mesa/src/util/bitset.h
Connor Abbott 6b8d30ec1e util/bitset: Add a range iterator helper
I need this for emitting the SO program for turnip, where we want to
skip over unused slots by manually advancing the counter. freedreno will
also want to use it when it supports multistream streamout.

Reviewed-by: Rob Clark <robdclark@gmail.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/6962>
2020-11-03 10:14:45 +00:00

333 lines
14 KiB
C

/*
* Mesa 3-D graphics library
*
* Copyright (C) 2006 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file bitset.h
* \brief Bitset of arbitrary size definitions.
* \author Michal Krol
*/
#ifndef BITSET_H
#define BITSET_H
#include "util/bitscan.h"
#include "util/macros.h"
/****************************************************************************
* generic bitset implementation
*/
#define BITSET_WORD unsigned int
#define BITSET_WORDBITS (sizeof (BITSET_WORD) * 8)
/* bitset declarations
*/
#define BITSET_WORDS(bits) (((bits) + BITSET_WORDBITS - 1) / BITSET_WORDBITS)
#define BITSET_DECLARE(name, bits) BITSET_WORD name[BITSET_WORDS(bits)]
/* bitset operations
*/
#define BITSET_COPY(x, y) memcpy( (x), (y), sizeof (x) )
#define BITSET_EQUAL(x, y) (memcmp( (x), (y), sizeof (x) ) == 0)
#define BITSET_ZERO(x) memset( (x), 0, sizeof (x) )
#define BITSET_ONES(x) memset( (x), 0xff, sizeof (x) )
#define BITSET_BITWORD(b) ((b) / BITSET_WORDBITS)
#define BITSET_BIT(b) (1u << ((b) % BITSET_WORDBITS))
/* single bit operations
*/
#define BITSET_TEST(x, b) (((x)[BITSET_BITWORD(b)] & BITSET_BIT(b)) != 0)
#define BITSET_SET(x, b) ((x)[BITSET_BITWORD(b)] |= BITSET_BIT(b))
#define BITSET_CLEAR(x, b) ((x)[BITSET_BITWORD(b)] &= ~BITSET_BIT(b))
#define BITSET_MASK(b) (((b) % BITSET_WORDBITS == 0) ? ~0 : BITSET_BIT(b) - 1)
#define BITSET_RANGE(b, e) ((BITSET_MASK((e) + 1)) & ~(BITSET_BIT(b) - 1))
/* bit range operations
*/
#define BITSET_TEST_RANGE(x, b, e) \
(BITSET_BITWORD(b) == BITSET_BITWORD(e) ? \
(((x)[BITSET_BITWORD(b)] & BITSET_RANGE(b, e)) != 0) : \
(assert (!"BITSET_TEST_RANGE: bit range crosses word boundary"), 0))
#define BITSET_SET_RANGE(x, b, e) \
(BITSET_BITWORD(b) == BITSET_BITWORD(e) ? \
((x)[BITSET_BITWORD(b)] |= BITSET_RANGE(b, e)) : \
(assert (!"BITSET_SET_RANGE: bit range crosses word boundary"), 0))
#define BITSET_CLEAR_RANGE(x, b, e) \
(BITSET_BITWORD(b) == BITSET_BITWORD(e) ? \
((x)[BITSET_BITWORD(b)] &= ~BITSET_RANGE(b, e)) : \
(assert (!"BITSET_CLEAR_RANGE: bit range crosses word boundary"), 0))
/* Get first bit set in a bitset.
*/
static inline int
__bitset_ffs(const BITSET_WORD *x, int n)
{
int i;
for (i = 0; i < n; i++) {
if (x[i])
return ffs(x[i]) + BITSET_WORDBITS * i;
}
return 0;
}
/* Get the last bit set in a bitset.
*/
static inline int
__bitset_last_bit(const BITSET_WORD *x, int n)
{
for (int i = n - 1; i >= 0; i--) {
if (x[i])
return util_last_bit(x[i]) + BITSET_WORDBITS * i;
}
return 0;
}
#define BITSET_FFS(x) __bitset_ffs(x, ARRAY_SIZE(x))
#define BITSET_LAST_BIT(x, size) __bitset_last_bit(x, size)
static inline unsigned
__bitset_next_set(unsigned i, BITSET_WORD *tmp,
const BITSET_WORD *set, unsigned size)
{
unsigned bit, word;
/* NOTE: The initial conditions for this function are very specific. At
* the start of the loop, the tmp variable must be set to *set and the
* initial i value set to 0. This way, if there is a bit set in the first
* word, we ignore the i-value and just grab that bit (so 0 is ok, even
* though 0 may be returned). If the first word is 0, then the value of
* `word` will be 0 and we will go on to look at the second word.
*/
word = BITSET_BITWORD(i);
while (*tmp == 0) {
word++;
if (word >= BITSET_WORDS(size))
return size;
*tmp = set[word];
}
/* Find the next set bit in the non-zero word */
bit = ffs(*tmp) - 1;
/* Unset the bit */
*tmp &= ~(1ull << bit);
return word * BITSET_WORDBITS + bit;
}
/**
* Iterates over each set bit in a set
*
* @param __i iteration variable, bit number
* @param __set the bitset to iterate (will not be modified)
* @param __size number of bits in the set to consider
*/
#define BITSET_FOREACH_SET(__i, __set, __size) \
for (BITSET_WORD __tmp = *(__set), *__foo = &__tmp; __foo != NULL; __foo = NULL) \
for (__i = 0; \
(__i = __bitset_next_set(__i, &__tmp, __set, __size)) < __size;)
static inline void
__bitset_next_range(unsigned *start, unsigned *end, const BITSET_WORD *set,
unsigned size)
{
/* To find the next start, start searching from end. In the first iteration
* it will be at 0, in every subsequent iteration it will be at the first
* 0-bit after the range.
*/
unsigned word = BITSET_BITWORD(*end);
BITSET_WORD tmp = set[word] & ~(BITSET_BIT(*end) - 1);
while (!tmp) {
word++;
if (word >= BITSET_WORDS(size)) {
*start = *end = size;
return;
}
tmp = set[word];
}
*start = word * BITSET_WORDBITS + ffs(tmp) - 1;
/* Now do the opposite to find end. Here we can start at start + 1, because
* we know that the bit at start is 1 and we're searching for the first
* 0-bit.
*/
word = BITSET_BITWORD(*start + 1);
tmp = set[word] | (BITSET_BIT(*start + 1) - 1);
while (~tmp == 0) {
word++;
if (word >= BITSET_WORDS(size)) {
*end = size;
return;
}
tmp = set[word];
}
/* Cap "end" at "size" in case there are extra bits past "size" set in the
* word. This is only necessary for "end" because we terminate the loop if
* "start" goes past "size".
*/
*end = MIN2(word * BITSET_WORDBITS + ffs(~tmp) - 1, size);
}
/**
* Iterates over each contiguous range of set bits in a set
*
* @param __start the first 1 bit of the current range
* @param __end the bit after the last 1 bit of the current range
* @param __set the bitset to iterate (will not be modified)
* @param __size number of bits in the set to consider
*/
#define BITSET_FOREACH_RANGE(__start, __end, __set, __size) \
for (__start = 0, __end = 0, \
__bitset_next_range(&__start, &__end, __set, __size); \
__start < __size; \
__bitset_next_range(&__start, &__end, __set, __size))
#ifdef __cplusplus
/**
* Simple C++ wrapper of a bitset type of static size, with value semantics
* and basic bitwise arithmetic operators. The operators defined below are
* expected to have the same semantics as the same operator applied to other
* fundamental integer types. T is the name of the struct to instantiate
* it as, and N is the number of bits in the bitset.
*/
#define DECLARE_BITSET_T(T, N) struct T { \
EXPLICIT_CONVERSION \
operator bool() const \
{ \
for (unsigned i = 0; i < BITSET_WORDS(N); i++) \
if (words[i]) \
return true; \
return false; \
} \
\
T & \
operator=(int x) \
{ \
const T c = {{ (BITSET_WORD)x }}; \
return *this = c; \
} \
\
friend bool \
operator==(const T &b, const T &c) \
{ \
return BITSET_EQUAL(b.words, c.words); \
} \
\
friend bool \
operator!=(const T &b, const T &c) \
{ \
return !(b == c); \
} \
\
friend bool \
operator==(const T &b, int x) \
{ \
const T c = {{ (BITSET_WORD)x }}; \
return b == c; \
} \
\
friend bool \
operator!=(const T &b, int x) \
{ \
return !(b == x); \
} \
\
friend T \
operator~(const T &b) \
{ \
T c; \
for (unsigned i = 0; i < BITSET_WORDS(N); i++) \
c.words[i] = ~b.words[i]; \
return c; \
} \
\
T & \
operator|=(const T &b) \
{ \
for (unsigned i = 0; i < BITSET_WORDS(N); i++) \
words[i] |= b.words[i]; \
return *this; \
} \
\
friend T \
operator|(const T &b, const T &c) \
{ \
T d = b; \
d |= c; \
return d; \
} \
\
T & \
operator&=(const T &b) \
{ \
for (unsigned i = 0; i < BITSET_WORDS(N); i++) \
words[i] &= b.words[i]; \
return *this; \
} \
\
friend T \
operator&(const T &b, const T &c) \
{ \
T d = b; \
d &= c; \
return d; \
} \
\
bool \
test(unsigned i) const \
{ \
return BITSET_TEST(words, i); \
} \
\
T & \
set(unsigned i) \
{ \
BITSET_SET(words, i); \
return *this; \
} \
\
T & \
clear(unsigned i) \
{ \
BITSET_CLEAR(words, i); \
return *this; \
} \
\
BITSET_WORD words[BITSET_WORDS(N)]; \
}
#endif
#endif