state[i], 1, 1.0f) - 1;
}
vp_map += GENX(SF_CLIP_VIEWPORT_length);
}
ice->state.cso_vp = cso;
ice->state.num_viewports = num_viewports;
ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
}
struct iris_depth_buffer_state
{
uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
GENX(3DSTATE_STENCIL_BUFFER_length) +
GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
GENX(3DSTATE_CLEAR_PARAMS_length)];
};
static void
iris_set_framebuffer_state(struct pipe_context *ctx,
const struct pipe_framebuffer_state *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
struct isl_device *isl_dev = &screen->isl_dev;
struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
if (cso->samples != state->samples) {
ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
}
if (cso->nr_cbufs != state->nr_cbufs) {
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
}
util_copy_framebuffer_state(cso, state);
struct iris_depth_buffer_state *cso_z =
malloc(sizeof(struct iris_depth_buffer_state));
struct isl_view view = {
.base_level = 0,
.levels = 1,
.base_array_layer = 0,
.array_len = 1,
.swizzle = ISL_SWIZZLE_IDENTITY,
};
struct isl_depth_stencil_hiz_emit_info info = {
.view = &view,
.mocs = MOCS_WB,
};
struct iris_resource *zres =
(void *) (cso->zsbuf ? cso->zsbuf->texture : NULL);
if (zres) {
view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
info.depth_surf = &zres->surf;
info.depth_address = zres->bo->gtt_offset;
view.format = zres->surf.format;
view.base_level = cso->zsbuf->u.tex.level;
view.base_array_layer = cso->zsbuf->u.tex.first_layer;
view.array_len =
cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
info.hiz_usage = ISL_AUX_USAGE_NONE;
}
#if 0
if (stencil_mt) {
view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
info.stencil_surf = &stencil_mt->surf;
if (!depth_mt) {
view.base_level = stencil_irb->mt_level - stencil_irb->mt->first_level;
view.base_array_layer = stencil_irb->mt_layer;
view.array_len = MAX2(stencil_irb->layer_count, 1);
view.format = stencil_mt->surf.format;
}
uint32_t stencil_offset = 0;
info.stencil_address = stencil_mt->bo->gtt_offset + stencil_mt->offset;
}
#endif
isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
ice->state.cso_depthbuffer = cso_z;
ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
}
static void
iris_set_constant_buffer(struct pipe_context *ctx,
enum pipe_shader_type p_stage, unsigned index,
const struct pipe_constant_buffer *input)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
gl_shader_stage stage = stage_from_pipe(p_stage);
struct iris_shader_state *shs = &ice->shaders.state[stage];
struct iris_const_buffer *cbuf = &shs->constbuf[index];
if (input && (input->buffer || input->user_buffer)) {
if (input->user_buffer) {
u_upload_data(ctx->const_uploader, 0, input->buffer_size, 32,
input->user_buffer, &cbuf->offset, &cbuf->resource);
} else {
pipe_resource_reference(&cbuf->resource, input->buffer);
}
void *map = NULL;
// XXX: these are not retained forever, use a separate uploader?
u_upload_alloc(ice->state.surface_uploader, 0,
4 * GENX(RENDER_SURFACE_STATE_length), 64,
&cbuf->surface_state_offset,
&cbuf->surface_state_resource,
&map);
if (!unlikely(map)) {
pipe_resource_reference(&cbuf->resource, NULL);
return;
}
struct iris_resource *res = (void *) cbuf->resource;
struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state_resource);
cbuf->surface_state_offset += iris_bo_offset_from_base_address(surf_bo);
isl_buffer_fill_state(&screen->isl_dev, map,
.address = res->bo->gtt_offset + cbuf->offset,
.size_B = input->buffer_size,
.format = ISL_FORMAT_R32G32B32A32_FLOAT,
.stride_B = 1,
.mocs = MOCS_WB)
} else {
pipe_resource_reference(&cbuf->resource, NULL);
pipe_resource_reference(&cbuf->surface_state_resource, NULL);
}
}
static void
iris_sampler_view_destroy(struct pipe_context *ctx,
struct pipe_sampler_view *state)
{
struct iris_sampler_view *isv = (void *) state;
pipe_resource_reference(&state->texture, NULL);
pipe_resource_reference(&isv->surface_state_resource, NULL);
free(isv);
}
static void
iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
{
struct iris_surface *surf = (void *) p_surf;
pipe_resource_reference(&p_surf->texture, NULL);
pipe_resource_reference(&surf->surface_state_resource, NULL);
free(surf);
}
static void
iris_delete_state(struct pipe_context *ctx, void *state)
{
free(state);
}
struct iris_vertex_buffer_state {
uint32_t vertex_buffers[1 + 33 * GENX(VERTEX_BUFFER_STATE_length)];
struct iris_bo *bos[33];
unsigned num_buffers;
};
static void
iris_free_vertex_buffers(struct iris_vertex_buffer_state *cso)
{
if (cso) {
for (unsigned i = 0; i < cso->num_buffers; i++)
iris_bo_unreference(cso->bos[i]);
free(cso);
}
}
static void
iris_set_vertex_buffers(struct pipe_context *ctx,
unsigned start_slot, unsigned count,
const struct pipe_vertex_buffer *buffers)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_vertex_buffer_state *cso =
malloc(sizeof(struct iris_vertex_buffer_state));
/* If there are no buffers, do nothing. We can leave the stale
* 3DSTATE_VERTEX_BUFFERS in place - as long as there are no vertex
* elements that point to them, it should be fine.
*/
if (!buffers)
return;
iris_free_vertex_buffers(ice->state.cso_vertex_buffers);
cso->num_buffers = count;
iris_pack_command(GENX(3DSTATE_VERTEX_BUFFERS), cso->vertex_buffers, vb) {
vb.DWordLength = 4 * cso->num_buffers - 1;
}
uint32_t *vb_pack_dest = &cso->vertex_buffers[1];
for (unsigned i = 0; i < count; i++) {
assert(!buffers[i].is_user_buffer);
struct iris_resource *res = (void *) buffers[i].buffer.resource;
iris_bo_reference(res->bo);
cso->bos[i] = res->bo;
iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
vb.VertexBufferIndex = start_slot + i;
vb.MOCS = MOCS_WB;
vb.AddressModifyEnable = true;
vb.BufferPitch = buffers[i].stride;
vb.BufferSize = res->bo->size;
vb.BufferStartingAddress =
ro_bo(NULL, res->bo->gtt_offset + buffers[i].buffer_offset);
}
vb_pack_dest += GENX(VERTEX_BUFFER_STATE_length);
}
ice->state.cso_vertex_buffers = cso;
ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
}
struct iris_vertex_element_state {
uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
unsigned count;
};
static void *
iris_create_vertex_elements(struct pipe_context *ctx,
unsigned count,
const struct pipe_vertex_element *state)
{
struct iris_vertex_element_state *cso =
malloc(sizeof(struct iris_vertex_element_state));
cso->count = count;
/* TODO:
* - create edge flag one
* - create SGV ones
* - if those are necessary, use count + 1/2/3... OR in the length
*/
iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
ve.DWordLength =
1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
}
uint32_t *ve_pack_dest = &cso->vertex_elements[1];
uint32_t *vfi_pack_dest = cso->vf_instancing;
for (int i = 0; i < count; i++) {
enum isl_format isl_format =
iris_isl_format_for_pipe_format(state[i].src_format);
unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
switch (isl_format_get_num_channels(isl_format)) {
case 0: comp[0] = VFCOMP_STORE_0;
case 1: comp[1] = VFCOMP_STORE_0;
case 2: comp[2] = VFCOMP_STORE_0;
case 3:
comp[3] = isl_format_has_int_channel(isl_format) ? VFCOMP_STORE_1_INT
: VFCOMP_STORE_1_FP;
break;
}
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.VertexBufferIndex = state[i].vertex_buffer_index;
ve.Valid = true;
ve.SourceElementOffset = state[i].src_offset;
ve.SourceElementFormat = isl_format;
ve.Component0Control = comp[0];
ve.Component1Control = comp[1];
ve.Component2Control = comp[2];
ve.Component3Control = comp[3];
}
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
vi.VertexElementIndex = i;
vi.InstancingEnable = state[i].instance_divisor > 0;
vi.InstanceDataStepRate = state[i].instance_divisor;
}
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
}
return cso;
}
static void
iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
ice->state.cso_vertex_elements = state;
ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
}
static void *
iris_create_compute_state(struct pipe_context *ctx,
const struct pipe_compute_state *state)
{
return malloc(1);
}
static struct pipe_stream_output_target *
iris_create_stream_output_target(struct pipe_context *ctx,
struct pipe_resource *res,
unsigned buffer_offset,
unsigned buffer_size)
{
struct pipe_stream_output_target *t =
CALLOC_STRUCT(pipe_stream_output_target);
if (!t)
return NULL;
pipe_reference_init(&t->reference, 1);
pipe_resource_reference(&t->buffer, res);
t->buffer_offset = buffer_offset;
t->buffer_size = buffer_size;
return t;
}
static void
iris_stream_output_target_destroy(struct pipe_context *ctx,
struct pipe_stream_output_target *t)
{
pipe_resource_reference(&t->buffer, NULL);
free(t);
}
static void
iris_set_stream_output_targets(struct pipe_context *ctx,
unsigned num_targets,
struct pipe_stream_output_target **targets,
const unsigned *offsets)
{
}
static void
iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
const struct brw_vue_map *last_vue_map,
bool two_sided_color,
unsigned *out_offset,
unsigned *out_length)
{
/* The compiler computes the first URB slot without considering COL/BFC
* swizzling (because it doesn't know whether it's enabled), so we need
* to do that here too. This may result in a smaller offset, which
* should be safe.
*/
const unsigned first_slot =
brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
/* This becomes the URB read offset (counted in pairs of slots). */
assert(first_slot % 2 == 0);
*out_offset = first_slot / 2;
/* We need to adjust the inputs read to account for front/back color
* swizzling, as it can make the URB length longer.
*/
for (int c = 0; c <= 1; c++) {
if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
/* If two sided color is enabled, the fragment shader's gl_Color
* (COL0) input comes from either the gl_FrontColor (COL0) or
* gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
*/
if (two_sided_color)
fs_input_slots |= (VARYING_BIT_BFC0 << c);
/* If front color isn't written, we opt to give them back color
* instead of an undefined value. Switch from COL to BFC.
*/
if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
fs_input_slots &= ~(VARYING_BIT_COL0 << c);
fs_input_slots |= (VARYING_BIT_BFC0 << c);
}
}
}
/* Compute the minimum URB Read Length necessary for the FS inputs.
*
* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
* 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
*
* "This field should be set to the minimum length required to read the
* maximum source attribute. The maximum source attribute is indicated
* by the maximum value of the enabled Attribute # Source Attribute if
* Attribute Swizzle Enable is set, Number of Output Attributes-1 if
* enable is not set.
* read_length = ceiling((max_source_attr + 1) / 2)
*
* [errata] Corruption/Hang possible if length programmed larger than
* recommended"
*
* Similar text exists for Ivy Bridge.
*
* We find the last URB slot that's actually read by the FS.
*/
unsigned last_read_slot = last_vue_map->num_slots - 1;
while (last_read_slot > first_slot && !(fs_input_slots &
(1ull << last_vue_map->slot_to_varying[last_read_slot])))
--last_read_slot;
/* The URB read length is the difference of the two, counted in pairs. */
*out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
}
static void
iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
{
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
const struct brw_wm_prog_data *wm_prog_data = (void *)
ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
struct pipe_shader_state *p_fs =
(void *) ice->shaders.uncompiled[MESA_SHADER_FRAGMENT];
assert(p_fs->type == PIPE_SHADER_IR_NIR);
nir_shader *fs_nir = p_fs->ir.nir;
unsigned urb_read_offset, urb_read_length;
iris_compute_sbe_urb_read_interval(fs_nir->info.inputs_read,
ice->shaders.last_vue_map,
cso_rast->light_twoside,
&urb_read_offset, &urb_read_length);
iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
sbe.AttributeSwizzleEnable = true;
sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
sbe.VertexURBEntryReadOffset = urb_read_offset;
sbe.VertexURBEntryReadLength = urb_read_length;
sbe.ForceVertexURBEntryReadOffset = true;
sbe.ForceVertexURBEntryReadLength = true;
sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
for (int i = 0; i < 32; i++) {
sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
}
}
}
static void
iris_bind_compute_state(struct pipe_context *ctx, void *state)
{
}
static void
iris_populate_sampler_key(const struct iris_context *ice,
struct brw_sampler_prog_key_data *key)
{
for (int i = 0; i < MAX_SAMPLERS; i++) {
key->swizzles[i] = 0x688; /* XYZW */
}
}
static void
iris_populate_vs_key(const struct iris_context *ice,
struct brw_vs_prog_key *key)
{
memset(key, 0, sizeof(*key));
iris_populate_sampler_key(ice, &key->tex);
}
static void
iris_populate_tcs_key(const struct iris_context *ice,
struct brw_tcs_prog_key *key)
{
memset(key, 0, sizeof(*key));
iris_populate_sampler_key(ice, &key->tex);
}
static void
iris_populate_tes_key(const struct iris_context *ice,
struct brw_tes_prog_key *key)
{
memset(key, 0, sizeof(*key));
iris_populate_sampler_key(ice, &key->tex);
}
static void
iris_populate_gs_key(const struct iris_context *ice,
struct brw_gs_prog_key *key)
{
memset(key, 0, sizeof(*key));
iris_populate_sampler_key(ice, &key->tex);
}
static void
iris_populate_fs_key(const struct iris_context *ice,
struct brw_wm_prog_key *key)
{
memset(key, 0, sizeof(*key));
iris_populate_sampler_key(ice, &key->tex);
/* XXX: dirty flags? */
const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
const struct iris_rasterizer_state *rast = ice->state.cso_rast;
const struct iris_blend_state *blend = ice->state.cso_blend;
key->nr_color_regions = fb->nr_cbufs;
key->clamp_fragment_color = rast->clamp_fragment_color;
key->replicate_alpha = fb->nr_cbufs > 1 &&
(zsa->alpha.enabled || blend->alpha_to_coverage);
// key->force_dual_color_blend for unigine
#if 0
if (cso_rast->multisample) {
key->persample_interp =
ctx->Multisample.SampleShading &&
(ctx->Multisample.MinSampleShadingValue *
_mesa_geometric_samples(ctx->DrawBuffer) > 1);
key->multisample_fbo = fb->samples > 1;
}
#endif
key->coherent_fb_fetch = true;
}
//pkt.SamplerCount = \
//DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
//pkt.PerThreadScratchSpace = prog_data->total_scratch == 0 ? 0 : \
//ffs(stage_state->per_thread_scratch) - 11; \
static uint64_t
KSP(const struct iris_compiled_shader *shader)
{
struct iris_resource *res = (void *) shader->buffer;
return res->bo->gtt_offset + shader->offset;
}
#define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
pkt.KernelStartPointer = KSP(shader); \
pkt.BindingTableEntryCount = prog_data->binding_table.size_bytes / 4; \
pkt.FloatingPointMode = prog_data->use_alt_mode; \
\
pkt.DispatchGRFStartRegisterForURBData = \
prog_data->dispatch_grf_start_reg; \
pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
pkt.prefix##URBEntryReadOffset = 0; \
\
pkt.StatisticsEnable = true; \
pkt.Enable = true;
static void
iris_store_vs_state(const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
vs.SIMD8DispatchEnable = true;
vs.UserClipDistanceCullTestEnableBitmask =
vue_prog_data->cull_distance_mask;
}
}
static void
iris_store_tcs_state(const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
hs.InstanceCount = tcs_prog_data->instances - 1;
hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
hs.IncludeVertexHandles = true;
}
}
static void
iris_store_tes_state(const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
uint32_t *te_state = (void *) shader->derived_data;
uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
te.Partitioning = tes_prog_data->partitioning;
te.OutputTopology = tes_prog_data->output_topology;
te.TEDomain = tes_prog_data->domain;
te.TEEnable = true;
te.MaximumTessellationFactorOdd = 63.0;
te.MaximumTessellationFactorNotOdd = 64.0;
}
iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
ds.ComputeWCoordinateEnable =
tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
ds.UserClipDistanceCullTestEnableBitmask =
vue_prog_data->cull_distance_mask;
}
}
static void
iris_store_gs_state(const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
gs.OutputTopology = gs_prog_data->output_topology;
gs.ControlDataHeaderSize =
gs_prog_data->control_data_header_size_hwords;
gs.InstanceControl = gs_prog_data->invocations - 1;
gs.DispatchMode = SIMD8;
gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
gs.ControlDataFormat = gs_prog_data->control_data_format;
gs.ReorderMode = TRAILING;
gs.ExpectedVertexCount = gs_prog_data->vertices_in;
gs.MaximumNumberofThreads =
GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
: (devinfo->max_gs_threads - 1);
if (gs_prog_data->static_vertex_count != -1) {
gs.StaticOutput = true;
gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
}
gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
gs.UserClipDistanceCullTestEnableBitmask =
vue_prog_data->cull_distance_mask;
const int urb_entry_write_offset = 1;
const uint32_t urb_entry_output_length =
DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
urb_entry_write_offset;
gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
}
}
static void
iris_store_fs_state(const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
uint32_t *ps_state = (void *) shader->derived_data;
uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
ps.VectorMaskEnable = true;
//ps.SamplerCount = ...
ps.BindingTableEntryCount = prog_data->binding_table.size_bytes / 4;
ps.FloatingPointMode = prog_data->use_alt_mode;
ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
ps.PushConstantEnable = prog_data->nr_params > 0 ||
prog_data->ubo_ranges[0].length > 0;
/* From the documentation for this packet:
* "If the PS kernel does not need the Position XY Offsets to
* compute a Position Value, then this field should be programmed
* to POSOFFSET_NONE."
*
* "SW Recommendation: If the PS kernel needs the Position Offsets
* to compute a Position XY value, this field should match Position
* ZW Interpolation Mode to ensure a consistent position.xyzw
* computation."
*
* We only require XY sample offsets. So, this recommendation doesn't
* look useful at the moment. We might need this in future.
*/
ps.PositionXYOffsetSelect =
wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
// XXX: Disable SIMD32 with 16x MSAA
ps.DispatchGRFStartRegisterForConstantSetupData0 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
ps.DispatchGRFStartRegisterForConstantSetupData1 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
ps.DispatchGRFStartRegisterForConstantSetupData2 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
ps.KernelStartPointer0 =
KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
ps.KernelStartPointer1 =
KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
ps.KernelStartPointer2 =
KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
}
iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
psx.PixelShaderValid = true;
psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
if (wm_prog_data->uses_sample_mask) {
/* TODO: conservative rasterization */
if (wm_prog_data->post_depth_coverage)
psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
else
psx.InputCoverageMaskState = ICMS_NORMAL;
}
psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
// XXX: UAV bit
}
}
static unsigned
iris_derived_program_state_size(enum iris_program_cache_id cache_id)
{
assert(cache_id <= IRIS_CACHE_BLORP);
static const unsigned dwords[] = {
[IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
[IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
[IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
[IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
[IRIS_CACHE_FS] =
GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
[IRIS_CACHE_CS] = 0,
[IRIS_CACHE_BLORP] = 0,
};
return sizeof(uint32_t) * dwords[cache_id];
}
static void
iris_store_derived_program_state(const struct gen_device_info *devinfo,
enum iris_program_cache_id cache_id,
struct iris_compiled_shader *shader)
{
switch (cache_id) {
case IRIS_CACHE_VS:
iris_store_vs_state(devinfo, shader);
break;
case IRIS_CACHE_TCS:
iris_store_tcs_state(devinfo, shader);
break;
case IRIS_CACHE_TES:
iris_store_tes_state(devinfo, shader);
break;
case IRIS_CACHE_GS:
iris_store_gs_state(devinfo, shader);
break;
case IRIS_CACHE_FS:
iris_store_fs_state(devinfo, shader);
break;
case IRIS_CACHE_CS:
case IRIS_CACHE_BLORP:
break;
default:
break;
}
}
static void
iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
{
const struct gen_device_info *devinfo = &batch->screen->devinfo;
const unsigned push_size_kB = 32;
unsigned entries[4];
unsigned start[4];
unsigned size[4];
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
if (!ice->shaders.prog[i]) {
size[i] = 1;
} else {
struct brw_vue_prog_data *vue_prog_data =
(void *) ice->shaders.prog[i]->prog_data;
size[i] = vue_prog_data->urb_entry_size;
}
assert(size[i] != 0);
}
gen_get_urb_config(devinfo, 1024 * push_size_kB,
1024 * ice->shaders.urb_size,
ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
size, entries, start);
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
urb._3DCommandSubOpcode += i;
urb.VSURBStartingAddress = start[i];
urb.VSURBEntryAllocationSize = size[i] - 1;
urb.VSNumberofURBEntries = entries[i];
}
}
}
static const uint32_t push_constant_opcodes[] = {
[MESA_SHADER_VERTEX] = 21,
[MESA_SHADER_TESS_CTRL] = 25, /* HS */
[MESA_SHADER_TESS_EVAL] = 26, /* DS */
[MESA_SHADER_GEOMETRY] = 22,
[MESA_SHADER_FRAGMENT] = 23,
[MESA_SHADER_COMPUTE] = 0,
};
/**
* Add a surface to the validation list, as well as the buffer containing
* the corresponding SURFACE_STATE.
*
* Returns the binding table entry (offset to SURFACE_STATE).
*/
static uint32_t
use_surface(struct iris_batch *batch,
struct pipe_surface *p_surf,
bool writeable)
{
struct iris_surface *surf = (void *) p_surf;
struct iris_resource *res = (void *) p_surf->texture;
struct iris_resource *state_res = (void *) surf->surface_state_resource;
iris_use_pinned_bo(batch, res->bo, writeable);
iris_use_pinned_bo(batch, state_res->bo, false);
return surf->surface_state_offset;
}
static uint32_t
use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
{
struct iris_resource *res = (void *) isv->pipe.texture;
struct iris_resource *state_res = (void *) isv->surface_state_resource;
iris_use_pinned_bo(batch, res->bo, false);
iris_use_pinned_bo(batch, state_res->bo, false);
return isv->surface_state_offset;
}
static uint32_t
use_const_buffer(struct iris_batch *batch, struct iris_const_buffer *cbuf)
{
struct iris_resource *res = (void *) cbuf->resource;
struct iris_resource *state_res = (void *) cbuf->surface_state_resource;
iris_use_pinned_bo(batch, res->bo, false);
iris_use_pinned_bo(batch, state_res->bo, false);
return cbuf->surface_state_offset;
}
static void
iris_populate_binding_table(struct iris_context *ice,
struct iris_batch *batch,
gl_shader_stage stage)
{
const struct iris_binder *binder = &batch->binder;
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (!shader)
return;
// Surfaces:
// - pull constants
// - ubos/ssbos/abos
// - images
// - textures
// - render targets - write and read
struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
uint32_t *bt_map = binder->map + binder->bt_offset[stage];
int s = 0;
if (stage == MESA_SHADER_FRAGMENT) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
bt_map[s++] = use_surface(batch, cso_fb->cbufs[i], true);
}
}
//assert(prog_data->binding_table.texture_start ==
//(ice->state.num_textures[stage] ? s : 0xd0d0d0d0));
for (int i = 0; i < ice->state.num_textures[stage]; i++) {
struct iris_sampler_view *view = ice->state.textures[stage][i];
bt_map[s++] = use_sampler_view(batch, view);
}
// XXX: want the number of BTE's to shorten this loop
struct iris_shader_state *shs = &ice->shaders.state[stage];
for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
struct iris_const_buffer *cbuf = &shs->constbuf[i];
if (!cbuf->surface_state_resource)
break;
bt_map[s++] = use_const_buffer(batch, cbuf);
}
#if 0
// XXX: not implemented yet
assert(prog_data->binding_table.pull_constants_start == 0xd0d0d0d0);
assert(prog_data->binding_table.ubo_start == 0xd0d0d0d0);
assert(prog_data->binding_table.ssbo_start == 0xd0d0d0d0);
assert(prog_data->binding_table.image_start == 0xd0d0d0d0);
assert(prog_data->binding_table.shader_time_start == 0xd0d0d0d0);
//assert(prog_data->binding_table.plane_start[1] == 0xd0d0d0d0);
//assert(prog_data->binding_table.plane_start[2] == 0xd0d0d0d0);
#endif
}
static void
iris_upload_render_state(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_draw_info *draw)
{
const uint64_t dirty =
unlikely(INTEL_DEBUG & DEBUG_REEMIT) ? ~0ull : ice->state.dirty;
struct brw_wm_prog_data *wm_prog_data = (void *)
ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
ptr.CCViewportPointer =
emit_state(batch, ice->state.dynamic_uploader,
cso->cc_vp, sizeof(cso->cc_vp), 32);
}
}
if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
struct iris_viewport_state *cso = ice->state.cso_vp;
iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
ptr.SFClipViewportPointer =
emit_state(batch, ice->state.dynamic_uploader, cso->sf_cl_vp,
4 * GENX(SF_CLIP_VIEWPORT_length) *
ice->state.num_viewports, 64);
}
}
/* XXX: L3 State */
if (dirty & IRIS_DIRTY_URB) {
iris_upload_urb_config(ice, batch);
}
if (dirty & IRIS_DIRTY_BLEND_STATE) {
struct iris_blend_state *cso_blend = ice->state.cso_blend;
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
const int num_dwords = 4 * (GENX(BLEND_STATE_length) +
cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length));
uint32_t blend_offset;
uint32_t *blend_map =
stream_state(batch, ice->state.dynamic_uploader, 4 * num_dwords, 64,
&blend_offset);
uint32_t blend_state_header;
iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
bs.AlphaTestEnable = cso_zsa->alpha.enabled;
bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
}
blend_map[0] = blend_state_header | cso_blend->blend_state[0];
memcpy(&blend_map[1], &cso_blend->blend_state[1],
sizeof(cso_blend->blend_state) - sizeof(uint32_t));
iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
ptr.BlendStatePointer = blend_offset;
ptr.BlendStatePointerValid = true;
}
}
if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
uint32_t cc_offset;
void *cc_map =
stream_state(batch, ice->state.dynamic_uploader,
sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
64, &cc_offset);
iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
cc.AlphaTestFormat = ALPHATEST_FLOAT32;
cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
cc.BlendConstantColorRed = ice->state.blend_color.color[0];
cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
}
iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
ptr.ColorCalcStatePointer = cc_offset;
ptr.ColorCalcStatePointerValid = true;
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
// XXX: wrong dirty tracking...
if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
continue;
struct iris_shader_state *shs = &ice->shaders.state[stage];
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (!shader)
continue;
struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
if (prog_data) {
/* The Skylake PRM contains the following restriction:
*
* "The driver must ensure The following case does not occur
* without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
* buffer 3 read length equal to zero committed followed by a
* 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
* zero committed."
*
* To avoid this, we program the buffers in the highest slots.
* This way, slot 0 is only used if slot 3 is also used.
*/
int n = 3;
for (int i = 3; i >= 0; i--) {
const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
if (range->length == 0)
continue;
// XXX: is range->block a constbuf index? it would be nice
struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
struct iris_resource *res = (void *) cbuf->resource;
assert(cbuf->offset % 32 == 0);
pkt.ConstantBody.ReadLength[n] = range->length;
pkt.ConstantBody.Buffer[n] =
ro_bo(res->bo, range->start * 32 + cbuf->offset);
n--;
}
}
}
}
if (1) { // XXX: DIRTY BINDINGS
const struct iris_binder *binder = &batch->binder;
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
ptr._3DCommandSubOpcode = 38 + stage;
ptr.PointertoVSBindingTable = binder->bt_offset[stage];
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
iris_populate_binding_table(ice, batch, stage);
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
!ice->shaders.prog[stage])
continue;
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
ptr._3DCommandSubOpcode = 43 + stage;
ptr.PointertoVSSamplerState = ice->state.sampler_table_offset[stage];
}
}
if (dirty & IRIS_DIRTY_MULTISAMPLE) {
iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
ms.PixelLocation =
ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
if (ice->state.framebuffer.samples > 0)
ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
}
}
if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
ms.SampleMask = MAX2(ice->state.sample_mask, 1);
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(dirty & (IRIS_DIRTY_VS << stage)))
continue;
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (shader) {
struct iris_resource *cache = (void *) shader->buffer;
iris_use_pinned_bo(batch, cache->bo, false);
iris_batch_emit(batch, shader->derived_data,
iris_derived_program_state_size(stage));
} else {
if (stage == MESA_SHADER_TESS_EVAL) {
iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
} else if (stage == MESA_SHADER_GEOMETRY) {
iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
}
}
}
// XXX: SOL:
// 3DSTATE_STREAMOUT
// 3DSTATE_SO_BUFFER
// 3DSTATE_SO_DECL_LIST
if (dirty & IRIS_DIRTY_CLIP) {
struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
if (wm_prog_data->barycentric_interp_modes &
BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
cl.NonPerspectiveBarycentricEnable = true;
cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
}
iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
ARRAY_SIZE(cso_rast->clip));
}
if (dirty & IRIS_DIRTY_RASTER) {
struct iris_rasterizer_state *cso = ice->state.cso_rast;
iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
}
/* XXX: FS program updates needs to flag IRIS_DIRTY_WM */
if (dirty & IRIS_DIRTY_WM) {
struct iris_rasterizer_state *cso = ice->state.cso_rast;
uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
wm.BarycentricInterpolationMode =
wm_prog_data->barycentric_interp_modes;
if (wm_prog_data->early_fragment_tests)
wm.EarlyDepthStencilControl = EDSC_PREPS;
else if (wm_prog_data->has_side_effects)
wm.EarlyDepthStencilControl = EDSC_PSEXEC;
}
iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
}
if (1) {
// XXX: 3DSTATE_SBE, 3DSTATE_SBE_SWIZ
// -> iris_raster_state (point sprite texture coordinate origin)
// -> bunch of shader state...
iris_emit_sbe(batch, ice);
iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbe) {
}
}
if (dirty & IRIS_DIRTY_PS_BLEND) {
struct iris_blend_state *cso_blend = ice->state.cso_blend;
struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
pb.HasWriteableRT = true; // XXX: comes from somewhere :(
pb.AlphaTestEnable = cso_zsa->alpha.enabled;
}
iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
ARRAY_SIZE(cso_blend->ps_blend));
}
if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
}
iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
}
if (dirty & IRIS_DIRTY_SCISSOR) {
// XXX: allocate at set_scissor time?
uint32_t scissor_offset = ice->state.num_scissors == 0 ? 0 :
emit_state(batch, ice->state.dynamic_uploader, ice->state.scissors,
sizeof(struct pipe_scissor_state) *
ice->state.num_scissors, 32);
iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
ptr.ScissorRectPointer = scissor_offset;
}
}
if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
struct iris_depth_buffer_state *cso_z = ice->state.cso_depthbuffer;
iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
if (cso_fb->zsbuf) {
struct iris_resource *zres = (void *) cso_fb->zsbuf->texture;
// XXX: depth might not be writable...
iris_use_pinned_bo(batch, zres->bo, true);
}
}
if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
for (int i = 0; i < 32; i++) {
poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
}
}
}
if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
struct iris_rasterizer_state *cso = ice->state.cso_rast;
iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
}
if (1) {
iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
topo.PrimitiveTopologyType =
translate_prim_type(draw->mode, draw->vertices_per_patch);
}
}
if (draw->index_size > 0) {
struct iris_resource *res = NULL;
unsigned offset;
if (draw->has_user_indices) {
u_upload_data(ice->ctx.stream_uploader, 0,
draw->count * draw->index_size, 4, draw->index.user,
&offset, (struct pipe_resource **) &res);
} else {
res = (struct iris_resource *) draw->index.resource;
offset = 0;
}
iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
ib.IndexFormat = draw->index_size >> 1;
ib.MOCS = MOCS_WB;
ib.BufferSize = res->bo->size;
ib.BufferStartingAddress = ro_bo(res->bo, offset);
}
}
if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
struct iris_vertex_buffer_state *cso = ice->state.cso_vertex_buffers;
STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_length) == 4);
STATIC_ASSERT((GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) % 32) == 0);
iris_batch_emit(batch, cso->vertex_buffers,
sizeof(uint32_t) * (1 + 4 * cso->num_buffers));
for (unsigned i = 0; i < cso->num_buffers; i++) {
iris_use_pinned_bo(batch, cso->bos[i], false);
}
}
if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
(1 + cso->count * GENX(VERTEX_ELEMENT_STATE_length)));
iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
cso->count * GENX(3DSTATE_VF_INSTANCING_length));
for (int i = 0; i < cso->count; i++) {
/* TODO: vertexid, instanceid support */
iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgvs);
}
}
if (1) {
iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
if (draw->primitive_restart) {
vf.IndexedDrawCutIndexEnable = true;
vf.CutIndex = draw->restart_index;
}
}
}
// XXX: Gen8 - PMA fix
assert(!draw->indirect); // XXX: indirect support
iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
prim.StartInstanceLocation = draw->start_instance;
prim.InstanceCount = draw->instance_count;
prim.VertexCountPerInstance = draw->count;
prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
// XXX: this is probably bonkers.
prim.StartVertexLocation = draw->start;
if (draw->index_size) {
prim.BaseVertexLocation += draw->index_bias;
} else {
prim.StartVertexLocation += draw->index_bias;
}
//prim.BaseVertexLocation = ...;
}
}
static void
iris_destroy_state(struct iris_context *ice)
{
// XXX: unreference resources/surfaces.
for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
}
pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
}
static unsigned
flags_to_post_sync_op(uint32_t flags)
{
if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
return WriteImmediateData;
if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
return WritePSDepthCount;
if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
return WriteTimestamp;
return 0;
}
/**
* Do the given flags have a Post Sync or LRI Post Sync operation?
*/
static enum pipe_control_flags
get_post_sync_flags(enum pipe_control_flags flags)
{
flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
PIPE_CONTROL_WRITE_DEPTH_COUNT |
PIPE_CONTROL_WRITE_TIMESTAMP |
PIPE_CONTROL_LRI_POST_SYNC_OP;
/* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
* "LRI Post Sync Operation". So more than one bit set would be illegal.
*/
assert(util_bitcount(flags) <= 1);
return flags;
}
// XXX: compute support
#define IS_COMPUTE_PIPELINE(batch) (batch->ring != I915_EXEC_RENDER)
/**
* Emit a series of PIPE_CONTROL commands, taking into account any
* workarounds necessary to actually accomplish the caller's request.
*
* Unless otherwise noted, spec quotations in this function come from:
*
* Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
* Restrictions for PIPE_CONTROL.
*/
static void
iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
struct iris_bo *bo, uint32_t offset, uint64_t imm)
{
UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
enum pipe_control_flags non_lri_post_sync_flags =
post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
/* Recursive PIPE_CONTROL workarounds --------------------------------
* (http://knowyourmeme.com/memes/xzibit-yo-dawg)
*
* We do these first because we want to look at the original operation,
* rather than any workarounds we set.
*/
if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
/* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
* lists several workarounds:
*
* "Project: SKL, KBL, BXT
*
* If the VF Cache Invalidation Enable is set to a 1 in a
* PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
* sets to 0, with the VF Cache Invalidation Enable set to 0
* needs to be sent prior to the PIPE_CONTROL with VF Cache
* Invalidation Enable set to a 1."
*/
iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
}
if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
/* Project: SKL / Argument: LRI Post Sync Operation [23]
*
* "PIPECONTROL command with “Command Streamer Stall Enable” must be
* programmed prior to programming a PIPECONTROL command with "LRI
* Post Sync Operation" in GPGPU mode of operation (i.e when
* PIPELINE_SELECT command is set to GPGPU mode of operation)."
*
* The same text exists a few rows below for Post Sync Op.
*/
iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
}
if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
/* Cannonlake:
* "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
* another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
* = 0 and Pipe Control Flush Enable (bit 7) = 1"
*/
iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
offset, imm);
}
/* "Flush Types" workarounds ---------------------------------------------
* We do these now because they may add post-sync operations or CS stalls.
*/
if (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
/* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
*
* "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
* 'Write PS Depth Count' or 'Write Timestamp'."
*/
if (!bo) {
flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
bo = batch->screen->workaround_bo;
}
}
/* #1130 from Gen10 workarounds page:
*
* "Enable Depth Stall on every Post Sync Op if Render target Cache
* Flush is not enabled in same PIPE CONTROL and Enable Pixel score
* board stall if Render target cache flush is enabled."
*
* Applicable to CNL B0 and C0 steppings only.
*
* The wording here is unclear, and this workaround doesn't look anything
* like the internal bug report recommendations, but leave it be for now...
*/
if (GEN_GEN == 10) {
if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
} else if (flags & non_lri_post_sync_flags) {
flags |= PIPE_CONTROL_DEPTH_STALL;
}
}
if (flags & PIPE_CONTROL_DEPTH_STALL) {
/* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
*
* "This bit must be DISABLED for operations other than writing
* PS_DEPTH_COUNT."
*
* This seems like nonsense. An Ivybridge workaround requires us to
* emit a PIPE_CONTROL with a depth stall and write immediate post-sync
* operation. Gen8+ requires us to emit depth stalls and depth cache
* flushes together. So, it's hard to imagine this means anything other
* than "we originally intended this to be used for PS_DEPTH_COUNT".
*
* We ignore the supposed restriction and do nothing.
*/
}
if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
/* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
*
* "This bit must be DISABLED for End-of-pipe (Read) fences,
* PS_DEPTH_COUNT or TIMESTAMP queries."
*
* TODO: Implement end-of-pipe checking.
*/
assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
PIPE_CONTROL_WRITE_TIMESTAMP)));
}
if (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) {
/* From the PIPE_CONTROL instruction table, bit 1:
*
* "This bit is ignored if Depth Stall Enable is set.
* Further, the render cache is not flushed even if Write Cache
* Flush Enable bit is set."
*
* We assert that the caller doesn't do this combination, to try and
* prevent mistakes. It shouldn't hurt the GPU, though.
*/
assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_RENDER_TARGET_FLUSH)));
}
/* PIPE_CONTROL page workarounds ------------------------------------- */
if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
/* From the PIPE_CONTROL page itself:
*
* "IVB, HSW, BDW
* Restriction: Pipe_control with CS-stall bit set must be issued
* before a pipe-control command that has the State Cache
* Invalidate bit set."
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (flags & PIPE_CONTROL_FLUSH_LLC) {
/* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
*
* "Project: ALL
* SW must always program Post-Sync Operation to "Write Immediate
* Data" when Flush LLC is set."
*
* For now, we just require the caller to do it.
*/
assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
}
/* "Post-Sync Operation" workarounds -------------------------------- */
/* Project: All / Argument: Global Snapshot Count Reset [19]
*
* "This bit must not be exercised on any product.
* Requires stall bit ([20] of DW1) set."
*
* We don't use this, so we just assert that it isn't used. The
* PIPE_CONTROL instruction page indicates that they intended this
* as a debug feature and don't think it is useful in production,
* but it may actually be usable, should we ever want to.
*/
assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
/* Project: All / Arguments:
*
* - Generic Media State Clear [16]
* - Indirect State Pointers Disable [16]
*
* "Requires stall bit ([20] of DW1) set."
*
* Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
* State Clear) says:
*
* "PIPECONTROL command with “Command Streamer Stall Enable” must be
* programmed prior to programming a PIPECONTROL command with "Media
* State Clear" set in GPGPU mode of operation"
*
* This is a subset of the earlier rule, so there's nothing to do.
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
/* Project: All / Argument: Store Data Index
*
* "Post-Sync Operation ([15:14] of DW1) must be set to something other
* than '0'."
*
* For now, we just assert that the caller does this. We might want to
* automatically add a write to the workaround BO...
*/
assert(non_lri_post_sync_flags != 0);
}
if (flags & PIPE_CONTROL_SYNC_GFDT) {
/* Project: All / Argument: Sync GFDT
*
* "Post-Sync Operation ([15:14] of DW1) must be set to something other
* than '0' or 0x2520[13] must be set."
*
* For now, we just assert that the caller does this.
*/
assert(non_lri_post_sync_flags != 0);
}
if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
/* Project: IVB+ / Argument: TLB inv
*
* "Requires stall bit ([20] of DW1) set."
*
* Also, from the PIPE_CONTROL instruction table:
*
* "Project: SKL+
* Post Sync Operation or CS stall must be set to ensure a TLB
* invalidation occurs. Otherwise no cycle will occur to the TLB
* cache to invalidate."
*
* This is not a subset of the earlier rule, so there's nothing to do.
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (GEN_GEN == 9 && devinfo->gt == 4) {
/* TODO: The big Skylake GT4 post sync op workaround */
}
/* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
if (IS_COMPUTE_PIPELINE(batch)) {
if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
/* Project: SKL+ / Argument: Tex Invalidate
* "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (GEN_GEN == 8 && (post_sync_flags ||
(flags & (PIPE_CONTROL_NOTIFY_ENABLE |
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
/* Project: BDW / Arguments:
*
* - LRI Post Sync Operation [23]
* - Post Sync Op [15:14]
* - Notify En [8]
* - Depth Stall [13]
* - Render Target Cache Flush [12]
* - Depth Cache Flush [0]
* - DC Flush Enable [5]
*
* "Requires stall bit ([20] of DW) set for all GPGPU and Media
* Workloads."
*/
flags |= PIPE_CONTROL_CS_STALL;
/* Also, from the PIPE_CONTROL instruction table, bit 20:
*
* "Project: BDW
* This bit must be always set when PIPE_CONTROL command is
* programmed by GPGPU and MEDIA workloads, except for the cases
* when only Read Only Cache Invalidation bits are set (State
* Cache Invalidation Enable, Instruction cache Invalidation
* Enable, Texture Cache Invalidation Enable, Constant Cache
* Invalidation Enable). This is to WA FFDOP CG issue, this WA
* need not implemented when FF_DOP_CG is disable via "Fixed
* Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
*
* It sounds like we could avoid CS stalls in some cases, but we
* don't currently bother. This list isn't exactly the list above,
* either...
*/
}
}
/* "Stall" workarounds ----------------------------------------------
* These have to come after the earlier ones because we may have added
* some additional CS stalls above.
*/
if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
/* Project: PRE-SKL, VLV, CHV
*
* "[All Stepping][All SKUs]:
*
* One of the following must also be set:
*
* - Render Target Cache Flush Enable ([12] of DW1)
* - Depth Cache Flush Enable ([0] of DW1)
* - Stall at Pixel Scoreboard ([1] of DW1)
* - Depth Stall ([13] of DW1)
* - Post-Sync Operation ([13] of DW1)
* - DC Flush Enable ([5] of DW1)"
*
* If we don't already have one of those bits set, we choose to add
* "Stall at Pixel Scoreboard". Some of the other bits require a
* CS stall as a workaround (see above), which would send us into
* an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
* appears to be safe, so we choose that.
*/
const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_WRITE_IMMEDIATE |
PIPE_CONTROL_WRITE_DEPTH_COUNT |
PIPE_CONTROL_WRITE_TIMESTAMP |
PIPE_CONTROL_STALL_AT_SCOREBOARD |
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_DATA_CACHE_FLUSH;
if (!(flags & wa_bits))
flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
}
/* Emit --------------------------------------------------------------- */
iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
pc.LRIPostSyncOperation = NoLRIOperation;
pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
pc.StoreDataIndex = 0;
pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
pc.GlobalSnapshotCountReset =
flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
pc.RenderTargetCacheFlushEnable =
flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
pc.StateCacheInvalidationEnable =
flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
pc.ConstantCacheInvalidationEnable =
flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
pc.PostSyncOperation = flags_to_post_sync_op(flags);
pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
pc.InstructionCacheInvalidateEnable =
flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
pc.IndirectStatePointersDisable =
flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
pc.TextureCacheInvalidationEnable =
flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
pc.Address = ro_bo(bo, offset);
pc.ImmediateData = imm;
}
}
void
genX(init_state)(struct iris_context *ice)
{
struct pipe_context *ctx = &ice->ctx;
ctx->create_blend_state = iris_create_blend_state;
ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
ctx->create_rasterizer_state = iris_create_rasterizer_state;
ctx->create_sampler_state = iris_create_sampler_state;
ctx->create_sampler_view = iris_create_sampler_view;
ctx->create_surface = iris_create_surface;
ctx->create_vertex_elements_state = iris_create_vertex_elements;
ctx->create_compute_state = iris_create_compute_state;
ctx->bind_blend_state = iris_bind_blend_state;
ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
ctx->bind_sampler_states = iris_bind_sampler_states;
ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
ctx->bind_compute_state = iris_bind_compute_state;
ctx->delete_blend_state = iris_delete_state;
ctx->delete_depth_stencil_alpha_state = iris_delete_state;
ctx->delete_fs_state = iris_delete_state;
ctx->delete_rasterizer_state = iris_delete_state;
ctx->delete_sampler_state = iris_delete_state;
ctx->delete_vertex_elements_state = iris_delete_state;
ctx->delete_compute_state = iris_delete_state;
ctx->delete_tcs_state = iris_delete_state;
ctx->delete_tes_state = iris_delete_state;
ctx->delete_gs_state = iris_delete_state;
ctx->delete_vs_state = iris_delete_state;
ctx->set_blend_color = iris_set_blend_color;
ctx->set_clip_state = iris_set_clip_state;
ctx->set_constant_buffer = iris_set_constant_buffer;
ctx->set_sampler_views = iris_set_sampler_views;
ctx->set_framebuffer_state = iris_set_framebuffer_state;
ctx->set_polygon_stipple = iris_set_polygon_stipple;
ctx->set_sample_mask = iris_set_sample_mask;
ctx->set_scissor_states = iris_set_scissor_states;
ctx->set_stencil_ref = iris_set_stencil_ref;
ctx->set_vertex_buffers = iris_set_vertex_buffers;
ctx->set_viewport_states = iris_set_viewport_states;
ctx->sampler_view_destroy = iris_sampler_view_destroy;
ctx->surface_destroy = iris_surface_destroy;
ctx->draw_vbo = iris_draw_vbo;
ctx->launch_grid = iris_launch_grid;
ctx->create_stream_output_target = iris_create_stream_output_target;
ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
ctx->set_stream_output_targets = iris_set_stream_output_targets;
ice->vtbl.destroy_state = iris_destroy_state;
ice->vtbl.init_render_context = iris_init_render_context;
ice->vtbl.upload_render_state = iris_upload_render_state;
ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
ice->vtbl.populate_vs_key = iris_populate_vs_key;
ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
ice->vtbl.populate_tes_key = iris_populate_tes_key;
ice->vtbl.populate_gs_key = iris_populate_gs_key;
ice->vtbl.populate_fs_key = iris_populate_fs_key;
ice->state.dirty = ~0ull;
}