mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2026-01-19 04:30:25 +01:00
So that as soon as pipelines are freed, they're removed from the cache. Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Closes: https://gitlab.freedesktop.org/mesa/mesa/-/issues/11185 Reviewed-by: Tapani Pälli <tapani.palli@intel.com> Reviewed-by: Sagar Ghuge <sagar.ghuge@intel.com> Tested-by: Brian Paul <brian.paul@broadcom.com> Reviewed-by: Faith Ekstrand <faith.ekstrand@collabora.com> Cc: mesa-stable Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/29283>
5693 lines
222 KiB
C
5693 lines
222 KiB
C
/*
|
||
* Copyright © 2015 Intel Corporation
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
* copy of this software and associated documentation files (the "Software"),
|
||
* to deal in the Software without restriction, including without limitation
|
||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
* and/or sell copies of the Software, and to permit persons to whom the
|
||
* Software is furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice (including the next
|
||
* paragraph) shall be included in all copies or substantial portions of the
|
||
* Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
* IN THE SOFTWARE.
|
||
*/
|
||
|
||
#include <assert.h>
|
||
#include <inttypes.h>
|
||
#include <stdbool.h>
|
||
#include <string.h>
|
||
#ifdef MAJOR_IN_MKDEV
|
||
#include <sys/mkdev.h>
|
||
#endif
|
||
#ifdef MAJOR_IN_SYSMACROS
|
||
#include <sys/sysmacros.h>
|
||
#endif
|
||
#include <sys/mman.h>
|
||
#include <sys/stat.h>
|
||
#include <unistd.h>
|
||
#include <fcntl.h>
|
||
#include "drm-uapi/drm_fourcc.h"
|
||
#include "drm-uapi/drm.h"
|
||
#include <xf86drm.h>
|
||
|
||
#include "anv_private.h"
|
||
#include "anv_measure.h"
|
||
#include "util/u_debug.h"
|
||
#include "util/build_id.h"
|
||
#include "util/disk_cache.h"
|
||
#include "util/mesa-sha1.h"
|
||
#include "util/os_file.h"
|
||
#include "util/os_misc.h"
|
||
#include "util/u_atomic.h"
|
||
#if DETECT_OS_ANDROID
|
||
#include "util/u_gralloc/u_gralloc.h"
|
||
#endif
|
||
#include "util/u_string.h"
|
||
#include "util/driconf.h"
|
||
#include "git_sha1.h"
|
||
#include "vk_common_entrypoints.h"
|
||
#include "vk_util.h"
|
||
#include "vk_deferred_operation.h"
|
||
#include "vk_drm_syncobj.h"
|
||
#include "common/intel_aux_map.h"
|
||
#include "common/intel_debug_identifier.h"
|
||
#include "common/intel_uuid.h"
|
||
#include "perf/intel_perf.h"
|
||
|
||
#include "i915/anv_device.h"
|
||
#include "xe/anv_device.h"
|
||
#include "xe/anv_queue.h"
|
||
|
||
#include "genxml/gen7_pack.h"
|
||
#include "genxml/genX_bits.h"
|
||
|
||
static const driOptionDescription anv_dri_options[] = {
|
||
DRI_CONF_SECTION_PERFORMANCE
|
||
DRI_CONF_ADAPTIVE_SYNC(true)
|
||
DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
|
||
DRI_CONF_VK_X11_STRICT_IMAGE_COUNT(false)
|
||
DRI_CONF_VK_KHR_PRESENT_WAIT(false)
|
||
DRI_CONF_VK_XWAYLAND_WAIT_READY(false)
|
||
DRI_CONF_ANV_ASSUME_FULL_SUBGROUPS(0)
|
||
DRI_CONF_ANV_DISABLE_FCV(false)
|
||
DRI_CONF_ANV_EXTERNAL_MEMORY_IMPLICIT_SYNC(true)
|
||
DRI_CONF_ANV_SAMPLE_MASK_OUT_OPENGL_BEHAVIOUR(false)
|
||
DRI_CONF_ANV_FORCE_FILTER_ADDR_ROUNDING(false)
|
||
DRI_CONF_ANV_FP64_WORKAROUND_ENABLED(false)
|
||
DRI_CONF_ANV_GENERATED_INDIRECT_THRESHOLD(4)
|
||
DRI_CONF_ANV_GENERATED_INDIRECT_RING_THRESHOLD(100)
|
||
DRI_CONF_NO_16BIT(false)
|
||
DRI_CONF_INTEL_ENABLE_WA_14018912822(false)
|
||
DRI_CONF_ANV_QUERY_CLEAR_WITH_BLORP_THRESHOLD(6)
|
||
DRI_CONF_ANV_QUERY_COPY_WITH_SHADER_THRESHOLD(6)
|
||
DRI_CONF_ANV_FORCE_INDIRECT_DESCRIPTORS(false)
|
||
DRI_CONF_SHADER_SPILLING_RATE(0)
|
||
DRI_CONF_OPT_B(intel_tbimr, true, "Enable TBIMR tiled rendering")
|
||
DRI_CONF_ANV_COMPRESSION_CONTROL_ENABLED(false)
|
||
DRI_CONF_SECTION_END
|
||
|
||
DRI_CONF_SECTION_DEBUG
|
||
DRI_CONF_ALWAYS_FLUSH_CACHE(false)
|
||
DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST(false)
|
||
DRI_CONF_VK_WSI_FORCE_SWAPCHAIN_TO_CURRENT_EXTENT(false)
|
||
DRI_CONF_VK_X11_IGNORE_SUBOPTIMAL(false)
|
||
DRI_CONF_LIMIT_TRIG_INPUT_RANGE(false)
|
||
DRI_CONF_ANV_MESH_CONV_PRIM_ATTRS_TO_VERT_ATTRS(-2)
|
||
DRI_CONF_FORCE_VK_VENDOR(0)
|
||
DRI_CONF_FAKE_SPARSE(false)
|
||
#if DETECT_OS_ANDROID && ANDROID_API_LEVEL >= 34
|
||
DRI_CONF_VK_REQUIRE_ASTC(true)
|
||
#else
|
||
DRI_CONF_VK_REQUIRE_ASTC(false)
|
||
#endif
|
||
DRI_CONF_SECTION_END
|
||
|
||
DRI_CONF_SECTION_QUALITY
|
||
DRI_CONF_PP_LOWER_DEPTH_RANGE_RATE()
|
||
DRI_CONF_SECTION_END
|
||
};
|
||
|
||
/* This is probably far to big but it reflects the max size used for messages
|
||
* in OpenGLs KHR_debug.
|
||
*/
|
||
#define MAX_DEBUG_MESSAGE_LENGTH 4096
|
||
|
||
/* The "RAW" clocks on Linux are called "FAST" on FreeBSD */
|
||
#if !defined(CLOCK_MONOTONIC_RAW) && defined(CLOCK_MONOTONIC_FAST)
|
||
#define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC_FAST
|
||
#endif
|
||
|
||
static void
|
||
compiler_debug_log(void *data, UNUSED unsigned *id, const char *fmt, ...)
|
||
{
|
||
char str[MAX_DEBUG_MESSAGE_LENGTH];
|
||
struct anv_device *device = (struct anv_device *)data;
|
||
UNUSED struct anv_instance *instance = device->physical->instance;
|
||
|
||
va_list args;
|
||
va_start(args, fmt);
|
||
(void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
|
||
va_end(args);
|
||
|
||
//vk_logd(VK_LOG_NO_OBJS(&instance->vk), "%s", str);
|
||
}
|
||
|
||
static void
|
||
compiler_perf_log(UNUSED void *data, UNUSED unsigned *id, const char *fmt, ...)
|
||
{
|
||
va_list args;
|
||
va_start(args, fmt);
|
||
|
||
if (INTEL_DEBUG(DEBUG_PERF))
|
||
mesa_logd_v(fmt, args);
|
||
|
||
va_end(args);
|
||
}
|
||
|
||
#if defined(VK_USE_PLATFORM_WAYLAND_KHR) || \
|
||
defined(VK_USE_PLATFORM_XCB_KHR) || \
|
||
defined(VK_USE_PLATFORM_XLIB_KHR) || \
|
||
defined(VK_USE_PLATFORM_DISPLAY_KHR)
|
||
#define ANV_USE_WSI_PLATFORM
|
||
#endif
|
||
|
||
#ifdef ANDROID_STRICT
|
||
#if ANDROID_API_LEVEL >= 33
|
||
#define ANV_API_VERSION VK_MAKE_VERSION(1, 3, VK_HEADER_VERSION)
|
||
#else
|
||
#define ANV_API_VERSION VK_MAKE_VERSION(1, 1, VK_HEADER_VERSION)
|
||
#endif
|
||
#else
|
||
#define ANV_API_VERSION VK_MAKE_VERSION(1, 3, VK_HEADER_VERSION)
|
||
#endif
|
||
|
||
VkResult anv_EnumerateInstanceVersion(
|
||
uint32_t* pApiVersion)
|
||
{
|
||
*pApiVersion = ANV_API_VERSION;
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
static const struct vk_instance_extension_table instance_extensions = {
|
||
.KHR_device_group_creation = true,
|
||
.KHR_external_fence_capabilities = true,
|
||
.KHR_external_memory_capabilities = true,
|
||
.KHR_external_semaphore_capabilities = true,
|
||
.KHR_get_physical_device_properties2 = true,
|
||
.EXT_debug_report = true,
|
||
.EXT_debug_utils = true,
|
||
|
||
#ifdef ANV_USE_WSI_PLATFORM
|
||
.KHR_get_surface_capabilities2 = true,
|
||
.KHR_surface = true,
|
||
.KHR_surface_protected_capabilities = true,
|
||
.EXT_surface_maintenance1 = true,
|
||
.EXT_swapchain_colorspace = true,
|
||
#endif
|
||
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
|
||
.KHR_wayland_surface = true,
|
||
#endif
|
||
#ifdef VK_USE_PLATFORM_XCB_KHR
|
||
.KHR_xcb_surface = true,
|
||
#endif
|
||
#ifdef VK_USE_PLATFORM_XLIB_KHR
|
||
.KHR_xlib_surface = true,
|
||
#endif
|
||
#ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT
|
||
.EXT_acquire_xlib_display = true,
|
||
#endif
|
||
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
|
||
.KHR_display = true,
|
||
.KHR_get_display_properties2 = true,
|
||
.EXT_direct_mode_display = true,
|
||
.EXT_display_surface_counter = true,
|
||
.EXT_acquire_drm_display = true,
|
||
#endif
|
||
#ifndef VK_USE_PLATFORM_WIN32_KHR
|
||
.EXT_headless_surface = true,
|
||
#endif
|
||
};
|
||
|
||
static void
|
||
get_device_extensions(const struct anv_physical_device *device,
|
||
struct vk_device_extension_table *ext)
|
||
{
|
||
const bool has_syncobj_wait =
|
||
(device->sync_syncobj_type.features & VK_SYNC_FEATURE_CPU_WAIT) != 0;
|
||
|
||
const bool rt_enabled = ANV_SUPPORT_RT && device->info.has_ray_tracing;
|
||
|
||
*ext = (struct vk_device_extension_table) {
|
||
.KHR_8bit_storage = true,
|
||
.KHR_16bit_storage = !device->instance->no_16bit,
|
||
.KHR_acceleration_structure = rt_enabled,
|
||
.KHR_bind_memory2 = true,
|
||
.KHR_buffer_device_address = true,
|
||
.KHR_calibrated_timestamps = device->has_reg_timestamp,
|
||
.KHR_copy_commands2 = true,
|
||
.KHR_cooperative_matrix = anv_has_cooperative_matrix(device),
|
||
.KHR_create_renderpass2 = true,
|
||
.KHR_dedicated_allocation = true,
|
||
.KHR_deferred_host_operations = true,
|
||
.KHR_depth_stencil_resolve = true,
|
||
.KHR_descriptor_update_template = true,
|
||
.KHR_device_group = true,
|
||
.KHR_draw_indirect_count = true,
|
||
.KHR_driver_properties = true,
|
||
.KHR_dynamic_rendering = true,
|
||
.KHR_external_fence = has_syncobj_wait,
|
||
.KHR_external_fence_fd = has_syncobj_wait,
|
||
.KHR_external_memory = true,
|
||
.KHR_external_memory_fd = true,
|
||
.KHR_external_semaphore = true,
|
||
.KHR_external_semaphore_fd = true,
|
||
.KHR_format_feature_flags2 = true,
|
||
.KHR_fragment_shading_rate = device->info.ver >= 11,
|
||
.KHR_get_memory_requirements2 = true,
|
||
.KHR_global_priority = device->max_context_priority >=
|
||
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
|
||
.KHR_image_format_list = true,
|
||
.KHR_imageless_framebuffer = true,
|
||
#ifdef ANV_USE_WSI_PLATFORM
|
||
.KHR_incremental_present = true,
|
||
#endif
|
||
.KHR_index_type_uint8 = true,
|
||
.KHR_line_rasterization = true,
|
||
.KHR_load_store_op_none = true,
|
||
.KHR_maintenance1 = true,
|
||
.KHR_maintenance2 = true,
|
||
.KHR_maintenance3 = true,
|
||
.KHR_maintenance4 = true,
|
||
.KHR_maintenance5 = true,
|
||
.KHR_maintenance6 = true,
|
||
.KHR_map_memory2 = true,
|
||
.KHR_multiview = true,
|
||
.KHR_performance_query =
|
||
device->perf &&
|
||
(device->perf->i915_perf_version >= 3 ||
|
||
INTEL_DEBUG(DEBUG_NO_OACONFIG)) &&
|
||
device->use_call_secondary,
|
||
.KHR_pipeline_executable_properties = true,
|
||
.KHR_pipeline_library = true,
|
||
/* Hide these behind dri configs for now since we cannot implement it reliably on
|
||
* all surfaces yet. There is no surface capability query for present wait/id,
|
||
* but the feature is useful enough to hide behind an opt-in mechanism for now.
|
||
* If the instance only enables surface extensions that unconditionally support present wait,
|
||
* we can also expose the extension that way. */
|
||
.KHR_present_id =
|
||
driQueryOptionb(&device->instance->dri_options, "vk_khr_present_wait") ||
|
||
wsi_common_vk_instance_supports_present_wait(&device->instance->vk),
|
||
.KHR_present_wait =
|
||
driQueryOptionb(&device->instance->dri_options, "vk_khr_present_wait") ||
|
||
wsi_common_vk_instance_supports_present_wait(&device->instance->vk),
|
||
.KHR_push_descriptor = true,
|
||
.KHR_ray_query = rt_enabled,
|
||
.KHR_ray_tracing_maintenance1 = rt_enabled,
|
||
.KHR_ray_tracing_pipeline = rt_enabled,
|
||
.KHR_ray_tracing_position_fetch = rt_enabled,
|
||
.KHR_relaxed_block_layout = true,
|
||
.KHR_sampler_mirror_clamp_to_edge = true,
|
||
.KHR_sampler_ycbcr_conversion = true,
|
||
.KHR_separate_depth_stencil_layouts = true,
|
||
.KHR_shader_atomic_int64 = true,
|
||
.KHR_shader_clock = true,
|
||
.KHR_shader_draw_parameters = true,
|
||
.KHR_shader_expect_assume = true,
|
||
.KHR_shader_float16_int8 = !device->instance->no_16bit,
|
||
.KHR_shader_float_controls = true,
|
||
.KHR_shader_float_controls2 = true,
|
||
.KHR_shader_integer_dot_product = true,
|
||
.KHR_shader_maximal_reconvergence = true,
|
||
.KHR_shader_non_semantic_info = true,
|
||
.KHR_shader_quad_control = true,
|
||
.KHR_shader_subgroup_extended_types = true,
|
||
.KHR_shader_subgroup_rotate = true,
|
||
.KHR_shader_subgroup_uniform_control_flow = true,
|
||
.KHR_shader_terminate_invocation = true,
|
||
.KHR_spirv_1_4 = true,
|
||
.KHR_storage_buffer_storage_class = true,
|
||
#ifdef ANV_USE_WSI_PLATFORM
|
||
.KHR_swapchain = true,
|
||
.KHR_swapchain_mutable_format = true,
|
||
#endif
|
||
.KHR_synchronization2 = true,
|
||
.KHR_timeline_semaphore = true,
|
||
.KHR_uniform_buffer_standard_layout = true,
|
||
.KHR_variable_pointers = true,
|
||
.KHR_vertex_attribute_divisor = true,
|
||
.KHR_video_queue = device->video_decode_enabled,
|
||
.KHR_video_decode_queue = device->video_decode_enabled,
|
||
.KHR_video_decode_h264 = VIDEO_CODEC_H264DEC && device->video_decode_enabled,
|
||
.KHR_video_decode_h265 = VIDEO_CODEC_H265DEC && device->video_decode_enabled,
|
||
.KHR_vulkan_memory_model = true,
|
||
.KHR_workgroup_memory_explicit_layout = true,
|
||
.KHR_zero_initialize_workgroup_memory = true,
|
||
.EXT_4444_formats = true,
|
||
.EXT_attachment_feedback_loop_layout = true,
|
||
.EXT_attachment_feedback_loop_dynamic_state = true,
|
||
.EXT_border_color_swizzle = true,
|
||
.EXT_buffer_device_address = true,
|
||
.EXT_calibrated_timestamps = device->has_reg_timestamp,
|
||
.EXT_color_write_enable = true,
|
||
.EXT_conditional_rendering = true,
|
||
.EXT_conservative_rasterization = true,
|
||
.EXT_custom_border_color = true,
|
||
.EXT_depth_bias_control = true,
|
||
.EXT_depth_clamp_zero_one = true,
|
||
.EXT_depth_clip_control = true,
|
||
.EXT_depth_range_unrestricted = device->info.ver >= 20,
|
||
.EXT_depth_clip_enable = true,
|
||
.EXT_descriptor_buffer = true,
|
||
.EXT_descriptor_indexing = true,
|
||
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
|
||
.EXT_display_control = true,
|
||
#endif
|
||
.EXT_dynamic_rendering_unused_attachments = true,
|
||
.EXT_extended_dynamic_state = true,
|
||
.EXT_extended_dynamic_state2 = true,
|
||
.EXT_extended_dynamic_state3 = true,
|
||
.EXT_external_memory_dma_buf = true,
|
||
.EXT_external_memory_host = true,
|
||
.EXT_fragment_shader_interlock = true,
|
||
.EXT_global_priority = device->max_context_priority >=
|
||
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
|
||
.EXT_global_priority_query = device->max_context_priority >=
|
||
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
|
||
.EXT_graphics_pipeline_library = !debug_get_bool_option("ANV_NO_GPL", false),
|
||
.EXT_host_query_reset = true,
|
||
.EXT_image_2d_view_of_3d = true,
|
||
.EXT_image_compression_control = device->instance->compression_control_enabled,
|
||
.EXT_image_robustness = true,
|
||
.EXT_image_drm_format_modifier = true,
|
||
.EXT_image_sliced_view_of_3d = true,
|
||
.EXT_image_view_min_lod = true,
|
||
.EXT_index_type_uint8 = true,
|
||
.EXT_inline_uniform_block = true,
|
||
.EXT_legacy_dithering = true,
|
||
.EXT_legacy_vertex_attributes = true,
|
||
.EXT_line_rasterization = true,
|
||
.EXT_load_store_op_none = true,
|
||
.EXT_map_memory_placed = device->info.has_mmap_offset,
|
||
/* Enable the extension only if we have support on both the local &
|
||
* system memory
|
||
*/
|
||
.EXT_memory_budget = (!device->info.has_local_mem ||
|
||
device->vram_mappable.available > 0) &&
|
||
device->sys.available,
|
||
.EXT_mesh_shader = device->info.has_mesh_shading,
|
||
.EXT_mutable_descriptor_type = true,
|
||
.EXT_nested_command_buffer = true,
|
||
.EXT_non_seamless_cube_map = true,
|
||
.EXT_pci_bus_info = true,
|
||
.EXT_physical_device_drm = true,
|
||
.EXT_pipeline_creation_cache_control = true,
|
||
.EXT_pipeline_creation_feedback = true,
|
||
.EXT_pipeline_library_group_handles = rt_enabled,
|
||
.EXT_pipeline_robustness = true,
|
||
.EXT_post_depth_coverage = true,
|
||
.EXT_primitives_generated_query = true,
|
||
.EXT_primitive_topology_list_restart = true,
|
||
.EXT_private_data = true,
|
||
.EXT_provoking_vertex = true,
|
||
.EXT_queue_family_foreign = true,
|
||
.EXT_robustness2 = true,
|
||
.EXT_sample_locations = true,
|
||
.EXT_sampler_filter_minmax = true,
|
||
.EXT_scalar_block_layout = true,
|
||
.EXT_separate_stencil_usage = true,
|
||
.EXT_shader_atomic_float = true,
|
||
.EXT_shader_atomic_float2 = true,
|
||
.EXT_shader_demote_to_helper_invocation = true,
|
||
.EXT_shader_module_identifier = true,
|
||
.EXT_shader_stencil_export = true,
|
||
.EXT_shader_subgroup_ballot = true,
|
||
.EXT_shader_subgroup_vote = true,
|
||
.EXT_shader_viewport_index_layer = true,
|
||
.EXT_subgroup_size_control = true,
|
||
#ifdef ANV_USE_WSI_PLATFORM
|
||
.EXT_swapchain_maintenance1 = true,
|
||
#endif
|
||
.EXT_texel_buffer_alignment = true,
|
||
.EXT_tooling_info = true,
|
||
.EXT_transform_feedback = true,
|
||
.EXT_vertex_attribute_divisor = true,
|
||
.EXT_vertex_input_dynamic_state = true,
|
||
.EXT_ycbcr_image_arrays = true,
|
||
.AMD_buffer_marker = true,
|
||
.AMD_texture_gather_bias_lod = device->info.ver >= 20,
|
||
#if DETECT_OS_ANDROID
|
||
.ANDROID_external_memory_android_hardware_buffer = true,
|
||
.ANDROID_native_buffer = true,
|
||
#endif
|
||
.GOOGLE_decorate_string = true,
|
||
.GOOGLE_hlsl_functionality1 = true,
|
||
.GOOGLE_user_type = true,
|
||
.INTEL_performance_query = device->perf &&
|
||
device->perf->i915_perf_version >= 3,
|
||
.INTEL_shader_integer_functions2 = true,
|
||
.EXT_multi_draw = true,
|
||
.NV_compute_shader_derivatives = true,
|
||
.VALVE_mutable_descriptor_type = true,
|
||
};
|
||
}
|
||
|
||
static void
|
||
get_features(const struct anv_physical_device *pdevice,
|
||
struct vk_features *features)
|
||
{
|
||
struct vk_app_info *app_info = &pdevice->instance->vk.app_info;
|
||
|
||
const bool rt_enabled = ANV_SUPPORT_RT && pdevice->info.has_ray_tracing;
|
||
|
||
const bool mesh_shader =
|
||
pdevice->vk.supported_extensions.EXT_mesh_shader;
|
||
|
||
const bool has_sparse_or_fake = pdevice->sparse_type != ANV_SPARSE_TYPE_NOT_SUPPORTED;
|
||
|
||
*features = (struct vk_features) {
|
||
/* Vulkan 1.0 */
|
||
.robustBufferAccess = true,
|
||
.fullDrawIndexUint32 = true,
|
||
.imageCubeArray = true,
|
||
.independentBlend = true,
|
||
.geometryShader = true,
|
||
.tessellationShader = true,
|
||
.sampleRateShading = true,
|
||
.dualSrcBlend = true,
|
||
.logicOp = true,
|
||
.multiDrawIndirect = true,
|
||
.drawIndirectFirstInstance = true,
|
||
.depthClamp = true,
|
||
.depthBiasClamp = true,
|
||
.fillModeNonSolid = true,
|
||
.depthBounds = pdevice->info.ver >= 12,
|
||
.wideLines = true,
|
||
.largePoints = true,
|
||
.alphaToOne = true,
|
||
.multiViewport = true,
|
||
.samplerAnisotropy = true,
|
||
.textureCompressionETC2 = true,
|
||
.textureCompressionASTC_LDR = pdevice->has_astc_ldr ||
|
||
pdevice->emu_astc_ldr,
|
||
.textureCompressionBC = true,
|
||
.occlusionQueryPrecise = true,
|
||
.pipelineStatisticsQuery = true,
|
||
.vertexPipelineStoresAndAtomics = true,
|
||
.fragmentStoresAndAtomics = true,
|
||
.shaderTessellationAndGeometryPointSize = true,
|
||
.shaderImageGatherExtended = true,
|
||
.shaderStorageImageExtendedFormats = true,
|
||
.shaderStorageImageMultisample = false,
|
||
/* Gfx12.5 has all the required format supported in HW for typed
|
||
* read/writes
|
||
*/
|
||
.shaderStorageImageReadWithoutFormat = pdevice->info.verx10 >= 125,
|
||
.shaderStorageImageWriteWithoutFormat = true,
|
||
.shaderUniformBufferArrayDynamicIndexing = true,
|
||
.shaderSampledImageArrayDynamicIndexing = true,
|
||
.shaderStorageBufferArrayDynamicIndexing = true,
|
||
.shaderStorageImageArrayDynamicIndexing = true,
|
||
.shaderClipDistance = true,
|
||
.shaderCullDistance = true,
|
||
.shaderFloat64 = pdevice->info.has_64bit_float ||
|
||
pdevice->instance->fp64_workaround_enabled,
|
||
.shaderInt64 = true,
|
||
.shaderInt16 = true,
|
||
.shaderResourceMinLod = true,
|
||
.shaderResourceResidency = has_sparse_or_fake,
|
||
.sparseBinding = has_sparse_or_fake,
|
||
.sparseResidencyAliased = has_sparse_or_fake,
|
||
.sparseResidencyBuffer = has_sparse_or_fake,
|
||
.sparseResidencyImage2D = has_sparse_or_fake,
|
||
.sparseResidencyImage3D = has_sparse_or_fake,
|
||
.sparseResidency2Samples = has_sparse_or_fake,
|
||
.sparseResidency4Samples = has_sparse_or_fake,
|
||
.sparseResidency8Samples = has_sparse_or_fake &&
|
||
pdevice->info.verx10 != 125,
|
||
.sparseResidency16Samples = has_sparse_or_fake &&
|
||
pdevice->info.verx10 != 125,
|
||
.variableMultisampleRate = true,
|
||
.inheritedQueries = true,
|
||
|
||
/* Vulkan 1.1 */
|
||
.storageBuffer16BitAccess = !pdevice->instance->no_16bit,
|
||
.uniformAndStorageBuffer16BitAccess = !pdevice->instance->no_16bit,
|
||
.storagePushConstant16 = true,
|
||
.storageInputOutput16 = false,
|
||
.multiview = true,
|
||
.multiviewGeometryShader = true,
|
||
.multiviewTessellationShader = true,
|
||
.variablePointersStorageBuffer = true,
|
||
.variablePointers = true,
|
||
.protectedMemory = pdevice->has_protected_contexts,
|
||
.samplerYcbcrConversion = true,
|
||
.shaderDrawParameters = true,
|
||
|
||
/* Vulkan 1.2 */
|
||
.samplerMirrorClampToEdge = true,
|
||
.drawIndirectCount = true,
|
||
.storageBuffer8BitAccess = true,
|
||
.uniformAndStorageBuffer8BitAccess = true,
|
||
.storagePushConstant8 = true,
|
||
.shaderBufferInt64Atomics = true,
|
||
.shaderSharedInt64Atomics = false,
|
||
.shaderFloat16 = !pdevice->instance->no_16bit,
|
||
.shaderInt8 = !pdevice->instance->no_16bit,
|
||
|
||
.descriptorIndexing = true,
|
||
.shaderInputAttachmentArrayDynamicIndexing = false,
|
||
.shaderUniformTexelBufferArrayDynamicIndexing = true,
|
||
.shaderStorageTexelBufferArrayDynamicIndexing = true,
|
||
.shaderUniformBufferArrayNonUniformIndexing = true,
|
||
.shaderSampledImageArrayNonUniformIndexing = true,
|
||
.shaderStorageBufferArrayNonUniformIndexing = true,
|
||
.shaderStorageImageArrayNonUniformIndexing = true,
|
||
.shaderInputAttachmentArrayNonUniformIndexing = false,
|
||
.shaderUniformTexelBufferArrayNonUniformIndexing = true,
|
||
.shaderStorageTexelBufferArrayNonUniformIndexing = true,
|
||
.descriptorBindingUniformBufferUpdateAfterBind = true,
|
||
.descriptorBindingSampledImageUpdateAfterBind = true,
|
||
.descriptorBindingStorageImageUpdateAfterBind = true,
|
||
.descriptorBindingStorageBufferUpdateAfterBind = true,
|
||
.descriptorBindingUniformTexelBufferUpdateAfterBind = true,
|
||
.descriptorBindingStorageTexelBufferUpdateAfterBind = true,
|
||
.descriptorBindingUpdateUnusedWhilePending = true,
|
||
.descriptorBindingPartiallyBound = true,
|
||
.descriptorBindingVariableDescriptorCount = true,
|
||
.runtimeDescriptorArray = true,
|
||
|
||
.samplerFilterMinmax = true,
|
||
.scalarBlockLayout = true,
|
||
.imagelessFramebuffer = true,
|
||
.uniformBufferStandardLayout = true,
|
||
.shaderSubgroupExtendedTypes = true,
|
||
.separateDepthStencilLayouts = true,
|
||
.hostQueryReset = true,
|
||
.timelineSemaphore = true,
|
||
.bufferDeviceAddress = true,
|
||
.bufferDeviceAddressCaptureReplay = true,
|
||
.bufferDeviceAddressMultiDevice = false,
|
||
.vulkanMemoryModel = true,
|
||
.vulkanMemoryModelDeviceScope = true,
|
||
.vulkanMemoryModelAvailabilityVisibilityChains = true,
|
||
.shaderOutputViewportIndex = true,
|
||
.shaderOutputLayer = true,
|
||
.subgroupBroadcastDynamicId = true,
|
||
|
||
/* Vulkan 1.3 */
|
||
.robustImageAccess = true,
|
||
.inlineUniformBlock = true,
|
||
.descriptorBindingInlineUniformBlockUpdateAfterBind = true,
|
||
.pipelineCreationCacheControl = true,
|
||
.privateData = true,
|
||
.shaderDemoteToHelperInvocation = true,
|
||
.shaderTerminateInvocation = true,
|
||
.subgroupSizeControl = true,
|
||
.computeFullSubgroups = true,
|
||
.synchronization2 = true,
|
||
.textureCompressionASTC_HDR = false,
|
||
.shaderZeroInitializeWorkgroupMemory = true,
|
||
.dynamicRendering = true,
|
||
.shaderIntegerDotProduct = true,
|
||
.maintenance4 = true,
|
||
|
||
/* VK_EXT_4444_formats */
|
||
.formatA4R4G4B4 = true,
|
||
.formatA4B4G4R4 = false,
|
||
|
||
/* VK_KHR_acceleration_structure */
|
||
.accelerationStructure = rt_enabled,
|
||
.accelerationStructureCaptureReplay = false, /* TODO */
|
||
.accelerationStructureIndirectBuild = false, /* TODO */
|
||
.accelerationStructureHostCommands = false,
|
||
.descriptorBindingAccelerationStructureUpdateAfterBind = rt_enabled,
|
||
|
||
/* VK_EXT_border_color_swizzle */
|
||
.borderColorSwizzle = true,
|
||
.borderColorSwizzleFromImage = true,
|
||
|
||
/* VK_EXT_color_write_enable */
|
||
.colorWriteEnable = true,
|
||
|
||
/* VK_EXT_image_2d_view_of_3d */
|
||
.image2DViewOf3D = true,
|
||
.sampler2DViewOf3D = true,
|
||
|
||
/* VK_EXT_image_sliced_view_of_3d */
|
||
.imageSlicedViewOf3D = true,
|
||
|
||
/* VK_NV_compute_shader_derivatives */
|
||
.computeDerivativeGroupQuads = true,
|
||
.computeDerivativeGroupLinear = true,
|
||
|
||
/* VK_EXT_conditional_rendering */
|
||
.conditionalRendering = true,
|
||
.inheritedConditionalRendering = true,
|
||
|
||
/* VK_EXT_custom_border_color */
|
||
.customBorderColors = true,
|
||
.customBorderColorWithoutFormat = true,
|
||
|
||
/* VK_EXT_depth_clamp_zero_one */
|
||
.depthClampZeroOne = true,
|
||
|
||
/* VK_EXT_depth_clip_enable */
|
||
.depthClipEnable = true,
|
||
|
||
/* VK_EXT_fragment_shader_interlock */
|
||
.fragmentShaderSampleInterlock = true,
|
||
.fragmentShaderPixelInterlock = true,
|
||
.fragmentShaderShadingRateInterlock = false,
|
||
|
||
/* VK_EXT_global_priority_query */
|
||
.globalPriorityQuery = true,
|
||
|
||
/* VK_EXT_graphics_pipeline_library */
|
||
.graphicsPipelineLibrary =
|
||
pdevice->vk.supported_extensions.EXT_graphics_pipeline_library,
|
||
|
||
/* VK_KHR_fragment_shading_rate */
|
||
.pipelineFragmentShadingRate = true,
|
||
.primitiveFragmentShadingRate =
|
||
pdevice->info.has_coarse_pixel_primitive_and_cb,
|
||
.attachmentFragmentShadingRate =
|
||
pdevice->info.has_coarse_pixel_primitive_and_cb,
|
||
|
||
/* VK_EXT_image_view_min_lod */
|
||
.minLod = true,
|
||
|
||
/* VK_EXT_index_type_uint8 */
|
||
.indexTypeUint8 = true,
|
||
|
||
/* VK_EXT_line_rasterization */
|
||
/* Rectangular lines must use the strict algorithm, which is not
|
||
* supported for wide lines prior to ICL. See rasterization_mode for
|
||
* details and how the HW states are programmed.
|
||
*/
|
||
.rectangularLines = pdevice->info.ver >= 10,
|
||
.bresenhamLines = true,
|
||
/* Support for Smooth lines with MSAA was removed on gfx11. From the
|
||
* BSpec section "Multisample ModesState" table for "AA Line Support
|
||
* Requirements":
|
||
*
|
||
* GFX10:BUG:######## NUM_MULTISAMPLES == 1
|
||
*
|
||
* Fortunately, this isn't a case most people care about.
|
||
*/
|
||
.smoothLines = pdevice->info.ver < 10,
|
||
.stippledRectangularLines = false,
|
||
.stippledBresenhamLines = true,
|
||
.stippledSmoothLines = false,
|
||
|
||
/* VK_NV_mesh_shader */
|
||
.taskShaderNV = false,
|
||
.meshShaderNV = false,
|
||
|
||
/* VK_EXT_mesh_shader */
|
||
.taskShader = mesh_shader,
|
||
.meshShader = mesh_shader,
|
||
.multiviewMeshShader = false,
|
||
.primitiveFragmentShadingRateMeshShader = mesh_shader,
|
||
.meshShaderQueries = false,
|
||
|
||
/* VK_EXT_mutable_descriptor_type */
|
||
.mutableDescriptorType = true,
|
||
|
||
/* VK_KHR_performance_query */
|
||
.performanceCounterQueryPools = true,
|
||
/* HW only supports a single configuration at a time. */
|
||
.performanceCounterMultipleQueryPools = false,
|
||
|
||
/* VK_KHR_pipeline_executable_properties */
|
||
.pipelineExecutableInfo = true,
|
||
|
||
/* VK_EXT_primitives_generated_query */
|
||
.primitivesGeneratedQuery = true,
|
||
.primitivesGeneratedQueryWithRasterizerDiscard = false,
|
||
.primitivesGeneratedQueryWithNonZeroStreams = false,
|
||
|
||
/* VK_EXT_pipeline_library_group_handles */
|
||
.pipelineLibraryGroupHandles = true,
|
||
|
||
/* VK_EXT_provoking_vertex */
|
||
.provokingVertexLast = true,
|
||
.transformFeedbackPreservesProvokingVertex = true,
|
||
|
||
/* VK_KHR_ray_query */
|
||
.rayQuery = rt_enabled,
|
||
|
||
/* VK_KHR_ray_tracing_maintenance1 */
|
||
.rayTracingMaintenance1 = rt_enabled,
|
||
.rayTracingPipelineTraceRaysIndirect2 = rt_enabled,
|
||
|
||
/* VK_KHR_ray_tracing_pipeline */
|
||
.rayTracingPipeline = rt_enabled,
|
||
.rayTracingPipelineShaderGroupHandleCaptureReplay = false,
|
||
.rayTracingPipelineShaderGroupHandleCaptureReplayMixed = false,
|
||
.rayTracingPipelineTraceRaysIndirect = rt_enabled,
|
||
.rayTraversalPrimitiveCulling = rt_enabled,
|
||
|
||
/* VK_EXT_robustness2 */
|
||
.robustBufferAccess2 = true,
|
||
.robustImageAccess2 = true,
|
||
.nullDescriptor = true,
|
||
|
||
/* VK_EXT_shader_atomic_float */
|
||
.shaderBufferFloat32Atomics = true,
|
||
.shaderBufferFloat32AtomicAdd = pdevice->info.has_lsc,
|
||
.shaderBufferFloat64Atomics =
|
||
pdevice->info.has_64bit_float && pdevice->info.has_lsc,
|
||
.shaderBufferFloat64AtomicAdd = pdevice->info.ver >= 20,
|
||
.shaderSharedFloat32Atomics = true,
|
||
.shaderSharedFloat32AtomicAdd = false,
|
||
.shaderSharedFloat64Atomics = false,
|
||
.shaderSharedFloat64AtomicAdd = false,
|
||
.shaderImageFloat32Atomics = true,
|
||
.shaderImageFloat32AtomicAdd = pdevice->info.ver >= 20,
|
||
.sparseImageFloat32Atomics = false,
|
||
.sparseImageFloat32AtomicAdd = false,
|
||
|
||
/* VK_EXT_shader_atomic_float2 */
|
||
.shaderBufferFloat16Atomics = pdevice->info.has_lsc,
|
||
.shaderBufferFloat16AtomicAdd = false,
|
||
.shaderBufferFloat16AtomicMinMax = pdevice->info.has_lsc,
|
||
.shaderBufferFloat32AtomicMinMax = true,
|
||
.shaderBufferFloat64AtomicMinMax =
|
||
pdevice->info.has_64bit_float && pdevice->info.has_lsc &&
|
||
pdevice->info.ver < 20,
|
||
.shaderSharedFloat16Atomics = pdevice->info.has_lsc,
|
||
.shaderSharedFloat16AtomicAdd = false,
|
||
.shaderSharedFloat16AtomicMinMax = pdevice->info.has_lsc,
|
||
.shaderSharedFloat32AtomicMinMax = true,
|
||
.shaderSharedFloat64AtomicMinMax = false,
|
||
.shaderImageFloat32AtomicMinMax = false,
|
||
.sparseImageFloat32AtomicMinMax = false,
|
||
|
||
/* VK_KHR_shader_clock */
|
||
.shaderSubgroupClock = true,
|
||
.shaderDeviceClock = false,
|
||
|
||
/* VK_INTEL_shader_integer_functions2 */
|
||
.shaderIntegerFunctions2 = true,
|
||
|
||
/* VK_EXT_shader_module_identifier */
|
||
.shaderModuleIdentifier = true,
|
||
|
||
/* VK_KHR_shader_subgroup_uniform_control_flow */
|
||
.shaderSubgroupUniformControlFlow = true,
|
||
|
||
/* VK_EXT_texel_buffer_alignment */
|
||
.texelBufferAlignment = true,
|
||
|
||
/* VK_EXT_transform_feedback */
|
||
.transformFeedback = true,
|
||
.geometryStreams = true,
|
||
|
||
/* VK_KHR_vertex_attribute_divisor */
|
||
.vertexAttributeInstanceRateDivisor = true,
|
||
.vertexAttributeInstanceRateZeroDivisor = true,
|
||
|
||
/* VK_KHR_workgroup_memory_explicit_layout */
|
||
.workgroupMemoryExplicitLayout = true,
|
||
.workgroupMemoryExplicitLayoutScalarBlockLayout = true,
|
||
.workgroupMemoryExplicitLayout8BitAccess = true,
|
||
.workgroupMemoryExplicitLayout16BitAccess = true,
|
||
|
||
/* VK_EXT_ycbcr_image_arrays */
|
||
.ycbcrImageArrays = true,
|
||
|
||
/* VK_EXT_extended_dynamic_state */
|
||
.extendedDynamicState = true,
|
||
|
||
/* VK_EXT_extended_dynamic_state2 */
|
||
.extendedDynamicState2 = true,
|
||
.extendedDynamicState2LogicOp = true,
|
||
.extendedDynamicState2PatchControlPoints = true,
|
||
|
||
/* VK_EXT_extended_dynamic_state3 */
|
||
.extendedDynamicState3PolygonMode = true,
|
||
.extendedDynamicState3TessellationDomainOrigin = true,
|
||
.extendedDynamicState3RasterizationStream = true,
|
||
.extendedDynamicState3LineStippleEnable = true,
|
||
.extendedDynamicState3LineRasterizationMode = true,
|
||
.extendedDynamicState3LogicOpEnable = true,
|
||
.extendedDynamicState3AlphaToOneEnable = true,
|
||
.extendedDynamicState3DepthClipEnable = true,
|
||
.extendedDynamicState3DepthClampEnable = true,
|
||
.extendedDynamicState3DepthClipNegativeOneToOne = true,
|
||
.extendedDynamicState3ProvokingVertexMode = true,
|
||
.extendedDynamicState3ColorBlendEnable = true,
|
||
.extendedDynamicState3ColorWriteMask = true,
|
||
.extendedDynamicState3ColorBlendEquation = true,
|
||
.extendedDynamicState3SampleLocationsEnable = true,
|
||
.extendedDynamicState3SampleMask = true,
|
||
.extendedDynamicState3ConservativeRasterizationMode = true,
|
||
.extendedDynamicState3AlphaToCoverageEnable = true,
|
||
.extendedDynamicState3RasterizationSamples = true,
|
||
|
||
.extendedDynamicState3ExtraPrimitiveOverestimationSize = false,
|
||
.extendedDynamicState3ViewportWScalingEnable = false,
|
||
.extendedDynamicState3ViewportSwizzle = false,
|
||
.extendedDynamicState3ShadingRateImageEnable = false,
|
||
.extendedDynamicState3CoverageToColorEnable = false,
|
||
.extendedDynamicState3CoverageToColorLocation = false,
|
||
.extendedDynamicState3CoverageModulationMode = false,
|
||
.extendedDynamicState3CoverageModulationTableEnable = false,
|
||
.extendedDynamicState3CoverageModulationTable = false,
|
||
.extendedDynamicState3CoverageReductionMode = false,
|
||
.extendedDynamicState3RepresentativeFragmentTestEnable = false,
|
||
.extendedDynamicState3ColorBlendAdvanced = false,
|
||
|
||
/* VK_EXT_multi_draw */
|
||
.multiDraw = true,
|
||
|
||
/* VK_EXT_non_seamless_cube_map */
|
||
.nonSeamlessCubeMap = true,
|
||
|
||
/* VK_EXT_primitive_topology_list_restart */
|
||
.primitiveTopologyListRestart = true,
|
||
.primitiveTopologyPatchListRestart = true,
|
||
|
||
/* VK_EXT_depth_clip_control */
|
||
.depthClipControl = true,
|
||
|
||
/* VK_KHR_present_id */
|
||
.presentId = pdevice->vk.supported_extensions.KHR_present_id,
|
||
|
||
/* VK_KHR_present_wait */
|
||
.presentWait = pdevice->vk.supported_extensions.KHR_present_wait,
|
||
|
||
/* VK_EXT_vertex_input_dynamic_state */
|
||
.vertexInputDynamicState = true,
|
||
|
||
/* VK_KHR_ray_tracing_position_fetch */
|
||
.rayTracingPositionFetch = rt_enabled,
|
||
|
||
/* VK_EXT_dynamic_rendering_unused_attachments */
|
||
.dynamicRenderingUnusedAttachments = true,
|
||
|
||
/* VK_EXT_depth_bias_control */
|
||
.depthBiasControl = true,
|
||
.floatRepresentation = true,
|
||
.leastRepresentableValueForceUnormRepresentation = false,
|
||
.depthBiasExact = true,
|
||
|
||
/* VK_EXT_pipeline_robustness */
|
||
.pipelineRobustness = true,
|
||
|
||
/* VK_KHR_maintenance5 */
|
||
.maintenance5 = true,
|
||
|
||
/* VK_KHR_maintenance6 */
|
||
.maintenance6 = true,
|
||
|
||
/* VK_EXT_nested_command_buffer */
|
||
.nestedCommandBuffer = true,
|
||
.nestedCommandBufferRendering = true,
|
||
.nestedCommandBufferSimultaneousUse = false,
|
||
|
||
/* VK_KHR_cooperative_matrix */
|
||
.cooperativeMatrix = anv_has_cooperative_matrix(pdevice),
|
||
|
||
/* VK_KHR_shader_maximal_reconvergence */
|
||
.shaderMaximalReconvergence = true,
|
||
|
||
/* VK_KHR_shader_subgroup_rotate */
|
||
.shaderSubgroupRotate = true,
|
||
.shaderSubgroupRotateClustered = true,
|
||
|
||
/* VK_EXT_attachment_feedback_loop_layout */
|
||
.attachmentFeedbackLoopLayout = true,
|
||
|
||
/* VK_EXT_attachment_feedback_loop_dynamic_state */
|
||
.attachmentFeedbackLoopDynamicState = true,
|
||
|
||
/* VK_KHR_shader_expect_assume */
|
||
.shaderExpectAssume = true,
|
||
|
||
/* VK_EXT_descriptor_buffer */
|
||
.descriptorBuffer = true,
|
||
.descriptorBufferCaptureReplay = true,
|
||
.descriptorBufferImageLayoutIgnored = false,
|
||
.descriptorBufferPushDescriptors = true,
|
||
|
||
/* VK_EXT_map_memory_placed */
|
||
.memoryMapPlaced = true,
|
||
.memoryMapRangePlaced = false,
|
||
.memoryUnmapReserve = true,
|
||
|
||
/* VK_KHR_shader_quad_control */
|
||
.shaderQuadControl = true,
|
||
|
||
#ifdef ANV_USE_WSI_PLATFORM
|
||
/* VK_EXT_swapchain_maintenance1 */
|
||
.swapchainMaintenance1 = true,
|
||
#endif
|
||
|
||
/* VK_EXT_image_compression_control */
|
||
.imageCompressionControl = true,
|
||
|
||
/* VK_KHR_shader_float_controls2 */
|
||
.shaderFloatControls2 = true,
|
||
|
||
/* VK_EXT_legacy_vertex_attributes */
|
||
.legacyVertexAttributes = true,
|
||
|
||
/* VK_EXT_legacy_dithering */
|
||
.legacyDithering = true,
|
||
};
|
||
|
||
/* The new DOOM and Wolfenstein games require depthBounds without
|
||
* checking for it. They seem to run fine without it so just claim it's
|
||
* there and accept the consequences.
|
||
*/
|
||
if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
|
||
features->depthBounds = true;
|
||
}
|
||
|
||
#define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
|
||
|
||
#define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
|
||
#define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
|
||
|
||
#define MAX_CUSTOM_BORDER_COLORS 4096
|
||
|
||
static VkDeviceSize
|
||
anx_get_physical_device_max_heap_size(const struct anv_physical_device *pdevice)
|
||
{
|
||
VkDeviceSize ret = 0;
|
||
|
||
for (uint32_t i = 0; i < pdevice->memory.heap_count; i++) {
|
||
if (pdevice->memory.heaps[i].size > ret)
|
||
ret = pdevice->memory.heaps[i].size;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
static void
|
||
get_properties_1_1(const struct anv_physical_device *pdevice,
|
||
struct vk_properties *p)
|
||
{
|
||
memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
|
||
memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
|
||
memset(p->deviceLUID, 0, VK_LUID_SIZE);
|
||
p->deviceNodeMask = 0;
|
||
p->deviceLUIDValid = false;
|
||
|
||
p->subgroupSize = BRW_SUBGROUP_SIZE;
|
||
VkShaderStageFlags scalar_stages = 0;
|
||
for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
|
||
scalar_stages |= mesa_to_vk_shader_stage(stage);
|
||
}
|
||
if (pdevice->vk.supported_extensions.KHR_ray_tracing_pipeline) {
|
||
scalar_stages |= VK_SHADER_STAGE_RAYGEN_BIT_KHR |
|
||
VK_SHADER_STAGE_ANY_HIT_BIT_KHR |
|
||
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR |
|
||
VK_SHADER_STAGE_MISS_BIT_KHR |
|
||
VK_SHADER_STAGE_INTERSECTION_BIT_KHR |
|
||
VK_SHADER_STAGE_CALLABLE_BIT_KHR;
|
||
}
|
||
if (pdevice->vk.supported_extensions.EXT_mesh_shader) {
|
||
scalar_stages |= VK_SHADER_STAGE_TASK_BIT_EXT |
|
||
VK_SHADER_STAGE_MESH_BIT_EXT;
|
||
}
|
||
p->subgroupSupportedStages = scalar_stages;
|
||
p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
|
||
VK_SUBGROUP_FEATURE_VOTE_BIT |
|
||
VK_SUBGROUP_FEATURE_BALLOT_BIT |
|
||
VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
|
||
VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
|
||
VK_SUBGROUP_FEATURE_QUAD_BIT |
|
||
VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
|
||
VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
|
||
VK_SUBGROUP_FEATURE_ROTATE_BIT_KHR |
|
||
VK_SUBGROUP_FEATURE_ROTATE_CLUSTERED_BIT_KHR;
|
||
p->subgroupQuadOperationsInAllStages = true;
|
||
|
||
p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
|
||
p->maxMultiviewViewCount = 16;
|
||
p->maxMultiviewInstanceIndex = UINT32_MAX / 16;
|
||
/* Our protected implementation is a memory encryption mechanism, it
|
||
* shouldn't page fault, but it hangs the HW so in terms of user visibility
|
||
* it's similar to a fault.
|
||
*/
|
||
p->protectedNoFault = false;
|
||
/* This value doesn't matter for us today as our per-stage descriptors are
|
||
* the real limit.
|
||
*/
|
||
p->maxPerSetDescriptors = 1024;
|
||
|
||
for (uint32_t i = 0; i < pdevice->memory.heap_count; i++) {
|
||
p->maxMemoryAllocationSize = MAX2(p->maxMemoryAllocationSize,
|
||
pdevice->memory.heaps[i].size);
|
||
}
|
||
}
|
||
|
||
static void
|
||
get_properties_1_2(const struct anv_physical_device *pdevice,
|
||
struct vk_properties *p)
|
||
{
|
||
p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA;
|
||
memset(p->driverName, 0, sizeof(p->driverName));
|
||
snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE,
|
||
"Intel open-source Mesa driver");
|
||
memset(p->driverInfo, 0, sizeof(p->driverInfo));
|
||
snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE,
|
||
"Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
|
||
|
||
p->conformanceVersion = (VkConformanceVersion) {
|
||
.major = 1,
|
||
.minor = 3,
|
||
.subminor = 6,
|
||
.patch = 0,
|
||
};
|
||
|
||
p->denormBehaviorIndependence =
|
||
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
|
||
p->roundingModeIndependence =
|
||
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE;
|
||
|
||
/* Broadwell does not support HF denorms and there are restrictions
|
||
* other gens. According to Kabylake's PRM:
|
||
*
|
||
* "math - Extended Math Function
|
||
* [...]
|
||
* Restriction : Half-float denorms are always retained."
|
||
*/
|
||
p->shaderDenormFlushToZeroFloat16 = false;
|
||
p->shaderDenormPreserveFloat16 = true;
|
||
p->shaderRoundingModeRTEFloat16 = true;
|
||
p->shaderRoundingModeRTZFloat16 = true;
|
||
p->shaderSignedZeroInfNanPreserveFloat16 = true;
|
||
|
||
p->shaderDenormFlushToZeroFloat32 = true;
|
||
p->shaderDenormPreserveFloat32 = true;
|
||
p->shaderRoundingModeRTEFloat32 = true;
|
||
p->shaderRoundingModeRTZFloat32 = true;
|
||
p->shaderSignedZeroInfNanPreserveFloat32 = true;
|
||
|
||
p->shaderDenormFlushToZeroFloat64 = true;
|
||
p->shaderDenormPreserveFloat64 = true;
|
||
p->shaderRoundingModeRTEFloat64 = true;
|
||
p->shaderRoundingModeRTZFloat64 = true;
|
||
p->shaderSignedZeroInfNanPreserveFloat64 = true;
|
||
|
||
/* It's a bit hard to exactly map our implementation to the limits
|
||
* described by Vulkan. The bindless surface handle in the extended
|
||
* message descriptors is 20 bits and it's an index into the table of
|
||
* RENDER_SURFACE_STATE structs that starts at bindless surface base
|
||
* address. This means that we can have at must 1M surface states
|
||
* allocated at any given time. Since most image views take two
|
||
* descriptors, this means we have a limit of about 500K image views.
|
||
*
|
||
* However, since we allocate surface states at vkCreateImageView time,
|
||
* this means our limit is actually something on the order of 500K image
|
||
* views allocated at any time. The actual limit describe by Vulkan, on
|
||
* the other hand, is a limit of how many you can have in a descriptor set.
|
||
* Assuming anyone using 1M descriptors will be using the same image view
|
||
* twice a bunch of times (or a bunch of null descriptors), we can safely
|
||
* advertise a larger limit here.
|
||
*/
|
||
const unsigned max_bindless_views =
|
||
anv_physical_device_bindless_heap_size(pdevice, false) / ANV_SURFACE_STATE_SIZE;
|
||
p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
|
||
p->shaderUniformBufferArrayNonUniformIndexingNative = false;
|
||
p->shaderSampledImageArrayNonUniformIndexingNative = false;
|
||
p->shaderStorageBufferArrayNonUniformIndexingNative = true;
|
||
p->shaderStorageImageArrayNonUniformIndexingNative = false;
|
||
p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
|
||
p->robustBufferAccessUpdateAfterBind = true;
|
||
p->quadDivergentImplicitLod = false;
|
||
p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
|
||
p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
|
||
p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
|
||
p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
|
||
p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
|
||
p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
|
||
p->maxPerStageUpdateAfterBindResources = UINT32_MAX;
|
||
p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
|
||
p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
|
||
p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
|
||
p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
|
||
p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
|
||
p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
|
||
p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
|
||
p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
|
||
|
||
/* We support all of the depth resolve modes */
|
||
p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT |
|
||
VK_RESOLVE_MODE_AVERAGE_BIT |
|
||
VK_RESOLVE_MODE_MIN_BIT |
|
||
VK_RESOLVE_MODE_MAX_BIT;
|
||
/* Average doesn't make sense for stencil so we don't support that */
|
||
p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT |
|
||
VK_RESOLVE_MODE_MIN_BIT |
|
||
VK_RESOLVE_MODE_MAX_BIT;
|
||
p->independentResolveNone = true;
|
||
p->independentResolve = true;
|
||
|
||
p->filterMinmaxSingleComponentFormats = true;
|
||
p->filterMinmaxImageComponentMapping = true;
|
||
|
||
p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
|
||
|
||
p->framebufferIntegerColorSampleCounts =
|
||
isl_device_get_sample_counts(&pdevice->isl_dev);
|
||
}
|
||
|
||
static void
|
||
get_properties_1_3(const struct anv_physical_device *pdevice,
|
||
struct vk_properties *p)
|
||
{
|
||
if (pdevice->info.ver >= 20)
|
||
p->minSubgroupSize = 16;
|
||
else
|
||
p->minSubgroupSize = 8;
|
||
p->maxSubgroupSize = 32;
|
||
p->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_workgroup_threads;
|
||
p->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT |
|
||
VK_SHADER_STAGE_TASK_BIT_EXT |
|
||
VK_SHADER_STAGE_MESH_BIT_EXT;
|
||
|
||
p->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
|
||
p->maxPerStageDescriptorInlineUniformBlocks =
|
||
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
|
||
p->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
|
||
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
|
||
p->maxDescriptorSetInlineUniformBlocks =
|
||
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
|
||
p->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
|
||
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
|
||
p->maxInlineUniformTotalSize = UINT16_MAX;
|
||
|
||
p->integerDotProduct8BitUnsignedAccelerated = false;
|
||
p->integerDotProduct8BitSignedAccelerated = false;
|
||
p->integerDotProduct8BitMixedSignednessAccelerated = false;
|
||
p->integerDotProduct4x8BitPackedUnsignedAccelerated = pdevice->info.ver >= 12;
|
||
p->integerDotProduct4x8BitPackedSignedAccelerated = pdevice->info.ver >= 12;
|
||
p->integerDotProduct4x8BitPackedMixedSignednessAccelerated = pdevice->info.ver >= 12;
|
||
p->integerDotProduct16BitUnsignedAccelerated = false;
|
||
p->integerDotProduct16BitSignedAccelerated = false;
|
||
p->integerDotProduct16BitMixedSignednessAccelerated = false;
|
||
p->integerDotProduct32BitUnsignedAccelerated = false;
|
||
p->integerDotProduct32BitSignedAccelerated = false;
|
||
p->integerDotProduct32BitMixedSignednessAccelerated = false;
|
||
p->integerDotProduct64BitUnsignedAccelerated = false;
|
||
p->integerDotProduct64BitSignedAccelerated = false;
|
||
p->integerDotProduct64BitMixedSignednessAccelerated = false;
|
||
p->integerDotProductAccumulatingSaturating8BitUnsignedAccelerated = false;
|
||
p->integerDotProductAccumulatingSaturating8BitSignedAccelerated = false;
|
||
p->integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated = false;
|
||
p->integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated = pdevice->info.ver >= 12;
|
||
p->integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated = pdevice->info.ver >= 12;
|
||
p->integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated = pdevice->info.ver >= 12;
|
||
p->integerDotProductAccumulatingSaturating16BitUnsignedAccelerated = false;
|
||
p->integerDotProductAccumulatingSaturating16BitSignedAccelerated = false;
|
||
p->integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated = false;
|
||
p->integerDotProductAccumulatingSaturating32BitUnsignedAccelerated = false;
|
||
p->integerDotProductAccumulatingSaturating32BitSignedAccelerated = false;
|
||
p->integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated = false;
|
||
p->integerDotProductAccumulatingSaturating64BitUnsignedAccelerated = false;
|
||
p->integerDotProductAccumulatingSaturating64BitSignedAccelerated = false;
|
||
p->integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated = false;
|
||
|
||
/* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
|
||
* Base Address:
|
||
*
|
||
* "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
|
||
* specifies the base address of the first element of the surface,
|
||
* computed in software by adding the surface base address to the
|
||
* byte offset of the element in the buffer. The base address must
|
||
* be aligned to element size."
|
||
*
|
||
* The typed dataport messages require that things be texel aligned.
|
||
* Otherwise, we may just load/store the wrong data or, in the worst
|
||
* case, there may be hangs.
|
||
*/
|
||
p->storageTexelBufferOffsetAlignmentBytes = 16;
|
||
p->storageTexelBufferOffsetSingleTexelAlignment = true;
|
||
|
||
/* The sampler, however, is much more forgiving and it can handle
|
||
* arbitrary byte alignment for linear and buffer surfaces. It's
|
||
* hard to find a good PRM citation for this but years of empirical
|
||
* experience demonstrate that this is true.
|
||
*/
|
||
p->uniformTexelBufferOffsetAlignmentBytes = 1;
|
||
p->uniformTexelBufferOffsetSingleTexelAlignment = true;
|
||
|
||
p->maxBufferSize = pdevice->isl_dev.max_buffer_size;
|
||
}
|
||
|
||
static void
|
||
get_properties(const struct anv_physical_device *pdevice,
|
||
struct vk_properties *props)
|
||
{
|
||
|
||
const struct intel_device_info *devinfo = &pdevice->info;
|
||
|
||
const uint32_t max_ssbos = UINT16_MAX;
|
||
const uint32_t max_textures = UINT16_MAX;
|
||
const uint32_t max_samplers = UINT16_MAX;
|
||
const uint32_t max_images = UINT16_MAX;
|
||
const VkDeviceSize max_heap_size = anx_get_physical_device_max_heap_size(pdevice);
|
||
|
||
/* Claim a high per-stage limit since we have bindless. */
|
||
const uint32_t max_per_stage = UINT32_MAX;
|
||
|
||
const uint32_t max_workgroup_size =
|
||
MIN2(1024, 32 * devinfo->max_cs_workgroup_threads);
|
||
|
||
const bool has_sparse_or_fake = pdevice->sparse_type != ANV_SPARSE_TYPE_NOT_SUPPORTED;
|
||
const bool sparse_uses_trtt = pdevice->sparse_type == ANV_SPARSE_TYPE_TRTT;
|
||
|
||
uint64_t sparse_addr_space_size =
|
||
!has_sparse_or_fake ? 0 :
|
||
sparse_uses_trtt ? pdevice->va.trtt.size :
|
||
pdevice->va.high_heap.size;
|
||
|
||
VkSampleCountFlags sample_counts =
|
||
isl_device_get_sample_counts(&pdevice->isl_dev);
|
||
|
||
#if DETECT_OS_ANDROID
|
||
/* Used to fill struct VkPhysicalDevicePresentationPropertiesANDROID */
|
||
uint64_t front_rendering_usage = 0;
|
||
struct u_gralloc *gralloc = u_gralloc_create(U_GRALLOC_TYPE_AUTO);
|
||
if (gralloc != NULL) {
|
||
u_gralloc_get_front_rendering_usage(gralloc, &front_rendering_usage);
|
||
u_gralloc_destroy(&gralloc);
|
||
}
|
||
#endif /* DETECT_OS_ANDROID */
|
||
|
||
*props = (struct vk_properties) {
|
||
.apiVersion = ANV_API_VERSION,
|
||
.driverVersion = vk_get_driver_version(),
|
||
.vendorID = pdevice->instance->force_vk_vendor != 0 ?
|
||
pdevice->instance->force_vk_vendor : 0x8086,
|
||
.deviceID = pdevice->info.pci_device_id,
|
||
.deviceType = pdevice->info.has_local_mem ?
|
||
VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU :
|
||
VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
|
||
|
||
/* Limits: */
|
||
.maxImageDimension1D = (1 << 14),
|
||
.maxImageDimension2D = (1 << 14),
|
||
.maxImageDimension3D = (1 << 11),
|
||
.maxImageDimensionCube = (1 << 14),
|
||
.maxImageArrayLayers = (1 << 11),
|
||
.maxTexelBufferElements = 128 * 1024 * 1024,
|
||
.maxUniformBufferRange = pdevice->compiler->indirect_ubos_use_sampler ? (1u << 27) : (1u << 30),
|
||
.maxStorageBufferRange = MIN3(pdevice->isl_dev.max_buffer_size, max_heap_size, UINT32_MAX),
|
||
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
|
||
.maxMemoryAllocationCount = UINT32_MAX,
|
||
.maxSamplerAllocationCount = 64 * 1024,
|
||
.bufferImageGranularity = 1,
|
||
.sparseAddressSpaceSize = sparse_addr_space_size,
|
||
.maxBoundDescriptorSets = MAX_SETS,
|
||
.maxPerStageDescriptorSamplers = max_samplers,
|
||
.maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
|
||
.maxPerStageDescriptorStorageBuffers = max_ssbos,
|
||
.maxPerStageDescriptorSampledImages = max_textures,
|
||
.maxPerStageDescriptorStorageImages = max_images,
|
||
.maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
|
||
.maxPerStageResources = max_per_stage,
|
||
.maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
|
||
.maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
|
||
.maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
|
||
.maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
|
||
.maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
|
||
.maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
|
||
.maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
|
||
.maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
|
||
.maxVertexInputAttributes = MAX_VES,
|
||
.maxVertexInputBindings = MAX_VBS,
|
||
/* Broadwell PRMs: Volume 2d: Command Reference: Structures:
|
||
*
|
||
* VERTEX_ELEMENT_STATE::Source Element Offset: [0,2047]
|
||
*/
|
||
.maxVertexInputAttributeOffset = 2047,
|
||
/* Skylake PRMs: Volume 2d: Command Reference: Structures:
|
||
*
|
||
* VERTEX_BUFFER_STATE::Buffer Pitch: [0,4095]
|
||
*/
|
||
.maxVertexInputBindingStride = 4095,
|
||
.maxVertexOutputComponents = 128,
|
||
.maxTessellationGenerationLevel = 64,
|
||
.maxTessellationPatchSize = 32,
|
||
.maxTessellationControlPerVertexInputComponents = 128,
|
||
.maxTessellationControlPerVertexOutputComponents = 128,
|
||
.maxTessellationControlPerPatchOutputComponents = 128,
|
||
.maxTessellationControlTotalOutputComponents = 2048,
|
||
.maxTessellationEvaluationInputComponents = 128,
|
||
.maxTessellationEvaluationOutputComponents = 128,
|
||
.maxGeometryShaderInvocations = 32,
|
||
.maxGeometryInputComponents = 128,
|
||
.maxGeometryOutputComponents = 128,
|
||
.maxGeometryOutputVertices = 256,
|
||
.maxGeometryTotalOutputComponents = 1024,
|
||
.maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
|
||
.maxFragmentOutputAttachments = 8,
|
||
.maxFragmentDualSrcAttachments = 1,
|
||
.maxFragmentCombinedOutputResources = MAX_RTS + max_ssbos + max_images,
|
||
.maxComputeSharedMemorySize = 64 * 1024,
|
||
.maxComputeWorkGroupCount = { 65535, 65535, 65535 },
|
||
.maxComputeWorkGroupInvocations = max_workgroup_size,
|
||
.maxComputeWorkGroupSize = {
|
||
max_workgroup_size,
|
||
max_workgroup_size,
|
||
max_workgroup_size,
|
||
},
|
||
.subPixelPrecisionBits = 8,
|
||
.subTexelPrecisionBits = 8,
|
||
.mipmapPrecisionBits = 8,
|
||
.maxDrawIndexedIndexValue = UINT32_MAX,
|
||
.maxDrawIndirectCount = UINT32_MAX,
|
||
.maxSamplerLodBias = 16,
|
||
.maxSamplerAnisotropy = 16,
|
||
.maxViewports = MAX_VIEWPORTS,
|
||
.maxViewportDimensions = { (1 << 14), (1 << 14) },
|
||
.viewportBoundsRange = { INT16_MIN, INT16_MAX },
|
||
.viewportSubPixelBits = 13, /* We take a float? */
|
||
.minMemoryMapAlignment = 4096, /* A page */
|
||
/* The dataport requires texel alignment so we need to assume a worst
|
||
* case of R32G32B32A32 which is 16 bytes.
|
||
*/
|
||
.minTexelBufferOffsetAlignment = 16,
|
||
.minUniformBufferOffsetAlignment = ANV_UBO_ALIGNMENT,
|
||
.minStorageBufferOffsetAlignment = ANV_SSBO_ALIGNMENT,
|
||
.minTexelOffset = -8,
|
||
.maxTexelOffset = 7,
|
||
.minTexelGatherOffset = -32,
|
||
.maxTexelGatherOffset = 31,
|
||
.minInterpolationOffset = -0.5,
|
||
.maxInterpolationOffset = 0.4375,
|
||
.subPixelInterpolationOffsetBits = 4,
|
||
.maxFramebufferWidth = (1 << 14),
|
||
.maxFramebufferHeight = (1 << 14),
|
||
.maxFramebufferLayers = (1 << 11),
|
||
.framebufferColorSampleCounts = sample_counts,
|
||
.framebufferDepthSampleCounts = sample_counts,
|
||
.framebufferStencilSampleCounts = sample_counts,
|
||
.framebufferNoAttachmentsSampleCounts = sample_counts,
|
||
.maxColorAttachments = MAX_RTS,
|
||
.sampledImageColorSampleCounts = sample_counts,
|
||
.sampledImageIntegerSampleCounts = sample_counts,
|
||
.sampledImageDepthSampleCounts = sample_counts,
|
||
.sampledImageStencilSampleCounts = sample_counts,
|
||
.storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
|
||
.maxSampleMaskWords = 1,
|
||
.timestampComputeAndGraphics = true,
|
||
.timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
|
||
.maxClipDistances = 8,
|
||
.maxCullDistances = 8,
|
||
.maxCombinedClipAndCullDistances = 8,
|
||
.discreteQueuePriorities = 2,
|
||
.pointSizeRange = { 0.125, 255.875 },
|
||
/* While SKL and up support much wider lines than we are setting here,
|
||
* in practice we run into conformance issues if we go past this limit.
|
||
* Since the Windows driver does the same, it's probably fair to assume
|
||
* that no one needs more than this.
|
||
*/
|
||
.lineWidthRange = { 0.0, 8.0 },
|
||
.pointSizeGranularity = (1.0 / 8.0),
|
||
.lineWidthGranularity = (1.0 / 128.0),
|
||
.strictLines = false,
|
||
.standardSampleLocations = true,
|
||
.optimalBufferCopyOffsetAlignment = 128,
|
||
.optimalBufferCopyRowPitchAlignment = 128,
|
||
.nonCoherentAtomSize = 64,
|
||
|
||
/* Sparse: */
|
||
.sparseResidencyStandard2DBlockShape = has_sparse_or_fake,
|
||
.sparseResidencyStandard2DMultisampleBlockShape = false,
|
||
.sparseResidencyStandard3DBlockShape = has_sparse_or_fake,
|
||
.sparseResidencyAlignedMipSize = false,
|
||
.sparseResidencyNonResidentStrict = has_sparse_or_fake,
|
||
|
||
/* VK_KHR_cooperative_matrix */
|
||
.cooperativeMatrixSupportedStages = VK_SHADER_STAGE_COMPUTE_BIT,
|
||
};
|
||
|
||
snprintf(props->deviceName, sizeof(props->deviceName),
|
||
"%s", pdevice->info.name);
|
||
memcpy(props->pipelineCacheUUID,
|
||
pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
|
||
|
||
get_properties_1_1(pdevice, props);
|
||
get_properties_1_2(pdevice, props);
|
||
get_properties_1_3(pdevice, props);
|
||
|
||
/* VK_KHR_acceleration_structure */
|
||
{
|
||
props->maxGeometryCount = (1u << 24) - 1;
|
||
props->maxInstanceCount = (1u << 24) - 1;
|
||
props->maxPrimitiveCount = (1u << 29) - 1;
|
||
props->maxPerStageDescriptorAccelerationStructures = UINT16_MAX;
|
||
props->maxPerStageDescriptorUpdateAfterBindAccelerationStructures = UINT16_MAX;
|
||
props->maxDescriptorSetAccelerationStructures = UINT16_MAX;
|
||
props->maxDescriptorSetUpdateAfterBindAccelerationStructures = UINT16_MAX;
|
||
props->minAccelerationStructureScratchOffsetAlignment = 64;
|
||
}
|
||
|
||
/* VK_KHR_fragment_shading_rate */
|
||
{
|
||
props->primitiveFragmentShadingRateWithMultipleViewports =
|
||
pdevice->info.has_coarse_pixel_primitive_and_cb;
|
||
props->layeredShadingRateAttachments =
|
||
pdevice->info.has_coarse_pixel_primitive_and_cb;
|
||
props->fragmentShadingRateNonTrivialCombinerOps =
|
||
pdevice->info.has_coarse_pixel_primitive_and_cb;
|
||
props->maxFragmentSize = (VkExtent2D) { 4, 4 };
|
||
props->maxFragmentSizeAspectRatio =
|
||
pdevice->info.has_coarse_pixel_primitive_and_cb ?
|
||
2 : 4;
|
||
props->maxFragmentShadingRateCoverageSamples = 4 * 4 *
|
||
(pdevice->info.has_coarse_pixel_primitive_and_cb ? 4 : 16);
|
||
props->maxFragmentShadingRateRasterizationSamples =
|
||
pdevice->info.has_coarse_pixel_primitive_and_cb ?
|
||
VK_SAMPLE_COUNT_4_BIT : VK_SAMPLE_COUNT_16_BIT;
|
||
props->fragmentShadingRateWithShaderDepthStencilWrites = false;
|
||
props->fragmentShadingRateWithSampleMask = true;
|
||
props->fragmentShadingRateWithShaderSampleMask = false;
|
||
props->fragmentShadingRateWithConservativeRasterization = true;
|
||
props->fragmentShadingRateWithFragmentShaderInterlock = true;
|
||
props->fragmentShadingRateWithCustomSampleLocations = true;
|
||
props->fragmentShadingRateStrictMultiplyCombiner = true;
|
||
|
||
if (pdevice->info.has_coarse_pixel_primitive_and_cb) {
|
||
props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 8, 8 };
|
||
props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 8, 8 };
|
||
props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 1;
|
||
} else {
|
||
/* Those must be 0 if attachmentFragmentShadingRate is not supported. */
|
||
props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 0, 0 };
|
||
props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 0, 0 };
|
||
props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 0;
|
||
}
|
||
}
|
||
|
||
/* VK_KHR_maintenance5 */
|
||
{
|
||
props->earlyFragmentMultisampleCoverageAfterSampleCounting = false;
|
||
props->earlyFragmentSampleMaskTestBeforeSampleCounting = false;
|
||
props->depthStencilSwizzleOneSupport = true;
|
||
props->polygonModePointSize = true;
|
||
props->nonStrictSinglePixelWideLinesUseParallelogram = false;
|
||
props->nonStrictWideLinesUseParallelogram = false;
|
||
}
|
||
|
||
/* VK_KHR_maintenance6 */
|
||
{
|
||
props->blockTexelViewCompatibleMultipleLayers = true;
|
||
props->maxCombinedImageSamplerDescriptorCount = 3;
|
||
props->fragmentShadingRateClampCombinerInputs = true;
|
||
}
|
||
|
||
/* VK_KHR_performance_query */
|
||
{
|
||
props->allowCommandBufferQueryCopies = false;
|
||
}
|
||
|
||
/* VK_KHR_push_descriptor */
|
||
{
|
||
props->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
|
||
}
|
||
|
||
/* VK_KHR_ray_tracing_pipeline */
|
||
{
|
||
/* TODO */
|
||
props->shaderGroupHandleSize = 32;
|
||
props->maxRayRecursionDepth = 31;
|
||
/* MemRay::hitGroupSRStride is 16 bits */
|
||
props->maxShaderGroupStride = UINT16_MAX;
|
||
/* MemRay::hitGroupSRBasePtr requires 16B alignment */
|
||
props->shaderGroupBaseAlignment = 16;
|
||
props->shaderGroupHandleAlignment = 16;
|
||
props->shaderGroupHandleCaptureReplaySize = 32;
|
||
props->maxRayDispatchInvocationCount = 1U << 30; /* required min limit */
|
||
props->maxRayHitAttributeSize = BRW_RT_SIZEOF_HIT_ATTRIB_DATA;
|
||
}
|
||
|
||
/* VK_KHR_vertex_attribute_divisor */
|
||
{
|
||
props->maxVertexAttribDivisor = UINT32_MAX / 16;
|
||
props->supportsNonZeroFirstInstance = true;
|
||
}
|
||
|
||
/* VK_EXT_conservative_rasterization */
|
||
{
|
||
/* There's nothing in the public docs about this value as far as I can
|
||
* tell. However, this is the value the Windows driver reports and
|
||
* there's a comment on a rejected HW feature in the internal docs that
|
||
* says:
|
||
*
|
||
* "This is similar to conservative rasterization, except the
|
||
* primitive area is not extended by 1/512 and..."
|
||
*
|
||
* That's a bit of an obtuse reference but it's the best we've got for
|
||
* now.
|
||
*/
|
||
props->primitiveOverestimationSize = 1.0f / 512.0f;
|
||
props->maxExtraPrimitiveOverestimationSize = 0.0f;
|
||
props->extraPrimitiveOverestimationSizeGranularity = 0.0f;
|
||
props->primitiveUnderestimation = false;
|
||
props->conservativePointAndLineRasterization = false;
|
||
props->degenerateTrianglesRasterized = true;
|
||
props->degenerateLinesRasterized = false;
|
||
props->fullyCoveredFragmentShaderInputVariable = false;
|
||
props->conservativeRasterizationPostDepthCoverage = true;
|
||
}
|
||
|
||
/* VK_EXT_custom_border_color */
|
||
{
|
||
props->maxCustomBorderColorSamplers = MAX_CUSTOM_BORDER_COLORS;
|
||
}
|
||
|
||
/* VK_EXT_descriptor_buffer */
|
||
{
|
||
props->combinedImageSamplerDescriptorSingleArray = true;
|
||
props->bufferlessPushDescriptors = true;
|
||
/* Written to the buffer before a timeline semaphore is signaled, but
|
||
* after vkQueueSubmit().
|
||
*/
|
||
props->allowSamplerImageViewPostSubmitCreation = true;
|
||
props->descriptorBufferOffsetAlignment = ANV_SURFACE_STATE_SIZE;
|
||
|
||
if (pdevice->uses_ex_bso) {
|
||
props->maxDescriptorBufferBindings = MAX_SETS;
|
||
props->maxResourceDescriptorBufferBindings = MAX_SETS;
|
||
props->maxSamplerDescriptorBufferBindings = MAX_SETS;
|
||
props->maxEmbeddedImmutableSamplerBindings = MAX_SETS;
|
||
} else {
|
||
props->maxDescriptorBufferBindings = 3; /* resources, samplers, push (we don't care about push) */
|
||
props->maxResourceDescriptorBufferBindings = 1;
|
||
props->maxSamplerDescriptorBufferBindings = 1;
|
||
props->maxEmbeddedImmutableSamplerBindings = 1;
|
||
}
|
||
props->maxEmbeddedImmutableSamplers = MAX_EMBEDDED_SAMPLERS;
|
||
|
||
/* Storing a 64bit address */
|
||
props->bufferCaptureReplayDescriptorDataSize = 8;
|
||
props->imageCaptureReplayDescriptorDataSize = 8;
|
||
/* Offset inside the reserved border color pool */
|
||
props->samplerCaptureReplayDescriptorDataSize = 4;
|
||
|
||
/* Not affected by replay */
|
||
props->imageViewCaptureReplayDescriptorDataSize = 0;
|
||
/* The acceleration structure virtual address backing is coming from a
|
||
* buffer, so as long as that buffer is captured/replayed correctly we
|
||
* should always get the same address.
|
||
*/
|
||
props->accelerationStructureCaptureReplayDescriptorDataSize = 0;
|
||
|
||
props->samplerDescriptorSize = ANV_SAMPLER_STATE_SIZE;
|
||
props->combinedImageSamplerDescriptorSize = align(ANV_SURFACE_STATE_SIZE + ANV_SAMPLER_STATE_SIZE,
|
||
ANV_SURFACE_STATE_SIZE);
|
||
props->sampledImageDescriptorSize = ANV_SURFACE_STATE_SIZE;
|
||
props->storageImageDescriptorSize = ANV_SURFACE_STATE_SIZE;
|
||
props->uniformTexelBufferDescriptorSize = ANV_SURFACE_STATE_SIZE;
|
||
props->robustUniformTexelBufferDescriptorSize = ANV_SURFACE_STATE_SIZE;
|
||
props->storageTexelBufferDescriptorSize = ANV_SURFACE_STATE_SIZE;
|
||
props->robustStorageTexelBufferDescriptorSize = ANV_SURFACE_STATE_SIZE;
|
||
props->uniformBufferDescriptorSize = ANV_SURFACE_STATE_SIZE;
|
||
props->robustUniformBufferDescriptorSize = ANV_SURFACE_STATE_SIZE;
|
||
props->storageBufferDescriptorSize = ANV_SURFACE_STATE_SIZE;
|
||
props->robustStorageBufferDescriptorSize = ANV_SURFACE_STATE_SIZE;
|
||
props->inputAttachmentDescriptorSize = ANV_SURFACE_STATE_SIZE;
|
||
props->accelerationStructureDescriptorSize = sizeof(struct anv_address_range_descriptor);
|
||
props->maxSamplerDescriptorBufferRange = pdevice->va.descriptor_buffer_pool.size;
|
||
props->maxResourceDescriptorBufferRange = anv_physical_device_bindless_heap_size(pdevice,
|
||
true);
|
||
props->resourceDescriptorBufferAddressSpaceSize = pdevice->va.descriptor_buffer_pool.size;
|
||
props->descriptorBufferAddressSpaceSize = pdevice->va.descriptor_buffer_pool.size;
|
||
props->samplerDescriptorBufferAddressSpaceSize = pdevice->va.descriptor_buffer_pool.size;
|
||
}
|
||
|
||
/* VK_EXT_extended_dynamic_state3 */
|
||
{
|
||
props->dynamicPrimitiveTopologyUnrestricted = true;
|
||
}
|
||
|
||
/* VK_EXT_external_memory_host */
|
||
{
|
||
props->minImportedHostPointerAlignment = 4096;
|
||
}
|
||
|
||
/* VK_EXT_graphics_pipeline_library */
|
||
{
|
||
props->graphicsPipelineLibraryFastLinking = true;
|
||
props->graphicsPipelineLibraryIndependentInterpolationDecoration = true;
|
||
}
|
||
|
||
/* VK_EXT_legacy_vertex_attributes */
|
||
{
|
||
props->nativeUnalignedPerformance = true;
|
||
}
|
||
|
||
/* VK_EXT_line_rasterization */
|
||
{
|
||
/* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond) Sampling
|
||
* Rules - Legacy Mode", it says the following:
|
||
*
|
||
* "Note that the device divides a pixel into a 16x16 array of
|
||
* subpixels, referenced by their upper left corners."
|
||
*
|
||
* This is the only known reference in the PRMs to the subpixel
|
||
* precision of line rasterization and a "16x16 array of subpixels"
|
||
* implies 4 subpixel precision bits. Empirical testing has shown that 4
|
||
* subpixel precision bits applies to all line rasterization types.
|
||
*/
|
||
props->lineSubPixelPrecisionBits = 4;
|
||
}
|
||
|
||
/* VK_EXT_map_memory_placed */
|
||
{
|
||
props->minPlacedMemoryMapAlignment = 4096;
|
||
}
|
||
|
||
/* VK_EXT_mesh_shader */
|
||
{
|
||
/* Bounded by the maximum representable size in
|
||
* 3DSTATE_MESH_SHADER_BODY::SharedLocalMemorySize. Same for Task.
|
||
*/
|
||
const uint32_t max_slm_size = 64 * 1024;
|
||
|
||
/* Bounded by the maximum representable size in
|
||
* 3DSTATE_MESH_SHADER_BODY::LocalXMaximum. Same for Task.
|
||
*/
|
||
const uint32_t max_workgroup_size = 1 << 10;
|
||
|
||
/* 3DMESH_3D limitation. */
|
||
const uint32_t max_threadgroup_count = 1 << 22;
|
||
|
||
/* 3DMESH_3D limitation. */
|
||
const uint32_t max_threadgroup_xyz = 65535;
|
||
|
||
const uint32_t max_urb_size = 64 * 1024;
|
||
|
||
props->maxTaskWorkGroupTotalCount = max_threadgroup_count;
|
||
props->maxTaskWorkGroupCount[0] = max_threadgroup_xyz;
|
||
props->maxTaskWorkGroupCount[1] = max_threadgroup_xyz;
|
||
props->maxTaskWorkGroupCount[2] = max_threadgroup_xyz;
|
||
|
||
props->maxTaskWorkGroupInvocations = max_workgroup_size;
|
||
props->maxTaskWorkGroupSize[0] = max_workgroup_size;
|
||
props->maxTaskWorkGroupSize[1] = max_workgroup_size;
|
||
props->maxTaskWorkGroupSize[2] = max_workgroup_size;
|
||
|
||
/* TUE header with padding */
|
||
const uint32_t task_payload_reserved = 32;
|
||
|
||
props->maxTaskPayloadSize = max_urb_size - task_payload_reserved;
|
||
props->maxTaskSharedMemorySize = max_slm_size;
|
||
props->maxTaskPayloadAndSharedMemorySize =
|
||
props->maxTaskPayloadSize +
|
||
props->maxTaskSharedMemorySize;
|
||
|
||
props->maxMeshWorkGroupTotalCount = max_threadgroup_count;
|
||
props->maxMeshWorkGroupCount[0] = max_threadgroup_xyz;
|
||
props->maxMeshWorkGroupCount[1] = max_threadgroup_xyz;
|
||
props->maxMeshWorkGroupCount[2] = max_threadgroup_xyz;
|
||
|
||
props->maxMeshWorkGroupInvocations = max_workgroup_size;
|
||
props->maxMeshWorkGroupSize[0] = max_workgroup_size;
|
||
props->maxMeshWorkGroupSize[1] = max_workgroup_size;
|
||
props->maxMeshWorkGroupSize[2] = max_workgroup_size;
|
||
|
||
props->maxMeshSharedMemorySize = max_slm_size;
|
||
props->maxMeshPayloadAndSharedMemorySize =
|
||
props->maxTaskPayloadSize +
|
||
props->maxMeshSharedMemorySize;
|
||
|
||
/* Unfortunately spec's formula for the max output size doesn't match our hardware
|
||
* (because some per-primitive and per-vertex attributes have alignment restrictions),
|
||
* so we have to advertise the minimum value mandated by the spec to not overflow it.
|
||
*/
|
||
props->maxMeshOutputPrimitives = 256;
|
||
props->maxMeshOutputVertices = 256;
|
||
|
||
/* NumPrim + Primitive Data List */
|
||
const uint32_t max_indices_memory =
|
||
ALIGN(sizeof(uint32_t) +
|
||
sizeof(uint32_t) * props->maxMeshOutputVertices, 32);
|
||
|
||
props->maxMeshOutputMemorySize = MIN2(max_urb_size - max_indices_memory, 32768);
|
||
|
||
props->maxMeshPayloadAndOutputMemorySize =
|
||
props->maxTaskPayloadSize +
|
||
props->maxMeshOutputMemorySize;
|
||
|
||
props->maxMeshOutputComponents = 128;
|
||
|
||
/* RTAIndex is 11-bits wide */
|
||
props->maxMeshOutputLayers = 1 << 11;
|
||
|
||
props->maxMeshMultiviewViewCount = 1;
|
||
|
||
/* Elements in Vertex Data Array must be aligned to 32 bytes (8 dwords). */
|
||
props->meshOutputPerVertexGranularity = 8;
|
||
/* Elements in Primitive Data Array must be aligned to 32 bytes (8 dwords). */
|
||
props->meshOutputPerPrimitiveGranularity = 8;
|
||
|
||
/* SIMD16 */
|
||
props->maxPreferredTaskWorkGroupInvocations = 16;
|
||
props->maxPreferredMeshWorkGroupInvocations = 16;
|
||
|
||
props->prefersLocalInvocationVertexOutput = false;
|
||
props->prefersLocalInvocationPrimitiveOutput = false;
|
||
props->prefersCompactVertexOutput = false;
|
||
props->prefersCompactPrimitiveOutput = false;
|
||
|
||
/* Spec minimum values */
|
||
assert(props->maxTaskWorkGroupTotalCount >= (1U << 22));
|
||
assert(props->maxTaskWorkGroupCount[0] >= 65535);
|
||
assert(props->maxTaskWorkGroupCount[1] >= 65535);
|
||
assert(props->maxTaskWorkGroupCount[2] >= 65535);
|
||
|
||
assert(props->maxTaskWorkGroupInvocations >= 128);
|
||
assert(props->maxTaskWorkGroupSize[0] >= 128);
|
||
assert(props->maxTaskWorkGroupSize[1] >= 128);
|
||
assert(props->maxTaskWorkGroupSize[2] >= 128);
|
||
|
||
assert(props->maxTaskPayloadSize >= 16384);
|
||
assert(props->maxTaskSharedMemorySize >= 32768);
|
||
assert(props->maxTaskPayloadAndSharedMemorySize >= 32768);
|
||
|
||
|
||
assert(props->maxMeshWorkGroupTotalCount >= (1U << 22));
|
||
assert(props->maxMeshWorkGroupCount[0] >= 65535);
|
||
assert(props->maxMeshWorkGroupCount[1] >= 65535);
|
||
assert(props->maxMeshWorkGroupCount[2] >= 65535);
|
||
|
||
assert(props->maxMeshWorkGroupInvocations >= 128);
|
||
assert(props->maxMeshWorkGroupSize[0] >= 128);
|
||
assert(props->maxMeshWorkGroupSize[1] >= 128);
|
||
assert(props->maxMeshWorkGroupSize[2] >= 128);
|
||
|
||
assert(props->maxMeshSharedMemorySize >= 28672);
|
||
assert(props->maxMeshPayloadAndSharedMemorySize >= 28672);
|
||
assert(props->maxMeshOutputMemorySize >= 32768);
|
||
assert(props->maxMeshPayloadAndOutputMemorySize >= 48128);
|
||
|
||
assert(props->maxMeshOutputComponents >= 128);
|
||
|
||
assert(props->maxMeshOutputVertices >= 256);
|
||
assert(props->maxMeshOutputPrimitives >= 256);
|
||
assert(props->maxMeshOutputLayers >= 8);
|
||
assert(props->maxMeshMultiviewViewCount >= 1);
|
||
}
|
||
|
||
/* VK_EXT_multi_draw */
|
||
{
|
||
props->maxMultiDrawCount = 2048;
|
||
}
|
||
|
||
/* VK_EXT_nested_command_buffer */
|
||
{
|
||
props->maxCommandBufferNestingLevel = UINT32_MAX;
|
||
}
|
||
|
||
/* VK_EXT_pci_bus_info */
|
||
{
|
||
props->pciDomain = pdevice->info.pci_domain;
|
||
props->pciBus = pdevice->info.pci_bus;
|
||
props->pciDevice = pdevice->info.pci_dev;
|
||
props->pciFunction = pdevice->info.pci_func;
|
||
}
|
||
|
||
/* VK_EXT_physical_device_drm */
|
||
{
|
||
props->drmHasPrimary = pdevice->has_master;
|
||
props->drmPrimaryMajor = pdevice->master_major;
|
||
props->drmPrimaryMinor = pdevice->master_minor;
|
||
props->drmHasRender = pdevice->has_local;
|
||
props->drmRenderMajor = pdevice->local_major;
|
||
props->drmRenderMinor = pdevice->local_minor;
|
||
}
|
||
|
||
/* VK_EXT_pipeline_robustness */
|
||
{
|
||
props->defaultRobustnessStorageBuffers =
|
||
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT;
|
||
props->defaultRobustnessUniformBuffers =
|
||
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT;
|
||
props->defaultRobustnessVertexInputs =
|
||
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT;
|
||
props->defaultRobustnessImages =
|
||
VK_PIPELINE_ROBUSTNESS_IMAGE_BEHAVIOR_ROBUST_IMAGE_ACCESS_2_EXT;
|
||
}
|
||
|
||
/* VK_EXT_provoking_vertex */
|
||
{
|
||
props->provokingVertexModePerPipeline = true;
|
||
props->transformFeedbackPreservesTriangleFanProvokingVertex = false;
|
||
}
|
||
|
||
/* VK_EXT_robustness2 */
|
||
{
|
||
props->robustStorageBufferAccessSizeAlignment =
|
||
ANV_SSBO_BOUNDS_CHECK_ALIGNMENT;
|
||
props->robustUniformBufferAccessSizeAlignment =
|
||
ANV_UBO_ALIGNMENT;
|
||
}
|
||
|
||
/* VK_EXT_sample_locations */
|
||
{
|
||
props->sampleLocationSampleCounts =
|
||
isl_device_get_sample_counts(&pdevice->isl_dev);
|
||
|
||
/* See also anv_GetPhysicalDeviceMultisamplePropertiesEXT */
|
||
props->maxSampleLocationGridSize.width = 1;
|
||
props->maxSampleLocationGridSize.height = 1;
|
||
|
||
props->sampleLocationCoordinateRange[0] = 0;
|
||
props->sampleLocationCoordinateRange[1] = 0.9375;
|
||
props->sampleLocationSubPixelBits = 4;
|
||
|
||
props->variableSampleLocations = true;
|
||
}
|
||
|
||
/* VK_EXT_shader_module_identifier */
|
||
{
|
||
STATIC_ASSERT(sizeof(vk_shaderModuleIdentifierAlgorithmUUID) ==
|
||
sizeof(props->shaderModuleIdentifierAlgorithmUUID));
|
||
memcpy(props->shaderModuleIdentifierAlgorithmUUID,
|
||
vk_shaderModuleIdentifierAlgorithmUUID,
|
||
sizeof(props->shaderModuleIdentifierAlgorithmUUID));
|
||
}
|
||
|
||
/* VK_EXT_transform_feedback */
|
||
{
|
||
props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
|
||
props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
|
||
props->maxTransformFeedbackBufferSize = (1ull << 32);
|
||
props->maxTransformFeedbackStreamDataSize = 128 * 4;
|
||
props->maxTransformFeedbackBufferDataSize = 128 * 4;
|
||
props->maxTransformFeedbackBufferDataStride = 2048;
|
||
props->transformFeedbackQueries = true;
|
||
props->transformFeedbackStreamsLinesTriangles = false;
|
||
props->transformFeedbackRasterizationStreamSelect = false;
|
||
props->transformFeedbackDraw = true;
|
||
}
|
||
|
||
/* VK_ANDROID_native_buffer */
|
||
#if DETECT_OS_ANDROID
|
||
{
|
||
props->sharedImage = front_rendering_usage ? VK_TRUE : VK_FALSE;
|
||
}
|
||
#endif /* DETECT_OS_ANDROID */
|
||
|
||
}
|
||
|
||
static VkResult MUST_CHECK
|
||
anv_init_meminfo(struct anv_physical_device *device, int fd)
|
||
{
|
||
const struct intel_device_info *devinfo = &device->info;
|
||
|
||
device->sys.region = &devinfo->mem.sram.mem;
|
||
device->sys.size = devinfo->mem.sram.mappable.size;
|
||
device->sys.available = devinfo->mem.sram.mappable.free;
|
||
|
||
device->vram_mappable.region = &devinfo->mem.vram.mem;
|
||
device->vram_mappable.size = devinfo->mem.vram.mappable.size;
|
||
device->vram_mappable.available = devinfo->mem.vram.mappable.free;
|
||
|
||
device->vram_non_mappable.region = &devinfo->mem.vram.mem;
|
||
device->vram_non_mappable.size = devinfo->mem.vram.unmappable.size;
|
||
device->vram_non_mappable.available = devinfo->mem.vram.unmappable.free;
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
static void
|
||
anv_update_meminfo(struct anv_physical_device *device, int fd)
|
||
{
|
||
if (!intel_device_info_update_memory_info(&device->info, fd))
|
||
return;
|
||
|
||
const struct intel_device_info *devinfo = &device->info;
|
||
device->sys.available = devinfo->mem.sram.mappable.free;
|
||
device->vram_mappable.available = devinfo->mem.vram.mappable.free;
|
||
device->vram_non_mappable.available = devinfo->mem.vram.unmappable.free;
|
||
}
|
||
|
||
static VkResult
|
||
anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
|
||
{
|
||
VkResult result = anv_init_meminfo(device, fd);
|
||
if (result != VK_SUCCESS)
|
||
return result;
|
||
|
||
assert(device->sys.size != 0);
|
||
|
||
if (anv_physical_device_has_vram(device)) {
|
||
/* We can create 2 or 3 different heaps when we have local memory
|
||
* support, first heap with local memory size and second with system
|
||
* memory size and the third is added only if part of the vram is
|
||
* mappable to the host.
|
||
*/
|
||
device->memory.heap_count = 2;
|
||
device->memory.heaps[0] = (struct anv_memory_heap) {
|
||
/* If there is a vram_non_mappable, use that for the device only
|
||
* heap. Otherwise use the vram_mappable.
|
||
*/
|
||
.size = device->vram_non_mappable.size != 0 ?
|
||
device->vram_non_mappable.size : device->vram_mappable.size,
|
||
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
|
||
.is_local_mem = true,
|
||
};
|
||
device->memory.heaps[1] = (struct anv_memory_heap) {
|
||
.size = device->sys.size,
|
||
.flags = 0,
|
||
.is_local_mem = false,
|
||
};
|
||
/* Add an additional smaller vram mappable heap if we can't map all the
|
||
* vram to the host.
|
||
*/
|
||
if (device->vram_non_mappable.size > 0) {
|
||
device->memory.heap_count++;
|
||
device->memory.heaps[2] = (struct anv_memory_heap) {
|
||
.size = device->vram_mappable.size,
|
||
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
|
||
.is_local_mem = true,
|
||
};
|
||
}
|
||
} else {
|
||
device->memory.heap_count = 1;
|
||
device->memory.heaps[0] = (struct anv_memory_heap) {
|
||
.size = device->sys.size,
|
||
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
|
||
.is_local_mem = false,
|
||
};
|
||
}
|
||
|
||
switch (device->info.kmd_type) {
|
||
case INTEL_KMD_TYPE_XE:
|
||
result = anv_xe_physical_device_init_memory_types(device);
|
||
break;
|
||
case INTEL_KMD_TYPE_I915:
|
||
default:
|
||
result = anv_i915_physical_device_init_memory_types(device);
|
||
break;
|
||
}
|
||
|
||
if (result != VK_SUCCESS)
|
||
return result;
|
||
|
||
/* Replicate all non protected memory types for descriptor buffers because
|
||
* we want to identify memory allocations to place them in the right memory
|
||
* heap.
|
||
*/
|
||
device->memory.default_buffer_mem_types =
|
||
BITFIELD_RANGE(0, device->memory.type_count);
|
||
device->memory.protected_mem_types = 0;
|
||
device->memory.desc_buffer_mem_types = 0;
|
||
|
||
uint32_t base_types_count = device->memory.type_count;
|
||
for (int i = 0; i < base_types_count; i++) {
|
||
if (device->memory.types[i].propertyFlags &
|
||
VK_MEMORY_PROPERTY_PROTECTED_BIT) {
|
||
device->memory.protected_mem_types |= BITFIELD_BIT(i);
|
||
device->memory.default_buffer_mem_types &= (~BITFIELD_BIT(i));
|
||
continue;
|
||
}
|
||
|
||
assert(device->memory.type_count < ARRAY_SIZE(device->memory.types));
|
||
|
||
device->memory.desc_buffer_mem_types |=
|
||
BITFIELD_BIT(device->memory.type_count);
|
||
|
||
struct anv_memory_type *new_type =
|
||
&device->memory.types[device->memory.type_count++];
|
||
*new_type = device->memory.types[i];
|
||
new_type->descriptor_buffer = true;
|
||
}
|
||
|
||
for (unsigned i = 0; i < device->memory.type_count; i++) {
|
||
VkMemoryPropertyFlags props = device->memory.types[i].propertyFlags;
|
||
if ((props & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) &&
|
||
!(props & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
|
||
#ifdef SUPPORT_INTEL_INTEGRATED_GPUS
|
||
device->memory.need_flush = true;
|
||
#else
|
||
return vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
|
||
"Memory configuration requires flushing, but it's not implemented for this architecture");
|
||
#endif
|
||
}
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
static VkResult
|
||
anv_physical_device_init_uuids(struct anv_physical_device *device)
|
||
{
|
||
const struct build_id_note *note =
|
||
build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
|
||
if (!note) {
|
||
return vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
|
||
"Failed to find build-id");
|
||
}
|
||
|
||
unsigned build_id_len = build_id_length(note);
|
||
if (build_id_len < 20) {
|
||
return vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
|
||
"build-id too short. It needs to be a SHA");
|
||
}
|
||
|
||
memcpy(device->driver_build_sha1, build_id_data(note), 20);
|
||
|
||
struct mesa_sha1 sha1_ctx;
|
||
uint8_t sha1[20];
|
||
STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
|
||
|
||
/* The pipeline cache UUID is used for determining when a pipeline cache is
|
||
* invalid. It needs both a driver build and the PCI ID of the device.
|
||
*/
|
||
_mesa_sha1_init(&sha1_ctx);
|
||
_mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
|
||
brw_device_sha1_update(&sha1_ctx, &device->info);
|
||
_mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
|
||
sizeof(device->always_use_bindless));
|
||
_mesa_sha1_final(&sha1_ctx, sha1);
|
||
memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
|
||
|
||
intel_uuid_compute_driver_id(device->driver_uuid, &device->info, VK_UUID_SIZE);
|
||
intel_uuid_compute_device_id(device->device_uuid, &device->info, VK_UUID_SIZE);
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
static void
|
||
anv_physical_device_init_disk_cache(struct anv_physical_device *device)
|
||
{
|
||
#ifdef ENABLE_SHADER_CACHE
|
||
char renderer[10];
|
||
ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
|
||
device->info.pci_device_id);
|
||
assert(len == sizeof(renderer) - 2);
|
||
|
||
char timestamp[41];
|
||
_mesa_sha1_format(timestamp, device->driver_build_sha1);
|
||
|
||
const uint64_t driver_flags =
|
||
brw_get_compiler_config_value(device->compiler);
|
||
device->vk.disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
anv_physical_device_free_disk_cache(struct anv_physical_device *device)
|
||
{
|
||
#ifdef ENABLE_SHADER_CACHE
|
||
if (device->vk.disk_cache) {
|
||
disk_cache_destroy(device->vk.disk_cache);
|
||
device->vk.disk_cache = NULL;
|
||
}
|
||
#else
|
||
assert(device->vk.disk_cache == NULL);
|
||
#endif
|
||
}
|
||
|
||
/* The ANV_QUEUE_OVERRIDE environment variable is a comma separated list of
|
||
* queue overrides.
|
||
*
|
||
* To override the number queues:
|
||
* * "gc" is for graphics queues with compute support
|
||
* * "g" is for graphics queues with no compute support
|
||
* * "c" is for compute queues with no graphics support
|
||
* * "v" is for video queues with no graphics support
|
||
*
|
||
* For example, ANV_QUEUE_OVERRIDE=gc=2,c=1 would override the number of
|
||
* advertised queues to be 2 queues with graphics+compute support, and 1 queue
|
||
* with compute-only support.
|
||
*
|
||
* ANV_QUEUE_OVERRIDE=c=1 would override the number of advertised queues to
|
||
* include 1 queue with compute-only support, but it will not change the
|
||
* number of graphics+compute queues.
|
||
*
|
||
* ANV_QUEUE_OVERRIDE=gc=0,c=1 would override the number of advertised queues
|
||
* to include 1 queue with compute-only support, and it would override the
|
||
* number of graphics+compute queues to be 0.
|
||
*/
|
||
static void
|
||
anv_override_engine_counts(int *gc_count, int *g_count, int *c_count, int *v_count)
|
||
{
|
||
int gc_override = -1;
|
||
int g_override = -1;
|
||
int c_override = -1;
|
||
int v_override = -1;
|
||
char *env = getenv("ANV_QUEUE_OVERRIDE");
|
||
|
||
if (env == NULL)
|
||
return;
|
||
|
||
env = strdup(env);
|
||
char *save = NULL;
|
||
char *next = strtok_r(env, ",", &save);
|
||
while (next != NULL) {
|
||
if (strncmp(next, "gc=", 3) == 0) {
|
||
gc_override = strtol(next + 3, NULL, 0);
|
||
} else if (strncmp(next, "g=", 2) == 0) {
|
||
g_override = strtol(next + 2, NULL, 0);
|
||
} else if (strncmp(next, "c=", 2) == 0) {
|
||
c_override = strtol(next + 2, NULL, 0);
|
||
} else if (strncmp(next, "v=", 2) == 0) {
|
||
v_override = strtol(next + 2, NULL, 0);
|
||
} else {
|
||
mesa_logw("Ignoring unsupported ANV_QUEUE_OVERRIDE token: %s", next);
|
||
}
|
||
next = strtok_r(NULL, ",", &save);
|
||
}
|
||
free(env);
|
||
if (gc_override >= 0)
|
||
*gc_count = gc_override;
|
||
if (g_override >= 0)
|
||
*g_count = g_override;
|
||
if (*g_count > 0 && *gc_count <= 0 && (gc_override >= 0 || g_override >= 0))
|
||
mesa_logw("ANV_QUEUE_OVERRIDE: gc=0 with g > 0 violates the "
|
||
"Vulkan specification");
|
||
if (c_override >= 0)
|
||
*c_count = c_override;
|
||
if (v_override >= 0)
|
||
*v_count = v_override;
|
||
}
|
||
|
||
static void
|
||
anv_physical_device_init_queue_families(struct anv_physical_device *pdevice)
|
||
{
|
||
uint32_t family_count = 0;
|
||
VkQueueFlags sparse_flags = pdevice->sparse_type != ANV_SPARSE_TYPE_NOT_SUPPORTED ?
|
||
VK_QUEUE_SPARSE_BINDING_BIT : 0;
|
||
VkQueueFlags protected_flag = pdevice->has_protected_contexts ?
|
||
VK_QUEUE_PROTECTED_BIT : 0;
|
||
|
||
if (pdevice->engine_info) {
|
||
int gc_count =
|
||
intel_engines_count(pdevice->engine_info,
|
||
INTEL_ENGINE_CLASS_RENDER);
|
||
int v_count =
|
||
intel_engines_count(pdevice->engine_info, INTEL_ENGINE_CLASS_VIDEO);
|
||
int g_count = 0;
|
||
int c_count = 0;
|
||
const bool kernel_supports_non_render_engines = pdevice->has_vm_control;
|
||
const bool sparse_supports_non_render_engines =
|
||
pdevice->sparse_type != ANV_SPARSE_TYPE_TRTT;
|
||
const bool can_use_non_render_engines =
|
||
kernel_supports_non_render_engines &&
|
||
sparse_supports_non_render_engines;
|
||
|
||
if (can_use_non_render_engines) {
|
||
c_count = intel_engines_supported_count(pdevice->local_fd,
|
||
&pdevice->info,
|
||
pdevice->engine_info,
|
||
INTEL_ENGINE_CLASS_COMPUTE);
|
||
}
|
||
enum intel_engine_class compute_class =
|
||
c_count < 1 ? INTEL_ENGINE_CLASS_RENDER : INTEL_ENGINE_CLASS_COMPUTE;
|
||
|
||
int blit_count = 0;
|
||
if (pdevice->info.verx10 >= 125 && can_use_non_render_engines) {
|
||
blit_count = intel_engines_supported_count(pdevice->local_fd,
|
||
&pdevice->info,
|
||
pdevice->engine_info,
|
||
INTEL_ENGINE_CLASS_COPY);
|
||
}
|
||
|
||
anv_override_engine_counts(&gc_count, &g_count, &c_count, &v_count);
|
||
|
||
if (gc_count > 0) {
|
||
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
|
||
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
|
||
VK_QUEUE_COMPUTE_BIT |
|
||
VK_QUEUE_TRANSFER_BIT |
|
||
sparse_flags |
|
||
protected_flag,
|
||
.queueCount = gc_count,
|
||
.engine_class = INTEL_ENGINE_CLASS_RENDER,
|
||
};
|
||
}
|
||
if (g_count > 0) {
|
||
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
|
||
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
|
||
VK_QUEUE_TRANSFER_BIT |
|
||
sparse_flags |
|
||
protected_flag,
|
||
.queueCount = g_count,
|
||
.engine_class = INTEL_ENGINE_CLASS_RENDER,
|
||
};
|
||
}
|
||
if (c_count > 0) {
|
||
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
|
||
.queueFlags = VK_QUEUE_COMPUTE_BIT |
|
||
VK_QUEUE_TRANSFER_BIT |
|
||
sparse_flags |
|
||
protected_flag,
|
||
.queueCount = c_count,
|
||
.engine_class = compute_class,
|
||
};
|
||
}
|
||
if (v_count > 0 && pdevice->video_decode_enabled) {
|
||
/* HEVC support on Gfx9 is only available on VCS0. So limit the number of video queues
|
||
* to the first VCS engine instance.
|
||
*
|
||
* We should be able to query HEVC support from the kernel using the engine query uAPI,
|
||
* but this appears to be broken :
|
||
* https://gitlab.freedesktop.org/drm/intel/-/issues/8832
|
||
*
|
||
* When this bug is fixed we should be able to check HEVC support to determine the
|
||
* correct number of queues.
|
||
*/
|
||
/* TODO: enable protected content on video queue */
|
||
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
|
||
.queueFlags = VK_QUEUE_VIDEO_DECODE_BIT_KHR,
|
||
.queueCount = pdevice->info.ver == 9 ? MIN2(1, v_count) : v_count,
|
||
.engine_class = INTEL_ENGINE_CLASS_VIDEO,
|
||
};
|
||
}
|
||
if (blit_count > 0) {
|
||
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
|
||
.queueFlags = VK_QUEUE_TRANSFER_BIT |
|
||
protected_flag,
|
||
.queueCount = blit_count,
|
||
.engine_class = INTEL_ENGINE_CLASS_COPY,
|
||
};
|
||
}
|
||
} else {
|
||
/* Default to a single render queue */
|
||
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
|
||
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
|
||
VK_QUEUE_COMPUTE_BIT |
|
||
VK_QUEUE_TRANSFER_BIT |
|
||
sparse_flags,
|
||
.queueCount = 1,
|
||
.engine_class = INTEL_ENGINE_CLASS_RENDER,
|
||
};
|
||
family_count = 1;
|
||
}
|
||
assert(family_count <= ANV_MAX_QUEUE_FAMILIES);
|
||
pdevice->queue.family_count = family_count;
|
||
}
|
||
|
||
static VkResult
|
||
anv_physical_device_get_parameters(struct anv_physical_device *device)
|
||
{
|
||
switch (device->info.kmd_type) {
|
||
case INTEL_KMD_TYPE_I915:
|
||
return anv_i915_physical_device_get_parameters(device);
|
||
case INTEL_KMD_TYPE_XE:
|
||
return anv_xe_physical_device_get_parameters(device);
|
||
default:
|
||
unreachable("Missing");
|
||
return VK_ERROR_UNKNOWN;
|
||
}
|
||
}
|
||
|
||
static VkResult
|
||
anv_physical_device_try_create(struct vk_instance *vk_instance,
|
||
struct _drmDevice *drm_device,
|
||
struct vk_physical_device **out)
|
||
{
|
||
struct anv_instance *instance =
|
||
container_of(vk_instance, struct anv_instance, vk);
|
||
|
||
if (!(drm_device->available_nodes & (1 << DRM_NODE_RENDER)) ||
|
||
drm_device->bustype != DRM_BUS_PCI ||
|
||
drm_device->deviceinfo.pci->vendor_id != 0x8086)
|
||
return VK_ERROR_INCOMPATIBLE_DRIVER;
|
||
|
||
const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
|
||
const char *path = drm_device->nodes[DRM_NODE_RENDER];
|
||
VkResult result;
|
||
int fd;
|
||
int master_fd = -1;
|
||
|
||
process_intel_debug_variable();
|
||
|
||
fd = open(path, O_RDWR | O_CLOEXEC);
|
||
if (fd < 0) {
|
||
if (errno == ENOMEM) {
|
||
return vk_errorf(instance, VK_ERROR_OUT_OF_HOST_MEMORY,
|
||
"Unable to open device %s: out of memory", path);
|
||
}
|
||
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
|
||
"Unable to open device %s: %m", path);
|
||
}
|
||
|
||
struct intel_device_info devinfo;
|
||
if (!intel_get_device_info_from_fd(fd, &devinfo, 9, -1)) {
|
||
result = VK_ERROR_INCOMPATIBLE_DRIVER;
|
||
goto fail_fd;
|
||
}
|
||
|
||
if (devinfo.ver == 20) {
|
||
mesa_logw("Vulkan not yet supported on %s", devinfo.name);
|
||
} else if (devinfo.ver > 12) {
|
||
result = vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
|
||
"Vulkan not yet supported on %s", devinfo.name);
|
||
goto fail_fd;
|
||
} else if (devinfo.ver < 9) {
|
||
/* Silently fail here, hasvk should pick up this device. */
|
||
result = VK_ERROR_INCOMPATIBLE_DRIVER;
|
||
goto fail_fd;
|
||
}
|
||
|
||
/* Disable Wa_16013994831 on Gfx12.0 because we found other cases where we
|
||
* need to always disable preemption :
|
||
* - https://gitlab.freedesktop.org/mesa/mesa/-/issues/5963
|
||
* - https://gitlab.freedesktop.org/mesa/mesa/-/issues/5662
|
||
*/
|
||
if (devinfo.verx10 == 120)
|
||
BITSET_CLEAR(devinfo.workarounds, INTEL_WA_16013994831);
|
||
|
||
if (!devinfo.has_context_isolation) {
|
||
result = vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
|
||
"Vulkan requires context isolation for %s", devinfo.name);
|
||
goto fail_fd;
|
||
}
|
||
|
||
struct anv_physical_device *device =
|
||
vk_zalloc(&instance->vk.alloc, sizeof(*device), 8,
|
||
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
|
||
if (device == NULL) {
|
||
result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
|
||
goto fail_fd;
|
||
}
|
||
|
||
struct vk_physical_device_dispatch_table dispatch_table;
|
||
vk_physical_device_dispatch_table_from_entrypoints(
|
||
&dispatch_table, &anv_physical_device_entrypoints, true);
|
||
vk_physical_device_dispatch_table_from_entrypoints(
|
||
&dispatch_table, &wsi_physical_device_entrypoints, false);
|
||
|
||
result = vk_physical_device_init(&device->vk, &instance->vk,
|
||
NULL, NULL, NULL, /* We set up extensions later */
|
||
&dispatch_table);
|
||
if (result != VK_SUCCESS) {
|
||
vk_error(instance, result);
|
||
goto fail_alloc;
|
||
}
|
||
device->instance = instance;
|
||
|
||
assert(strlen(path) < ARRAY_SIZE(device->path));
|
||
snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
|
||
|
||
device->info = devinfo;
|
||
|
||
device->local_fd = fd;
|
||
result = anv_physical_device_get_parameters(device);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_base;
|
||
|
||
device->gtt_size = device->info.gtt_size ? device->info.gtt_size :
|
||
device->info.aperture_bytes;
|
||
|
||
if (device->gtt_size < (4ULL << 30 /* GiB */)) {
|
||
vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
|
||
"GTT size too small: 0x%016"PRIx64, device->gtt_size);
|
||
goto fail_base;
|
||
}
|
||
|
||
/* We currently only have the right bits for instructions in Gen12+. If the
|
||
* kernel ever starts supporting that feature on previous generations,
|
||
* we'll need to edit genxml prior to enabling here.
|
||
*/
|
||
device->has_protected_contexts = device->info.ver >= 12 &&
|
||
intel_gem_supports_protected_context(fd, device->info.kmd_type);
|
||
|
||
/* Just pick one; they're all the same */
|
||
device->has_astc_ldr =
|
||
isl_format_supports_sampling(&device->info,
|
||
ISL_FORMAT_ASTC_LDR_2D_4X4_FLT16);
|
||
if (!device->has_astc_ldr &&
|
||
driQueryOptionb(&device->instance->dri_options, "vk_require_astc"))
|
||
device->emu_astc_ldr = true;
|
||
if (devinfo.ver == 9 && !intel_device_info_is_9lp(&devinfo)) {
|
||
device->flush_astc_ldr_void_extent_denorms =
|
||
device->has_astc_ldr && !device->emu_astc_ldr;
|
||
}
|
||
device->disable_fcv = device->info.verx10 >= 125 ||
|
||
instance->disable_fcv;
|
||
|
||
result = anv_physical_device_init_heaps(device, fd);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_base;
|
||
|
||
if (debug_get_bool_option("ANV_QUEUE_THREAD_DISABLE", false))
|
||
device->has_exec_timeline = false;
|
||
|
||
device->has_cooperative_matrix =
|
||
device->info.cooperative_matrix_configurations[0].scope != INTEL_CMAT_SCOPE_NONE;
|
||
|
||
unsigned st_idx = 0;
|
||
|
||
device->sync_syncobj_type = vk_drm_syncobj_get_type(fd);
|
||
if (!device->has_exec_timeline)
|
||
device->sync_syncobj_type.features &= ~VK_SYNC_FEATURE_TIMELINE;
|
||
device->sync_types[st_idx++] = &device->sync_syncobj_type;
|
||
|
||
/* anv_bo_sync_type is only supported with i915 for now */
|
||
if (device->info.kmd_type == INTEL_KMD_TYPE_I915) {
|
||
if (!(device->sync_syncobj_type.features & VK_SYNC_FEATURE_CPU_WAIT))
|
||
device->sync_types[st_idx++] = &anv_bo_sync_type;
|
||
|
||
if (!(device->sync_syncobj_type.features & VK_SYNC_FEATURE_TIMELINE)) {
|
||
device->sync_timeline_type = vk_sync_timeline_get_type(&anv_bo_sync_type);
|
||
device->sync_types[st_idx++] = &device->sync_timeline_type.sync;
|
||
}
|
||
} else {
|
||
assert(vk_sync_type_is_drm_syncobj(&device->sync_syncobj_type));
|
||
assert(device->sync_syncobj_type.features & VK_SYNC_FEATURE_TIMELINE);
|
||
assert(device->sync_syncobj_type.features & VK_SYNC_FEATURE_CPU_WAIT);
|
||
}
|
||
|
||
device->sync_types[st_idx++] = NULL;
|
||
assert(st_idx <= ARRAY_SIZE(device->sync_types));
|
||
device->vk.supported_sync_types = device->sync_types;
|
||
|
||
device->vk.pipeline_cache_import_ops = anv_cache_import_ops;
|
||
|
||
device->always_use_bindless =
|
||
debug_get_bool_option("ANV_ALWAYS_BINDLESS", false);
|
||
|
||
device->use_call_secondary =
|
||
!debug_get_bool_option("ANV_DISABLE_SECONDARY_CMD_BUFFER_CALLS", false);
|
||
|
||
device->video_decode_enabled = debug_get_bool_option("ANV_VIDEO_DECODE", false);
|
||
|
||
device->uses_ex_bso = device->info.verx10 >= 125;
|
||
|
||
/* For now always use indirect descriptors. We'll update this
|
||
* to !uses_ex_bso when all the infrastructure is built up.
|
||
*/
|
||
device->indirect_descriptors =
|
||
!device->uses_ex_bso ||
|
||
driQueryOptionb(&instance->dri_options, "force_indirect_descriptors");
|
||
|
||
device->alloc_aux_tt_mem =
|
||
device->info.has_aux_map && device->info.verx10 >= 125;
|
||
/* Check if we can read the GPU timestamp register from the CPU */
|
||
uint64_t u64_ignore;
|
||
device->has_reg_timestamp = intel_gem_read_render_timestamp(fd,
|
||
device->info.kmd_type,
|
||
&u64_ignore);
|
||
|
||
device->uses_relocs = device->info.kmd_type != INTEL_KMD_TYPE_XE;
|
||
|
||
/* While xe.ko can use both vm_bind and TR-TT, i915.ko only has TR-TT. */
|
||
if (device->info.kmd_type == INTEL_KMD_TYPE_XE) {
|
||
if (debug_get_bool_option("ANV_SPARSE_USE_TRTT", false))
|
||
device->sparse_type = ANV_SPARSE_TYPE_TRTT;
|
||
else
|
||
device->sparse_type = ANV_SPARSE_TYPE_VM_BIND;
|
||
} else {
|
||
if (device->info.ver >= 12 &&
|
||
device->has_exec_timeline &&
|
||
debug_get_bool_option("ANV_SPARSE", true)) {
|
||
device->sparse_type = ANV_SPARSE_TYPE_TRTT;
|
||
} else if (instance->has_fake_sparse) {
|
||
device->sparse_type = ANV_SPARSE_TYPE_FAKE;
|
||
} else {
|
||
device->sparse_type = ANV_SPARSE_TYPE_NOT_SUPPORTED;
|
||
}
|
||
}
|
||
|
||
device->always_flush_cache = INTEL_DEBUG(DEBUG_STALL) ||
|
||
driQueryOptionb(&instance->dri_options, "always_flush_cache");
|
||
|
||
device->compiler = brw_compiler_create(NULL, &device->info);
|
||
if (device->compiler == NULL) {
|
||
result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
|
||
goto fail_base;
|
||
}
|
||
device->compiler->shader_debug_log = compiler_debug_log;
|
||
device->compiler->shader_perf_log = compiler_perf_log;
|
||
device->compiler->indirect_ubos_use_sampler = device->info.ver < 12;
|
||
device->compiler->extended_bindless_surface_offset = device->uses_ex_bso;
|
||
device->compiler->use_bindless_sampler_offset = false;
|
||
device->compiler->spilling_rate =
|
||
driQueryOptioni(&instance->dri_options, "shader_spilling_rate");
|
||
|
||
isl_device_init(&device->isl_dev, &device->info);
|
||
device->isl_dev.buffer_length_in_aux_addr = true;
|
||
|
||
result = anv_physical_device_init_uuids(device);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_compiler;
|
||
|
||
anv_physical_device_init_va_ranges(device);
|
||
|
||
anv_physical_device_init_disk_cache(device);
|
||
|
||
if (instance->vk.enabled_extensions.KHR_display) {
|
||
master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
|
||
if (master_fd >= 0) {
|
||
/* fail if we don't have permission to even render on this device */
|
||
if (!intel_gem_can_render_on_fd(master_fd, device->info.kmd_type)) {
|
||
close(master_fd);
|
||
master_fd = -1;
|
||
}
|
||
}
|
||
}
|
||
device->master_fd = master_fd;
|
||
|
||
device->engine_info = intel_engine_get_info(fd, device->info.kmd_type);
|
||
device->info.has_compute_engine = device->engine_info &&
|
||
intel_engines_count(device->engine_info,
|
||
INTEL_ENGINE_CLASS_COMPUTE);
|
||
anv_physical_device_init_queue_families(device);
|
||
|
||
anv_physical_device_init_perf(device, fd);
|
||
|
||
/* Gather major/minor before WSI. */
|
||
struct stat st;
|
||
|
||
if (stat(primary_path, &st) == 0) {
|
||
device->has_master = true;
|
||
device->master_major = major(st.st_rdev);
|
||
device->master_minor = minor(st.st_rdev);
|
||
} else {
|
||
device->has_master = false;
|
||
device->master_major = 0;
|
||
device->master_minor = 0;
|
||
}
|
||
|
||
if (stat(path, &st) == 0) {
|
||
device->has_local = true;
|
||
device->local_major = major(st.st_rdev);
|
||
device->local_minor = minor(st.st_rdev);
|
||
} else {
|
||
device->has_local = false;
|
||
device->local_major = 0;
|
||
device->local_minor = 0;
|
||
}
|
||
|
||
get_device_extensions(device, &device->vk.supported_extensions);
|
||
get_features(device, &device->vk.supported_features);
|
||
get_properties(device, &device->vk.properties);
|
||
|
||
result = anv_init_wsi(device);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_perf;
|
||
|
||
anv_measure_device_init(device);
|
||
|
||
anv_genX(&device->info, init_physical_device_state)(device);
|
||
|
||
*out = &device->vk;
|
||
|
||
return VK_SUCCESS;
|
||
|
||
fail_perf:
|
||
intel_perf_free(device->perf);
|
||
free(device->engine_info);
|
||
anv_physical_device_free_disk_cache(device);
|
||
fail_compiler:
|
||
ralloc_free(device->compiler);
|
||
fail_base:
|
||
vk_physical_device_finish(&device->vk);
|
||
fail_alloc:
|
||
vk_free(&instance->vk.alloc, device);
|
||
fail_fd:
|
||
close(fd);
|
||
if (master_fd != -1)
|
||
close(master_fd);
|
||
return result;
|
||
}
|
||
|
||
static void
|
||
anv_physical_device_destroy(struct vk_physical_device *vk_device)
|
||
{
|
||
struct anv_physical_device *device =
|
||
container_of(vk_device, struct anv_physical_device, vk);
|
||
|
||
anv_finish_wsi(device);
|
||
anv_measure_device_destroy(device);
|
||
free(device->engine_info);
|
||
anv_physical_device_free_disk_cache(device);
|
||
ralloc_free(device->compiler);
|
||
intel_perf_free(device->perf);
|
||
close(device->local_fd);
|
||
if (device->master_fd >= 0)
|
||
close(device->master_fd);
|
||
vk_physical_device_finish(&device->vk);
|
||
vk_free(&device->instance->vk.alloc, device);
|
||
}
|
||
|
||
VkResult anv_EnumerateInstanceExtensionProperties(
|
||
const char* pLayerName,
|
||
uint32_t* pPropertyCount,
|
||
VkExtensionProperties* pProperties)
|
||
{
|
||
if (pLayerName)
|
||
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
|
||
|
||
return vk_enumerate_instance_extension_properties(
|
||
&instance_extensions, pPropertyCount, pProperties);
|
||
}
|
||
|
||
static void
|
||
anv_init_dri_options(struct anv_instance *instance)
|
||
{
|
||
driParseOptionInfo(&instance->available_dri_options, anv_dri_options,
|
||
ARRAY_SIZE(anv_dri_options));
|
||
driParseConfigFiles(&instance->dri_options,
|
||
&instance->available_dri_options, 0, "anv", NULL, NULL,
|
||
instance->vk.app_info.app_name,
|
||
instance->vk.app_info.app_version,
|
||
instance->vk.app_info.engine_name,
|
||
instance->vk.app_info.engine_version);
|
||
|
||
instance->assume_full_subgroups =
|
||
driQueryOptioni(&instance->dri_options, "anv_assume_full_subgroups");
|
||
instance->limit_trig_input_range =
|
||
driQueryOptionb(&instance->dri_options, "limit_trig_input_range");
|
||
instance->sample_mask_out_opengl_behaviour =
|
||
driQueryOptionb(&instance->dri_options, "anv_sample_mask_out_opengl_behaviour");
|
||
instance->force_filter_addr_rounding =
|
||
driQueryOptionb(&instance->dri_options, "anv_force_filter_addr_rounding");
|
||
instance->lower_depth_range_rate =
|
||
driQueryOptionf(&instance->dri_options, "lower_depth_range_rate");
|
||
instance->no_16bit =
|
||
driQueryOptionb(&instance->dri_options, "no_16bit");
|
||
instance->intel_enable_wa_14018912822 =
|
||
driQueryOptionb(&instance->dri_options, "intel_enable_wa_14018912822");
|
||
instance->mesh_conv_prim_attrs_to_vert_attrs =
|
||
driQueryOptioni(&instance->dri_options, "anv_mesh_conv_prim_attrs_to_vert_attrs");
|
||
instance->fp64_workaround_enabled =
|
||
driQueryOptionb(&instance->dri_options, "fp64_workaround_enabled");
|
||
instance->generated_indirect_threshold =
|
||
driQueryOptioni(&instance->dri_options, "generated_indirect_threshold");
|
||
instance->generated_indirect_ring_threshold =
|
||
driQueryOptioni(&instance->dri_options, "generated_indirect_ring_threshold");
|
||
instance->query_clear_with_blorp_threshold =
|
||
driQueryOptioni(&instance->dri_options, "query_clear_with_blorp_threshold");
|
||
instance->query_copy_with_shader_threshold =
|
||
driQueryOptioni(&instance->dri_options, "query_copy_with_shader_threshold");
|
||
instance->force_vk_vendor =
|
||
driQueryOptioni(&instance->dri_options, "force_vk_vendor");
|
||
instance->has_fake_sparse =
|
||
driQueryOptionb(&instance->dri_options, "fake_sparse");
|
||
instance->enable_tbimr = driQueryOptionb(&instance->dri_options, "intel_tbimr");
|
||
instance->disable_fcv =
|
||
driQueryOptionb(&instance->dri_options, "anv_disable_fcv");
|
||
instance->external_memory_implicit_sync =
|
||
driQueryOptionb(&instance->dri_options, "anv_external_memory_implicit_sync");
|
||
instance->compression_control_enabled =
|
||
driQueryOptionb(&instance->dri_options, "compression_control_enabled");
|
||
}
|
||
|
||
VkResult anv_CreateInstance(
|
||
const VkInstanceCreateInfo* pCreateInfo,
|
||
const VkAllocationCallbacks* pAllocator,
|
||
VkInstance* pInstance)
|
||
{
|
||
struct anv_instance *instance;
|
||
VkResult result;
|
||
|
||
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
|
||
|
||
if (pAllocator == NULL)
|
||
pAllocator = vk_default_allocator();
|
||
|
||
instance = vk_alloc(pAllocator, sizeof(*instance), 8,
|
||
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
|
||
if (!instance)
|
||
return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
|
||
|
||
struct vk_instance_dispatch_table dispatch_table;
|
||
vk_instance_dispatch_table_from_entrypoints(
|
||
&dispatch_table, &anv_instance_entrypoints, true);
|
||
vk_instance_dispatch_table_from_entrypoints(
|
||
&dispatch_table, &wsi_instance_entrypoints, false);
|
||
|
||
result = vk_instance_init(&instance->vk, &instance_extensions,
|
||
&dispatch_table, pCreateInfo, pAllocator);
|
||
if (result != VK_SUCCESS) {
|
||
vk_free(pAllocator, instance);
|
||
return vk_error(NULL, result);
|
||
}
|
||
|
||
instance->vk.physical_devices.try_create_for_drm = anv_physical_device_try_create;
|
||
instance->vk.physical_devices.destroy = anv_physical_device_destroy;
|
||
|
||
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
|
||
|
||
anv_init_dri_options(instance);
|
||
|
||
intel_driver_ds_init();
|
||
|
||
*pInstance = anv_instance_to_handle(instance);
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
void anv_DestroyInstance(
|
||
VkInstance _instance,
|
||
const VkAllocationCallbacks* pAllocator)
|
||
{
|
||
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
||
|
||
if (!instance)
|
||
return;
|
||
|
||
VG(VALGRIND_DESTROY_MEMPOOL(instance));
|
||
|
||
driDestroyOptionCache(&instance->dri_options);
|
||
driDestroyOptionInfo(&instance->available_dri_options);
|
||
|
||
vk_instance_finish(&instance->vk);
|
||
vk_free(&instance->vk.alloc, instance);
|
||
}
|
||
|
||
static const VkQueueFamilyProperties
|
||
get_anv_queue_family_properties_template(const struct anv_physical_device *device)
|
||
{
|
||
|
||
/*
|
||
* For Xe2+:
|
||
* Bspec 60411: Timestamp register can hold 64-bit value
|
||
*
|
||
* Platforms < Xe2:
|
||
* Bpsec 46111: Timestamp register can hold only 36-bit
|
||
* value
|
||
*/
|
||
const VkQueueFamilyProperties anv_queue_family_properties_template =
|
||
{
|
||
.timestampValidBits = device->info.ver >= 20 ? 64 : 36,
|
||
.minImageTransferGranularity = { 1, 1, 1 },
|
||
};
|
||
|
||
return anv_queue_family_properties_template;
|
||
}
|
||
|
||
static VkQueueFamilyProperties
|
||
anv_device_physical_get_queue_properties(const struct anv_physical_device *device,
|
||
uint32_t family_index)
|
||
{
|
||
const struct anv_queue_family *family = &device->queue.families[family_index];
|
||
VkQueueFamilyProperties properties =
|
||
get_anv_queue_family_properties_template(device);
|
||
|
||
properties.queueFlags = family->queueFlags;
|
||
properties.queueCount = family->queueCount;
|
||
return properties;
|
||
}
|
||
|
||
void anv_GetPhysicalDeviceQueueFamilyProperties2(
|
||
VkPhysicalDevice physicalDevice,
|
||
uint32_t* pQueueFamilyPropertyCount,
|
||
VkQueueFamilyProperties2* pQueueFamilyProperties)
|
||
{
|
||
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
||
VK_OUTARRAY_MAKE_TYPED(VkQueueFamilyProperties2, out,
|
||
pQueueFamilyProperties, pQueueFamilyPropertyCount);
|
||
|
||
for (uint32_t i = 0; i < pdevice->queue.family_count; i++) {
|
||
struct anv_queue_family *queue_family = &pdevice->queue.families[i];
|
||
vk_outarray_append_typed(VkQueueFamilyProperties2, &out, p) {
|
||
p->queueFamilyProperties =
|
||
anv_device_physical_get_queue_properties(pdevice, i);
|
||
|
||
vk_foreach_struct(ext, p->pNext) {
|
||
switch (ext->sType) {
|
||
case VK_STRUCTURE_TYPE_QUEUE_FAMILY_GLOBAL_PRIORITY_PROPERTIES_KHR: {
|
||
VkQueueFamilyGlobalPriorityPropertiesKHR *properties =
|
||
(VkQueueFamilyGlobalPriorityPropertiesKHR *)ext;
|
||
|
||
/* Deliberately sorted low to high */
|
||
VkQueueGlobalPriorityKHR all_priorities[] = {
|
||
VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR,
|
||
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
|
||
VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR,
|
||
VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR,
|
||
};
|
||
|
||
uint32_t count = 0;
|
||
for (unsigned i = 0; i < ARRAY_SIZE(all_priorities); i++) {
|
||
if (all_priorities[i] > pdevice->max_context_priority)
|
||
break;
|
||
|
||
properties->priorities[count++] = all_priorities[i];
|
||
}
|
||
properties->priorityCount = count;
|
||
break;
|
||
}
|
||
case VK_STRUCTURE_TYPE_QUEUE_FAMILY_QUERY_RESULT_STATUS_PROPERTIES_KHR: {
|
||
VkQueueFamilyQueryResultStatusPropertiesKHR *prop =
|
||
(VkQueueFamilyQueryResultStatusPropertiesKHR *)ext;
|
||
prop->queryResultStatusSupport = VK_TRUE;
|
||
break;
|
||
}
|
||
case VK_STRUCTURE_TYPE_QUEUE_FAMILY_VIDEO_PROPERTIES_KHR: {
|
||
VkQueueFamilyVideoPropertiesKHR *prop =
|
||
(VkQueueFamilyVideoPropertiesKHR *)ext;
|
||
if (queue_family->queueFlags & VK_QUEUE_VIDEO_DECODE_BIT_KHR) {
|
||
prop->videoCodecOperations = VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR |
|
||
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR;
|
||
}
|
||
break;
|
||
}
|
||
default:
|
||
vk_debug_ignored_stype(ext->sType);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void anv_GetPhysicalDeviceMemoryProperties(
|
||
VkPhysicalDevice physicalDevice,
|
||
VkPhysicalDeviceMemoryProperties* pMemoryProperties)
|
||
{
|
||
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
||
|
||
pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
|
||
for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
|
||
pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
|
||
.propertyFlags = physical_device->memory.types[i].propertyFlags,
|
||
.heapIndex = physical_device->memory.types[i].heapIndex,
|
||
};
|
||
}
|
||
|
||
pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
|
||
for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
|
||
pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
|
||
.size = physical_device->memory.heaps[i].size,
|
||
.flags = physical_device->memory.heaps[i].flags,
|
||
};
|
||
}
|
||
}
|
||
|
||
static void
|
||
anv_get_memory_budget(VkPhysicalDevice physicalDevice,
|
||
VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
|
||
{
|
||
ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
|
||
|
||
if (!device->vk.supported_extensions.EXT_memory_budget)
|
||
return;
|
||
|
||
anv_update_meminfo(device, device->local_fd);
|
||
|
||
VkDeviceSize total_sys_heaps_size = 0, total_vram_heaps_size = 0;
|
||
for (size_t i = 0; i < device->memory.heap_count; i++) {
|
||
if (device->memory.heaps[i].is_local_mem) {
|
||
total_vram_heaps_size += device->memory.heaps[i].size;
|
||
} else {
|
||
total_sys_heaps_size += device->memory.heaps[i].size;
|
||
}
|
||
}
|
||
|
||
for (size_t i = 0; i < device->memory.heap_count; i++) {
|
||
VkDeviceSize heap_size = device->memory.heaps[i].size;
|
||
VkDeviceSize heap_used = device->memory.heaps[i].used;
|
||
VkDeviceSize heap_budget, total_heaps_size;
|
||
uint64_t mem_available = 0;
|
||
|
||
if (device->memory.heaps[i].is_local_mem) {
|
||
total_heaps_size = total_vram_heaps_size;
|
||
if (device->vram_non_mappable.size > 0 && i == 0) {
|
||
mem_available = device->vram_non_mappable.available;
|
||
} else {
|
||
mem_available = device->vram_mappable.available;
|
||
}
|
||
} else {
|
||
total_heaps_size = total_sys_heaps_size;
|
||
mem_available = MIN2(device->sys.available, total_heaps_size);
|
||
}
|
||
|
||
double heap_proportion = (double) heap_size / total_heaps_size;
|
||
VkDeviceSize available_prop = mem_available * heap_proportion;
|
||
|
||
/*
|
||
* Let's not incite the app to starve the system: report at most 90% of
|
||
* the available heap memory.
|
||
*/
|
||
uint64_t heap_available = available_prop * 9 / 10;
|
||
heap_budget = MIN2(heap_size, heap_used + heap_available);
|
||
|
||
/*
|
||
* Round down to the nearest MB
|
||
*/
|
||
heap_budget &= ~((1ull << 20) - 1);
|
||
|
||
/*
|
||
* The heapBudget value must be non-zero for array elements less than
|
||
* VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
|
||
* value must be less than or equal to VkMemoryHeap::size for each heap.
|
||
*/
|
||
assert(0 < heap_budget && heap_budget <= heap_size);
|
||
|
||
memoryBudget->heapUsage[i] = heap_used;
|
||
memoryBudget->heapBudget[i] = heap_budget;
|
||
}
|
||
|
||
/* The heapBudget and heapUsage values must be zero for array elements
|
||
* greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
|
||
*/
|
||
for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
|
||
memoryBudget->heapBudget[i] = 0;
|
||
memoryBudget->heapUsage[i] = 0;
|
||
}
|
||
}
|
||
|
||
void anv_GetPhysicalDeviceMemoryProperties2(
|
||
VkPhysicalDevice physicalDevice,
|
||
VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
|
||
{
|
||
anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
|
||
&pMemoryProperties->memoryProperties);
|
||
|
||
vk_foreach_struct(ext, pMemoryProperties->pNext) {
|
||
switch (ext->sType) {
|
||
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
|
||
anv_get_memory_budget(physicalDevice, (void*)ext);
|
||
break;
|
||
default:
|
||
vk_debug_ignored_stype(ext->sType);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
PFN_vkVoidFunction anv_GetInstanceProcAddr(
|
||
VkInstance _instance,
|
||
const char* pName)
|
||
{
|
||
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
||
return vk_instance_get_proc_addr(&instance->vk,
|
||
&anv_instance_entrypoints,
|
||
pName);
|
||
}
|
||
|
||
/* With version 1+ of the loader interface the ICD should expose
|
||
* vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
|
||
*/
|
||
PUBLIC
|
||
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
|
||
VkInstance instance,
|
||
const char* pName)
|
||
{
|
||
return anv_GetInstanceProcAddr(instance, pName);
|
||
}
|
||
|
||
static void
|
||
anv_device_init_border_colors(struct anv_device *device)
|
||
{
|
||
static const struct gfx8_border_color border_colors[] = {
|
||
[VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
|
||
[VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
|
||
[VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
|
||
[VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
|
||
[VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
|
||
[VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
|
||
};
|
||
|
||
device->border_colors =
|
||
anv_state_pool_emit_data(&device->dynamic_state_pool,
|
||
sizeof(border_colors), 64, border_colors);
|
||
if (device->vk.enabled_extensions.EXT_descriptor_buffer) {
|
||
device->border_colors_db =
|
||
anv_state_pool_emit_data(&device->dynamic_state_db_pool,
|
||
sizeof(border_colors), 64, border_colors);
|
||
}
|
||
}
|
||
|
||
static VkResult
|
||
anv_device_init_trivial_batch(struct anv_device *device)
|
||
{
|
||
VkResult result = anv_device_alloc_bo(device, "trivial-batch", 4096,
|
||
ANV_BO_ALLOC_MAPPED |
|
||
ANV_BO_ALLOC_HOST_COHERENT |
|
||
ANV_BO_ALLOC_INTERNAL,
|
||
0 /* explicit_address */,
|
||
&device->trivial_batch_bo);
|
||
if (result != VK_SUCCESS)
|
||
return result;
|
||
|
||
struct anv_batch batch = {
|
||
.start = device->trivial_batch_bo->map,
|
||
.next = device->trivial_batch_bo->map,
|
||
.end = device->trivial_batch_bo->map + 4096,
|
||
};
|
||
|
||
anv_batch_emit(&batch, GFX7_MI_BATCH_BUFFER_END, bbe);
|
||
anv_batch_emit(&batch, GFX7_MI_NOOP, noop);
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
static bool
|
||
get_bo_from_pool(struct intel_batch_decode_bo *ret,
|
||
struct anv_block_pool *pool,
|
||
uint64_t address)
|
||
{
|
||
anv_block_pool_foreach_bo(bo, pool) {
|
||
uint64_t bo_address = intel_48b_address(bo->offset);
|
||
if (address >= bo_address && address < (bo_address + bo->size)) {
|
||
*ret = (struct intel_batch_decode_bo) {
|
||
.addr = bo_address,
|
||
.size = bo->size,
|
||
.map = bo->map,
|
||
};
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Finding a buffer for batch decoding */
|
||
static struct intel_batch_decode_bo
|
||
decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
|
||
{
|
||
struct anv_device *device = v_batch;
|
||
struct intel_batch_decode_bo ret_bo = {};
|
||
|
||
assert(ppgtt);
|
||
|
||
if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
|
||
return ret_bo;
|
||
if (device->vk.enabled_extensions.EXT_descriptor_buffer &&
|
||
get_bo_from_pool(&ret_bo, &device->dynamic_state_db_pool.block_pool, address))
|
||
return ret_bo;
|
||
if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
|
||
return ret_bo;
|
||
if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
|
||
return ret_bo;
|
||
if (get_bo_from_pool(&ret_bo, &device->scratch_surface_state_pool.block_pool, address))
|
||
return ret_bo;
|
||
if (device->physical->indirect_descriptors &&
|
||
get_bo_from_pool(&ret_bo, &device->bindless_surface_state_pool.block_pool, address))
|
||
return ret_bo;
|
||
if (get_bo_from_pool(&ret_bo, &device->internal_surface_state_pool.block_pool, address))
|
||
return ret_bo;
|
||
if (device->physical->indirect_descriptors &&
|
||
get_bo_from_pool(&ret_bo, &device->indirect_push_descriptor_pool.block_pool, address))
|
||
return ret_bo;
|
||
if (device->info->has_aux_map &&
|
||
get_bo_from_pool(&ret_bo, &device->aux_tt_pool.block_pool, address))
|
||
return ret_bo;
|
||
|
||
if (!device->cmd_buffer_being_decoded)
|
||
return (struct intel_batch_decode_bo) { };
|
||
|
||
struct anv_batch_bo **bbo;
|
||
u_vector_foreach(bbo, &device->cmd_buffer_being_decoded->seen_bbos) {
|
||
/* The decoder zeroes out the top 16 bits, so we need to as well */
|
||
uint64_t bo_address = (*bbo)->bo->offset & (~0ull >> 16);
|
||
|
||
if (address >= bo_address && address < bo_address + (*bbo)->bo->size) {
|
||
return (struct intel_batch_decode_bo) {
|
||
.addr = bo_address,
|
||
.size = (*bbo)->bo->size,
|
||
.map = (*bbo)->bo->map,
|
||
};
|
||
}
|
||
|
||
uint32_t dep_words = (*bbo)->relocs.dep_words;
|
||
BITSET_WORD *deps = (*bbo)->relocs.deps;
|
||
for (uint32_t w = 0; w < dep_words; w++) {
|
||
BITSET_WORD mask = deps[w];
|
||
while (mask) {
|
||
int i = u_bit_scan(&mask);
|
||
uint32_t gem_handle = w * BITSET_WORDBITS + i;
|
||
struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
|
||
assert(bo->refcount > 0);
|
||
bo_address = bo->offset & (~0ull >> 16);
|
||
if (address >= bo_address && address < bo_address + bo->size) {
|
||
return (struct intel_batch_decode_bo) {
|
||
.addr = bo_address,
|
||
.size = bo->size,
|
||
.map = bo->map,
|
||
};
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return (struct intel_batch_decode_bo) { };
|
||
}
|
||
|
||
struct intel_aux_map_buffer {
|
||
struct intel_buffer base;
|
||
struct anv_state state;
|
||
};
|
||
|
||
static struct intel_buffer *
|
||
intel_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
|
||
{
|
||
struct intel_aux_map_buffer *buf = malloc(sizeof(struct intel_aux_map_buffer));
|
||
if (!buf)
|
||
return NULL;
|
||
|
||
struct anv_device *device = (struct anv_device*)driver_ctx;
|
||
|
||
struct anv_state_pool *pool = &device->aux_tt_pool;
|
||
buf->state = anv_state_pool_alloc(pool, size, size);
|
||
|
||
buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
|
||
buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
|
||
buf->base.map = buf->state.map;
|
||
buf->base.driver_bo = &buf->state;
|
||
return &buf->base;
|
||
}
|
||
|
||
static void
|
||
intel_aux_map_buffer_free(void *driver_ctx, struct intel_buffer *buffer)
|
||
{
|
||
struct intel_aux_map_buffer *buf = (struct intel_aux_map_buffer*)buffer;
|
||
struct anv_device *device = (struct anv_device*)driver_ctx;
|
||
struct anv_state_pool *pool = &device->aux_tt_pool;
|
||
anv_state_pool_free(pool, buf->state);
|
||
free(buf);
|
||
}
|
||
|
||
static struct intel_mapped_pinned_buffer_alloc aux_map_allocator = {
|
||
.alloc = intel_aux_map_buffer_alloc,
|
||
.free = intel_aux_map_buffer_free,
|
||
};
|
||
|
||
static VkResult
|
||
anv_device_setup_context_or_vm(struct anv_device *device,
|
||
const VkDeviceCreateInfo *pCreateInfo,
|
||
const uint32_t num_queues)
|
||
{
|
||
switch (device->info->kmd_type) {
|
||
case INTEL_KMD_TYPE_I915:
|
||
return anv_i915_device_setup_context(device, pCreateInfo, num_queues);
|
||
case INTEL_KMD_TYPE_XE:
|
||
return anv_xe_device_setup_vm(device);
|
||
default:
|
||
unreachable("Missing");
|
||
return VK_ERROR_UNKNOWN;
|
||
}
|
||
}
|
||
|
||
static bool
|
||
anv_device_destroy_context_or_vm(struct anv_device *device)
|
||
{
|
||
switch (device->info->kmd_type) {
|
||
case INTEL_KMD_TYPE_I915:
|
||
if (device->physical->has_vm_control)
|
||
return anv_i915_device_destroy_vm(device);
|
||
else
|
||
return intel_gem_destroy_context(device->fd, device->context_id);
|
||
case INTEL_KMD_TYPE_XE:
|
||
return anv_xe_device_destroy_vm(device);
|
||
default:
|
||
unreachable("Missing");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
static VkResult
|
||
anv_device_init_trtt(struct anv_device *device)
|
||
{
|
||
struct anv_trtt *trtt = &device->trtt;
|
||
|
||
if (pthread_mutex_init(&trtt->mutex, NULL) != 0)
|
||
return vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
|
||
|
||
list_inithead(&trtt->in_flight_batches);
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
static void
|
||
anv_device_finish_trtt(struct anv_device *device)
|
||
{
|
||
struct anv_trtt *trtt = &device->trtt;
|
||
|
||
if (trtt->timeline_val > 0) {
|
||
struct drm_syncobj_timeline_wait wait = {
|
||
.handles = (uintptr_t)&trtt->timeline_handle,
|
||
.points = (uintptr_t)&trtt->timeline_val,
|
||
.timeout_nsec = INT64_MAX,
|
||
.count_handles = 1,
|
||
.flags = DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL,
|
||
.first_signaled = false,
|
||
};
|
||
if (intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_TIMELINE_WAIT, &wait))
|
||
fprintf(stderr, "TR-TT syncobj wait failed!\n");
|
||
|
||
list_for_each_entry_safe(struct anv_trtt_batch_bo, trtt_bbo,
|
||
&trtt->in_flight_batches, link)
|
||
anv_trtt_batch_bo_free(device, trtt_bbo);
|
||
|
||
}
|
||
|
||
if (trtt->timeline_handle > 0) {
|
||
struct drm_syncobj_destroy destroy = {
|
||
.handle = trtt->timeline_handle,
|
||
};
|
||
if (intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_DESTROY, &destroy))
|
||
fprintf(stderr, "TR-TT syncobj destroy failed!\n");
|
||
}
|
||
|
||
pthread_mutex_destroy(&trtt->mutex);
|
||
|
||
vk_free(&device->vk.alloc, trtt->l3_mirror);
|
||
vk_free(&device->vk.alloc, trtt->l2_mirror);
|
||
|
||
for (int i = 0; i < trtt->num_page_table_bos; i++)
|
||
anv_device_release_bo(device, trtt->page_table_bos[i]);
|
||
|
||
vk_free(&device->vk.alloc, trtt->page_table_bos);
|
||
}
|
||
|
||
VkResult anv_CreateDevice(
|
||
VkPhysicalDevice physicalDevice,
|
||
const VkDeviceCreateInfo* pCreateInfo,
|
||
const VkAllocationCallbacks* pAllocator,
|
||
VkDevice* pDevice)
|
||
{
|
||
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
||
VkResult result;
|
||
struct anv_device *device;
|
||
|
||
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
|
||
|
||
/* Check requested queues and fail if we are requested to create any
|
||
* queues with flags we don't support.
|
||
*/
|
||
assert(pCreateInfo->queueCreateInfoCount > 0);
|
||
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
|
||
if (pCreateInfo->pQueueCreateInfos[i].flags & ~VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT)
|
||
return vk_error(physical_device, VK_ERROR_INITIALIZATION_FAILED);
|
||
}
|
||
|
||
device = vk_zalloc2(&physical_device->instance->vk.alloc, pAllocator,
|
||
sizeof(*device), 8,
|
||
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
|
||
if (!device)
|
||
return vk_error(physical_device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
||
|
||
struct vk_device_dispatch_table dispatch_table;
|
||
|
||
bool override_initial_entrypoints = true;
|
||
if (physical_device->instance->vk.app_info.app_name &&
|
||
!strcmp(physical_device->instance->vk.app_info.app_name, "HITMAN3.exe")) {
|
||
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
|
||
&anv_hitman3_device_entrypoints,
|
||
true);
|
||
override_initial_entrypoints = false;
|
||
}
|
||
if (physical_device->info.ver < 12 &&
|
||
physical_device->instance->vk.app_info.app_name &&
|
||
!strcmp(physical_device->instance->vk.app_info.app_name, "DOOM 64")) {
|
||
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
|
||
&anv_doom64_device_entrypoints,
|
||
true);
|
||
override_initial_entrypoints = false;
|
||
}
|
||
#if DETECT_OS_ANDROID
|
||
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
|
||
&anv_android_device_entrypoints,
|
||
true);
|
||
override_initial_entrypoints = false;
|
||
#endif
|
||
if (physical_device->instance->vk.trace_mode & VK_TRACE_MODE_RMV) {
|
||
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
|
||
&anv_rmv_device_entrypoints,
|
||
true);
|
||
override_initial_entrypoints = false;
|
||
}
|
||
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
|
||
anv_genX(&physical_device->info, device_entrypoints),
|
||
override_initial_entrypoints);
|
||
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
|
||
&anv_device_entrypoints, false);
|
||
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
|
||
&wsi_device_entrypoints, false);
|
||
|
||
|
||
result = vk_device_init(&device->vk, &physical_device->vk,
|
||
&dispatch_table, pCreateInfo, pAllocator);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_alloc;
|
||
|
||
if (INTEL_DEBUG(DEBUG_BATCH | DEBUG_BATCH_STATS)) {
|
||
for (unsigned i = 0; i < physical_device->queue.family_count; i++) {
|
||
struct intel_batch_decode_ctx *decoder = &device->decoder[i];
|
||
|
||
const unsigned decode_flags = INTEL_BATCH_DECODE_DEFAULT_FLAGS;
|
||
|
||
intel_batch_decode_ctx_init_brw(decoder,
|
||
&physical_device->compiler->isa,
|
||
&physical_device->info,
|
||
stderr, decode_flags, NULL,
|
||
decode_get_bo, NULL, device);
|
||
intel_batch_stats_reset(decoder);
|
||
|
||
decoder->engine = physical_device->queue.families[i].engine_class;
|
||
decoder->dynamic_base = physical_device->va.dynamic_state_pool.addr;
|
||
decoder->surface_base = physical_device->va.internal_surface_state_pool.addr;
|
||
decoder->instruction_base = physical_device->va.instruction_state_pool.addr;
|
||
}
|
||
}
|
||
|
||
anv_device_set_physical(device, physical_device);
|
||
device->kmd_backend = anv_kmd_backend_get(device->info->kmd_type);
|
||
|
||
/* XXX(chadv): Can we dup() physicalDevice->fd here? */
|
||
device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
|
||
if (device->fd == -1) {
|
||
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
|
||
goto fail_device;
|
||
}
|
||
|
||
switch (device->info->kmd_type) {
|
||
case INTEL_KMD_TYPE_I915:
|
||
device->vk.check_status = anv_i915_device_check_status;
|
||
break;
|
||
case INTEL_KMD_TYPE_XE:
|
||
device->vk.check_status = anv_xe_device_check_status;
|
||
break;
|
||
default:
|
||
unreachable("Missing");
|
||
}
|
||
|
||
device->vk.command_buffer_ops = &anv_cmd_buffer_ops;
|
||
device->vk.create_sync_for_memory = anv_create_sync_for_memory;
|
||
if (physical_device->info.kmd_type == INTEL_KMD_TYPE_I915)
|
||
device->vk.create_sync_for_memory = anv_create_sync_for_memory;
|
||
vk_device_set_drm_fd(&device->vk, device->fd);
|
||
|
||
uint32_t num_queues = 0;
|
||
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
|
||
num_queues += pCreateInfo->pQueueCreateInfos[i].queueCount;
|
||
|
||
result = anv_device_setup_context_or_vm(device, pCreateInfo, num_queues);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_fd;
|
||
|
||
device->queues =
|
||
vk_zalloc(&device->vk.alloc, num_queues * sizeof(*device->queues), 8,
|
||
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
|
||
if (device->queues == NULL) {
|
||
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
||
goto fail_context_id;
|
||
}
|
||
|
||
device->queue_count = 0;
|
||
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
|
||
const VkDeviceQueueCreateInfo *queueCreateInfo =
|
||
&pCreateInfo->pQueueCreateInfos[i];
|
||
|
||
for (uint32_t j = 0; j < queueCreateInfo->queueCount; j++) {
|
||
result = anv_queue_init(device, &device->queues[device->queue_count],
|
||
queueCreateInfo, j);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_queues;
|
||
|
||
device->queue_count++;
|
||
}
|
||
}
|
||
|
||
if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
|
||
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
|
||
goto fail_queues;
|
||
}
|
||
|
||
/* keep the page with address zero out of the allocator */
|
||
util_vma_heap_init(&device->vma_lo,
|
||
device->physical->va.low_heap.addr,
|
||
device->physical->va.low_heap.size);
|
||
|
||
util_vma_heap_init(&device->vma_hi,
|
||
device->physical->va.high_heap.addr,
|
||
device->physical->va.high_heap.size);
|
||
|
||
if (device->physical->indirect_descriptors) {
|
||
util_vma_heap_init(&device->vma_desc,
|
||
device->physical->va.indirect_descriptor_pool.addr,
|
||
device->physical->va.indirect_descriptor_pool.size);
|
||
} else {
|
||
util_vma_heap_init(&device->vma_desc,
|
||
device->physical->va.bindless_surface_state_pool.addr,
|
||
device->physical->va.bindless_surface_state_pool.size);
|
||
}
|
||
|
||
/* Always initialized because the the memory types point to this and they
|
||
* are on the physical device.
|
||
*/
|
||
util_vma_heap_init(&device->vma_desc_buf,
|
||
device->physical->va.descriptor_buffer_pool.addr,
|
||
device->physical->va.descriptor_buffer_pool.size);
|
||
|
||
util_vma_heap_init(&device->vma_samplers,
|
||
device->physical->va.sampler_state_pool.addr,
|
||
device->physical->va.sampler_state_pool.size);
|
||
util_vma_heap_init(&device->vma_trtt,
|
||
device->physical->va.trtt.addr,
|
||
device->physical->va.trtt.size);
|
||
|
||
list_inithead(&device->memory_objects);
|
||
list_inithead(&device->image_private_objects);
|
||
|
||
if (pthread_mutex_init(&device->mutex, NULL) != 0) {
|
||
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
|
||
goto fail_vmas;
|
||
}
|
||
|
||
pthread_condattr_t condattr;
|
||
if (pthread_condattr_init(&condattr) != 0) {
|
||
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
|
||
goto fail_mutex;
|
||
}
|
||
if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
|
||
pthread_condattr_destroy(&condattr);
|
||
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
|
||
goto fail_mutex;
|
||
}
|
||
if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
|
||
pthread_condattr_destroy(&condattr);
|
||
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
|
||
goto fail_mutex;
|
||
}
|
||
pthread_condattr_destroy(&condattr);
|
||
|
||
if (physical_device->instance->vk.trace_mode & VK_TRACE_MODE_RMV)
|
||
anv_memory_trace_init(device);
|
||
|
||
result = anv_bo_cache_init(&device->bo_cache, device);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_queue_cond;
|
||
|
||
anv_bo_pool_init(&device->batch_bo_pool, device, "batch",
|
||
ANV_BO_ALLOC_MAPPED |
|
||
ANV_BO_ALLOC_HOST_CACHED_COHERENT |
|
||
ANV_BO_ALLOC_CAPTURE);
|
||
if (device->vk.enabled_extensions.KHR_acceleration_structure) {
|
||
anv_bo_pool_init(&device->bvh_bo_pool, device, "bvh build",
|
||
0 /* alloc_flags */);
|
||
}
|
||
|
||
/* Because scratch is also relative to General State Base Address, we leave
|
||
* the base address 0 and start the pool memory at an offset. This way we
|
||
* get the correct offsets in the anv_states that get allocated from it.
|
||
*/
|
||
result = anv_state_pool_init(&device->general_state_pool, device,
|
||
&(struct anv_state_pool_params) {
|
||
.name = "general pool",
|
||
.base_address = 0,
|
||
.start_offset = device->physical->va.general_state_pool.addr,
|
||
.block_size = 16384,
|
||
.max_size = device->physical->va.general_state_pool.size
|
||
});
|
||
if (result != VK_SUCCESS)
|
||
goto fail_batch_bo_pool;
|
||
|
||
result = anv_state_pool_init(&device->dynamic_state_pool, device,
|
||
&(struct anv_state_pool_params) {
|
||
.name = "dynamic pool",
|
||
.base_address = device->physical->va.dynamic_state_pool.addr,
|
||
.block_size = 16384,
|
||
.max_size = device->physical->va.dynamic_state_pool.size,
|
||
});
|
||
if (result != VK_SUCCESS)
|
||
goto fail_general_state_pool;
|
||
|
||
if (device->vk.enabled_extensions.EXT_descriptor_buffer) {
|
||
result = anv_state_pool_init(&device->dynamic_state_db_pool, device,
|
||
&(struct anv_state_pool_params) {
|
||
.name = "dynamic pool (db)",
|
||
.base_address = device->physical->va.dynamic_state_db_pool.addr,
|
||
.block_size = 16384,
|
||
.max_size = device->physical->va.dynamic_state_db_pool.size,
|
||
});
|
||
if (result != VK_SUCCESS)
|
||
goto fail_dynamic_state_pool;
|
||
}
|
||
|
||
/* The border color pointer is limited to 24 bits, so we need to make
|
||
* sure that any such color used at any point in the program doesn't
|
||
* exceed that limit.
|
||
* We achieve that by reserving all the custom border colors we support
|
||
* right off the bat, so they are close to the base address.
|
||
*/
|
||
anv_state_reserved_pool_init(&device->custom_border_colors,
|
||
&device->dynamic_state_pool,
|
||
MAX_CUSTOM_BORDER_COLORS,
|
||
sizeof(struct gfx8_border_color), 64);
|
||
if (device->vk.enabled_extensions.EXT_descriptor_buffer) {
|
||
result = anv_state_reserved_array_pool_init(&device->custom_border_colors_db,
|
||
&device->dynamic_state_db_pool,
|
||
MAX_CUSTOM_BORDER_COLORS,
|
||
sizeof(struct gfx8_border_color), 64);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_dynamic_state_db_pool;
|
||
}
|
||
|
||
result = anv_state_pool_init(&device->instruction_state_pool, device,
|
||
&(struct anv_state_pool_params) {
|
||
.name = "instruction pool",
|
||
.base_address = device->physical->va.instruction_state_pool.addr,
|
||
.block_size = 16384,
|
||
.max_size = device->physical->va.instruction_state_pool.size,
|
||
});
|
||
if (result != VK_SUCCESS)
|
||
goto fail_reserved_array_pool;
|
||
|
||
if (device->info->verx10 >= 125) {
|
||
/* Put the scratch surface states at the beginning of the internal
|
||
* surface state pool.
|
||
*/
|
||
result = anv_state_pool_init(&device->scratch_surface_state_pool, device,
|
||
&(struct anv_state_pool_params) {
|
||
.name = "scratch surface state pool",
|
||
.base_address = device->physical->va.scratch_surface_state_pool.addr,
|
||
.block_size = 4096,
|
||
.max_size = device->physical->va.scratch_surface_state_pool.size,
|
||
});
|
||
if (result != VK_SUCCESS)
|
||
goto fail_instruction_state_pool;
|
||
|
||
result = anv_state_pool_init(&device->internal_surface_state_pool, device,
|
||
&(struct anv_state_pool_params) {
|
||
.name = "internal surface state pool",
|
||
.base_address = device->physical->va.internal_surface_state_pool.addr,
|
||
.start_offset = device->physical->va.scratch_surface_state_pool.size,
|
||
.block_size = 4096,
|
||
.max_size = device->physical->va.internal_surface_state_pool.size,
|
||
});
|
||
} else {
|
||
result = anv_state_pool_init(&device->internal_surface_state_pool, device,
|
||
&(struct anv_state_pool_params) {
|
||
.name = "internal surface state pool",
|
||
.base_address = device->physical->va.internal_surface_state_pool.addr,
|
||
.block_size = 4096,
|
||
.max_size = device->physical->va.internal_surface_state_pool.size,
|
||
});
|
||
}
|
||
if (result != VK_SUCCESS)
|
||
goto fail_scratch_surface_state_pool;
|
||
|
||
if (device->physical->indirect_descriptors) {
|
||
result = anv_state_pool_init(&device->bindless_surface_state_pool, device,
|
||
&(struct anv_state_pool_params) {
|
||
.name = "bindless surface state pool",
|
||
.base_address = device->physical->va.bindless_surface_state_pool.addr,
|
||
.block_size = 4096,
|
||
.max_size = device->physical->va.bindless_surface_state_pool.size,
|
||
});
|
||
if (result != VK_SUCCESS)
|
||
goto fail_internal_surface_state_pool;
|
||
}
|
||
|
||
if (device->info->verx10 >= 125) {
|
||
/* We're using 3DSTATE_BINDING_TABLE_POOL_ALLOC to give the binding
|
||
* table its own base address separately from surface state base.
|
||
*/
|
||
result = anv_state_pool_init(&device->binding_table_pool, device,
|
||
&(struct anv_state_pool_params) {
|
||
.name = "binding table pool",
|
||
.base_address = device->physical->va.binding_table_pool.addr,
|
||
.block_size = BINDING_TABLE_POOL_BLOCK_SIZE,
|
||
.max_size = device->physical->va.binding_table_pool.size,
|
||
});
|
||
} else {
|
||
/* The binding table should be in front of the surface states in virtual
|
||
* address space so that all surface states can be express as relative
|
||
* offsets from the binding table location.
|
||
*/
|
||
assert(device->physical->va.binding_table_pool.addr <
|
||
device->physical->va.internal_surface_state_pool.addr);
|
||
int64_t bt_pool_offset = (int64_t)device->physical->va.binding_table_pool.addr -
|
||
(int64_t)device->physical->va.internal_surface_state_pool.addr;
|
||
assert(INT32_MIN < bt_pool_offset && bt_pool_offset < 0);
|
||
result = anv_state_pool_init(&device->binding_table_pool, device,
|
||
&(struct anv_state_pool_params) {
|
||
.name = "binding table pool",
|
||
.base_address = device->physical->va.internal_surface_state_pool.addr,
|
||
.start_offset = bt_pool_offset,
|
||
.block_size = BINDING_TABLE_POOL_BLOCK_SIZE,
|
||
.max_size = device->physical->va.internal_surface_state_pool.size,
|
||
});
|
||
}
|
||
if (result != VK_SUCCESS)
|
||
goto fail_bindless_surface_state_pool;
|
||
|
||
if (device->physical->indirect_descriptors) {
|
||
result = anv_state_pool_init(&device->indirect_push_descriptor_pool, device,
|
||
&(struct anv_state_pool_params) {
|
||
.name = "indirect push descriptor pool",
|
||
.base_address = device->physical->va.indirect_push_descriptor_pool.addr,
|
||
.block_size = 4096,
|
||
.max_size = device->physical->va.indirect_push_descriptor_pool.size,
|
||
});
|
||
if (result != VK_SUCCESS)
|
||
goto fail_binding_table_pool;
|
||
}
|
||
|
||
if (device->vk.enabled_extensions.EXT_descriptor_buffer &&
|
||
device->info->verx10 >= 125) {
|
||
/* On Gfx12.5+ because of the bindless stages (Mesh, Task, RT), the only
|
||
* way we can wire push descriptors is through the bindless heap. This
|
||
* state pool is a 1Gb carve out of the 4Gb HW heap.
|
||
*/
|
||
result = anv_state_pool_init(&device->push_descriptor_buffer_pool, device,
|
||
&(struct anv_state_pool_params) {
|
||
.name = "push descriptor buffer state pool",
|
||
.base_address = device->physical->va.push_descriptor_buffer_pool.addr,
|
||
.block_size = 4096,
|
||
.max_size = device->physical->va.push_descriptor_buffer_pool.size,
|
||
});
|
||
if (result != VK_SUCCESS)
|
||
goto fail_indirect_push_descriptor_pool;
|
||
}
|
||
|
||
if (device->info->has_aux_map) {
|
||
result = anv_state_pool_init(&device->aux_tt_pool, device,
|
||
&(struct anv_state_pool_params) {
|
||
.name = "aux-tt pool",
|
||
.base_address = device->physical->va.aux_tt_pool.addr,
|
||
.block_size = 16384,
|
||
.max_size = device->physical->va.aux_tt_pool.size,
|
||
});
|
||
if (result != VK_SUCCESS)
|
||
goto fail_push_descriptor_buffer_pool;
|
||
|
||
device->aux_map_ctx = intel_aux_map_init(device, &aux_map_allocator,
|
||
&physical_device->info);
|
||
if (!device->aux_map_ctx)
|
||
goto fail_aux_tt_pool;
|
||
}
|
||
|
||
result = anv_device_alloc_bo(device, "workaround", 8192,
|
||
ANV_BO_ALLOC_CAPTURE |
|
||
ANV_BO_ALLOC_HOST_COHERENT |
|
||
ANV_BO_ALLOC_MAPPED |
|
||
ANV_BO_ALLOC_INTERNAL,
|
||
0 /* explicit_address */,
|
||
&device->workaround_bo);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_surface_aux_map_pool;
|
||
|
||
device->workaround_address = (struct anv_address) {
|
||
.bo = device->workaround_bo,
|
||
.offset = align(intel_debug_write_identifiers(device->workaround_bo->map,
|
||
device->workaround_bo->size,
|
||
"Anv"), 32),
|
||
};
|
||
|
||
device->workarounds.doom64_images = NULL;
|
||
|
||
device->rt_uuid_addr = anv_address_add(device->workaround_address, 8);
|
||
memcpy(device->rt_uuid_addr.bo->map + device->rt_uuid_addr.offset,
|
||
physical_device->rt_uuid,
|
||
sizeof(physical_device->rt_uuid));
|
||
|
||
device->debug_frame_desc =
|
||
intel_debug_get_identifier_block(device->workaround_bo->map,
|
||
device->workaround_bo->size,
|
||
INTEL_DEBUG_BLOCK_TYPE_FRAME);
|
||
|
||
if (device->vk.enabled_extensions.KHR_ray_query) {
|
||
uint32_t ray_queries_size =
|
||
align(brw_rt_ray_queries_hw_stacks_size(device->info), 4096);
|
||
|
||
result = anv_device_alloc_bo(device, "ray queries",
|
||
ray_queries_size,
|
||
ANV_BO_ALLOC_INTERNAL,
|
||
0 /* explicit_address */,
|
||
&device->ray_query_bo);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_workaround_bo;
|
||
}
|
||
|
||
result = anv_device_init_trivial_batch(device);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_ray_query_bo;
|
||
|
||
/* Emit the CPS states before running the initialization batch as those
|
||
* structures are referenced.
|
||
*/
|
||
if (device->info->ver >= 12) {
|
||
uint32_t n_cps_states = 3 * 3; /* All combinaisons of X by Y CP sizes (1, 2, 4) */
|
||
|
||
if (device->info->has_coarse_pixel_primitive_and_cb)
|
||
n_cps_states *= 5 * 5; /* 5 combiners by 2 operators */
|
||
|
||
n_cps_states += 1; /* Disable CPS */
|
||
|
||
/* Each of the combinaison must be replicated on all viewports */
|
||
n_cps_states *= MAX_VIEWPORTS;
|
||
|
||
device->cps_states =
|
||
anv_state_pool_alloc(&device->dynamic_state_pool,
|
||
n_cps_states * CPS_STATE_length(device->info) * 4,
|
||
32);
|
||
if (device->cps_states.map == NULL)
|
||
goto fail_trivial_batch;
|
||
|
||
anv_genX(device->info, init_cps_device_state)(device);
|
||
|
||
if (device->vk.enabled_extensions.EXT_descriptor_buffer) {
|
||
device->cps_states_db =
|
||
anv_state_pool_alloc(&device->dynamic_state_db_pool,
|
||
device->cps_states.alloc_size, 32);
|
||
if (device->cps_states_db.map == NULL)
|
||
goto fail_trivial_batch;
|
||
|
||
memcpy(device->cps_states_db.map, device->cps_states.map,
|
||
device->cps_states.alloc_size);
|
||
}
|
||
}
|
||
|
||
if (device->physical->indirect_descriptors) {
|
||
/* Allocate a null surface state at surface state offset 0. This makes
|
||
* NULL descriptor handling trivial because we can just memset
|
||
* structures to zero and they have a valid descriptor.
|
||
*/
|
||
device->null_surface_state =
|
||
anv_state_pool_alloc(&device->bindless_surface_state_pool,
|
||
device->isl_dev.ss.size,
|
||
device->isl_dev.ss.align);
|
||
isl_null_fill_state(&device->isl_dev, device->null_surface_state.map,
|
||
.size = isl_extent3d(1, 1, 1) /* This shouldn't matter */);
|
||
assert(device->null_surface_state.offset == 0);
|
||
} else {
|
||
/* When using direct descriptors, those can hold the null surface state
|
||
* directly. We still need a null surface for the binding table entries
|
||
* though but this one can live anywhere the internal surface state
|
||
* pool.
|
||
*/
|
||
device->null_surface_state =
|
||
anv_state_pool_alloc(&device->internal_surface_state_pool,
|
||
device->isl_dev.ss.size,
|
||
device->isl_dev.ss.align);
|
||
isl_null_fill_state(&device->isl_dev, device->null_surface_state.map,
|
||
.size = isl_extent3d(1, 1, 1) /* This shouldn't matter */);
|
||
}
|
||
|
||
isl_null_fill_state(&device->isl_dev, &device->host_null_surface_state,
|
||
.size = isl_extent3d(1, 1, 1) /* This shouldn't matter */);
|
||
|
||
anv_scratch_pool_init(device, &device->scratch_pool);
|
||
|
||
/* TODO(RT): Do we want some sort of data structure for this? */
|
||
memset(device->rt_scratch_bos, 0, sizeof(device->rt_scratch_bos));
|
||
|
||
if (ANV_SUPPORT_RT && device->info->has_ray_tracing) {
|
||
/* The docs say to always allocate 128KB per DSS */
|
||
const uint32_t btd_fifo_bo_size =
|
||
128 * 1024 * intel_device_info_dual_subslice_id_bound(device->info);
|
||
result = anv_device_alloc_bo(device,
|
||
"rt-btd-fifo",
|
||
btd_fifo_bo_size,
|
||
ANV_BO_ALLOC_INTERNAL,
|
||
0 /* explicit_address */,
|
||
&device->btd_fifo_bo);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_trivial_batch_bo_and_scratch_pool;
|
||
}
|
||
|
||
result = anv_device_init_trtt(device);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_btd_fifo_bo;
|
||
|
||
struct vk_pipeline_cache_create_info pcc_info = { .weak_ref = true, };
|
||
device->vk.mem_cache =
|
||
vk_pipeline_cache_create(&device->vk, &pcc_info, NULL);
|
||
if (!device->vk.mem_cache) {
|
||
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
||
goto fail_trtt;
|
||
}
|
||
|
||
/* Internal shaders need their own pipeline cache because, unlike the rest
|
||
* of ANV, it won't work at all without the cache. It depends on it for
|
||
* shaders to remain resident while it runs. Therefore, we need a special
|
||
* cache just for BLORP/RT that's forced to always be enabled.
|
||
*/
|
||
struct vk_pipeline_cache_create_info internal_pcc_info = {
|
||
.force_enable = true,
|
||
.weak_ref = false,
|
||
};
|
||
device->internal_cache =
|
||
vk_pipeline_cache_create(&device->vk, &internal_pcc_info, NULL);
|
||
if (device->internal_cache == NULL) {
|
||
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
||
goto fail_default_pipeline_cache;
|
||
}
|
||
|
||
/* The device (currently is ICL/TGL) does not have float64 support. */
|
||
if (!device->info->has_64bit_float &&
|
||
device->physical->instance->fp64_workaround_enabled)
|
||
anv_load_fp64_shader(device);
|
||
|
||
if (INTEL_DEBUG(DEBUG_SHADER_PRINT)) {
|
||
result = anv_device_print_init(device);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_internal_cache;
|
||
}
|
||
|
||
result = anv_device_init_rt_shaders(device);
|
||
if (result != VK_SUCCESS) {
|
||
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
||
goto fail_print;
|
||
}
|
||
|
||
#if DETECT_OS_ANDROID
|
||
device->u_gralloc = u_gralloc_create(U_GRALLOC_TYPE_AUTO);
|
||
#endif
|
||
|
||
device->robust_buffer_access =
|
||
device->vk.enabled_features.robustBufferAccess ||
|
||
device->vk.enabled_features.nullDescriptor;
|
||
|
||
device->breakpoint = anv_state_pool_alloc(&device->dynamic_state_pool, 4,
|
||
4);
|
||
p_atomic_set(&device->draw_call_count, 0);
|
||
|
||
/* Create a separate command pool for companion RCS command buffer. */
|
||
if (device->info->verx10 >= 125) {
|
||
VkCommandPoolCreateInfo pool_info = {
|
||
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
|
||
.queueFamilyIndex =
|
||
anv_get_first_render_queue_index(device->physical),
|
||
};
|
||
|
||
result = vk_common_CreateCommandPool(anv_device_to_handle(device),
|
||
&pool_info, NULL,
|
||
&device->companion_rcs_cmd_pool);
|
||
if (result != VK_SUCCESS) {
|
||
goto fail_internal_cache;
|
||
}
|
||
}
|
||
|
||
anv_device_init_blorp(device);
|
||
|
||
anv_device_init_border_colors(device);
|
||
|
||
anv_device_init_internal_kernels(device);
|
||
|
||
anv_device_init_astc_emu(device);
|
||
|
||
anv_device_perf_init(device);
|
||
|
||
anv_device_utrace_init(device);
|
||
|
||
anv_device_init_embedded_samplers(device);
|
||
|
||
BITSET_ONES(device->gfx_dirty_state);
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_INDEX_BUFFER);
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_SO_DECL_LIST);
|
||
if (device->info->ver < 11)
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_VF_SGVS_2);
|
||
if (device->info->ver < 12) {
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_PRIMITIVE_REPLICATION);
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_DEPTH_BOUNDS);
|
||
}
|
||
if (!device->vk.enabled_extensions.EXT_sample_locations)
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_SAMPLE_PATTERN);
|
||
if (!device->vk.enabled_extensions.KHR_fragment_shading_rate)
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_CPS);
|
||
if (!device->vk.enabled_extensions.EXT_mesh_shader) {
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_SBE_MESH);
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_CLIP_MESH);
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_MESH_CONTROL);
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_MESH_SHADER);
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_MESH_DISTRIB);
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_TASK_CONTROL);
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_TASK_SHADER);
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_TASK_REDISTRIB);
|
||
}
|
||
if (!intel_needs_workaround(device->info, 18019816803))
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_WA_18019816803);
|
||
if (device->info->ver > 9)
|
||
BITSET_CLEAR(device->gfx_dirty_state, ANV_GFX_STATE_PMA_FIX);
|
||
|
||
result = anv_genX(device->info, init_device_state)(device);
|
||
if (result != VK_SUCCESS)
|
||
goto fail_companion_cmd_pool;
|
||
|
||
*pDevice = anv_device_to_handle(device);
|
||
|
||
return VK_SUCCESS;
|
||
|
||
fail_companion_cmd_pool:
|
||
anv_device_finish_embedded_samplers(device);
|
||
anv_device_utrace_finish(device);
|
||
anv_device_finish_blorp(device);
|
||
anv_device_finish_rt_shaders(device);
|
||
anv_device_finish_astc_emu(device);
|
||
anv_device_finish_internal_kernels(device);
|
||
|
||
if (device->info->verx10 >= 125) {
|
||
vk_common_DestroyCommandPool(anv_device_to_handle(device),
|
||
device->companion_rcs_cmd_pool, NULL);
|
||
}
|
||
fail_print:
|
||
if (INTEL_DEBUG(DEBUG_SHADER_PRINT))
|
||
anv_device_print_fini(device);
|
||
fail_internal_cache:
|
||
vk_pipeline_cache_destroy(device->internal_cache, NULL);
|
||
fail_default_pipeline_cache:
|
||
vk_pipeline_cache_destroy(device->vk.mem_cache, NULL);
|
||
fail_trtt:
|
||
anv_device_finish_trtt(device);
|
||
fail_btd_fifo_bo:
|
||
if (ANV_SUPPORT_RT && device->info->has_ray_tracing)
|
||
anv_device_release_bo(device, device->btd_fifo_bo);
|
||
fail_trivial_batch_bo_and_scratch_pool:
|
||
anv_scratch_pool_finish(device, &device->scratch_pool);
|
||
fail_trivial_batch:
|
||
anv_device_release_bo(device, device->trivial_batch_bo);
|
||
fail_ray_query_bo:
|
||
if (device->ray_query_bo)
|
||
anv_device_release_bo(device, device->ray_query_bo);
|
||
fail_workaround_bo:
|
||
anv_device_release_bo(device, device->workaround_bo);
|
||
fail_surface_aux_map_pool:
|
||
if (device->info->has_aux_map) {
|
||
intel_aux_map_finish(device->aux_map_ctx);
|
||
device->aux_map_ctx = NULL;
|
||
}
|
||
fail_aux_tt_pool:
|
||
if (device->info->has_aux_map)
|
||
anv_state_pool_finish(&device->aux_tt_pool);
|
||
fail_push_descriptor_buffer_pool:
|
||
if (device->vk.enabled_extensions.EXT_descriptor_buffer &&
|
||
device->info->verx10 >= 125)
|
||
anv_state_pool_finish(&device->push_descriptor_buffer_pool);
|
||
fail_indirect_push_descriptor_pool:
|
||
if (device->physical->indirect_descriptors)
|
||
anv_state_pool_finish(&device->indirect_push_descriptor_pool);
|
||
fail_binding_table_pool:
|
||
anv_state_pool_finish(&device->binding_table_pool);
|
||
fail_bindless_surface_state_pool:
|
||
if (device->physical->indirect_descriptors)
|
||
anv_state_pool_finish(&device->bindless_surface_state_pool);
|
||
fail_internal_surface_state_pool:
|
||
anv_state_pool_finish(&device->internal_surface_state_pool);
|
||
fail_scratch_surface_state_pool:
|
||
if (device->info->verx10 >= 125)
|
||
anv_state_pool_finish(&device->scratch_surface_state_pool);
|
||
fail_instruction_state_pool:
|
||
anv_state_pool_finish(&device->instruction_state_pool);
|
||
fail_reserved_array_pool:
|
||
if (device->vk.enabled_extensions.EXT_descriptor_buffer)
|
||
anv_state_reserved_array_pool_finish(&device->custom_border_colors_db);
|
||
fail_dynamic_state_db_pool:
|
||
anv_state_reserved_pool_finish(&device->custom_border_colors);
|
||
if (device->vk.enabled_extensions.EXT_descriptor_buffer)
|
||
anv_state_pool_finish(&device->dynamic_state_db_pool);
|
||
fail_dynamic_state_pool:
|
||
anv_state_pool_finish(&device->dynamic_state_pool);
|
||
fail_general_state_pool:
|
||
anv_state_pool_finish(&device->general_state_pool);
|
||
fail_batch_bo_pool:
|
||
if (device->vk.enabled_extensions.KHR_acceleration_structure)
|
||
anv_bo_pool_finish(&device->bvh_bo_pool);
|
||
anv_bo_pool_finish(&device->batch_bo_pool);
|
||
anv_bo_cache_finish(&device->bo_cache);
|
||
fail_queue_cond:
|
||
pthread_cond_destroy(&device->queue_submit);
|
||
fail_mutex:
|
||
pthread_mutex_destroy(&device->mutex);
|
||
fail_vmas:
|
||
util_vma_heap_finish(&device->vma_trtt);
|
||
util_vma_heap_finish(&device->vma_samplers);
|
||
util_vma_heap_finish(&device->vma_desc_buf);
|
||
util_vma_heap_finish(&device->vma_desc);
|
||
util_vma_heap_finish(&device->vma_hi);
|
||
util_vma_heap_finish(&device->vma_lo);
|
||
pthread_mutex_destroy(&device->vma_mutex);
|
||
fail_queues:
|
||
for (uint32_t i = 0; i < device->queue_count; i++)
|
||
anv_queue_finish(&device->queues[i]);
|
||
vk_free(&device->vk.alloc, device->queues);
|
||
fail_context_id:
|
||
anv_device_destroy_context_or_vm(device);
|
||
fail_fd:
|
||
close(device->fd);
|
||
fail_device:
|
||
vk_device_finish(&device->vk);
|
||
fail_alloc:
|
||
vk_free(&device->vk.alloc, device);
|
||
|
||
return result;
|
||
}
|
||
|
||
void anv_DestroyDevice(
|
||
VkDevice _device,
|
||
const VkAllocationCallbacks* pAllocator)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
|
||
if (!device)
|
||
return;
|
||
|
||
#if DETECT_OS_ANDROID
|
||
u_gralloc_destroy(&device->u_gralloc);
|
||
#endif
|
||
|
||
anv_memory_trace_finish(device);
|
||
|
||
struct anv_physical_device *pdevice = device->physical;
|
||
|
||
for (uint32_t i = 0; i < device->queue_count; i++)
|
||
anv_queue_finish(&device->queues[i]);
|
||
vk_free(&device->vk.alloc, device->queues);
|
||
|
||
anv_device_utrace_finish(device);
|
||
|
||
anv_device_finish_blorp(device);
|
||
|
||
anv_device_finish_rt_shaders(device);
|
||
|
||
anv_device_finish_astc_emu(device);
|
||
|
||
anv_device_finish_internal_kernels(device);
|
||
|
||
if (INTEL_DEBUG(DEBUG_SHADER_PRINT))
|
||
anv_device_print_fini(device);
|
||
|
||
vk_pipeline_cache_destroy(device->internal_cache, NULL);
|
||
vk_pipeline_cache_destroy(device->vk.mem_cache, NULL);
|
||
|
||
anv_device_finish_embedded_samplers(device);
|
||
|
||
anv_device_finish_trtt(device);
|
||
|
||
if (ANV_SUPPORT_RT && device->info->has_ray_tracing)
|
||
anv_device_release_bo(device, device->btd_fifo_bo);
|
||
|
||
if (device->info->verx10 >= 125) {
|
||
vk_common_DestroyCommandPool(anv_device_to_handle(device),
|
||
device->companion_rcs_cmd_pool, NULL);
|
||
}
|
||
|
||
if (device->vk.enabled_extensions.EXT_descriptor_buffer)
|
||
anv_state_reserved_array_pool_finish(&device->custom_border_colors_db);
|
||
|
||
#ifdef HAVE_VALGRIND
|
||
/* We only need to free these to prevent valgrind errors. The backing
|
||
* BO will go away in a couple of lines so we don't actually leak.
|
||
*/
|
||
anv_state_reserved_pool_finish(&device->custom_border_colors);
|
||
anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
|
||
anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
|
||
anv_state_pool_free(&device->dynamic_state_pool, device->cps_states);
|
||
anv_state_pool_free(&device->dynamic_state_pool, device->breakpoint);
|
||
if (device->vk.enabled_extensions.EXT_descriptor_buffer) {
|
||
anv_state_pool_free(&device->dynamic_state_db_pool, device->cps_states_db);
|
||
anv_state_pool_free(&device->dynamic_state_db_pool, device->slice_hash_db);
|
||
anv_state_pool_free(&device->dynamic_state_db_pool, device->border_colors_db);
|
||
}
|
||
#endif
|
||
|
||
for (unsigned i = 0; i < ARRAY_SIZE(device->rt_scratch_bos); i++) {
|
||
if (device->rt_scratch_bos[i] != NULL)
|
||
anv_device_release_bo(device, device->rt_scratch_bos[i]);
|
||
}
|
||
|
||
anv_scratch_pool_finish(device, &device->scratch_pool);
|
||
|
||
if (device->vk.enabled_extensions.KHR_ray_query) {
|
||
for (unsigned i = 0; i < ARRAY_SIZE(device->ray_query_shadow_bos); i++) {
|
||
if (device->ray_query_shadow_bos[i] != NULL)
|
||
anv_device_release_bo(device, device->ray_query_shadow_bos[i]);
|
||
}
|
||
anv_device_release_bo(device, device->ray_query_bo);
|
||
}
|
||
anv_device_release_bo(device, device->workaround_bo);
|
||
anv_device_release_bo(device, device->trivial_batch_bo);
|
||
|
||
if (device->info->has_aux_map) {
|
||
intel_aux_map_finish(device->aux_map_ctx);
|
||
device->aux_map_ctx = NULL;
|
||
anv_state_pool_finish(&device->aux_tt_pool);
|
||
}
|
||
if (device->vk.enabled_extensions.EXT_descriptor_buffer &&
|
||
device->info->verx10 >= 125)
|
||
anv_state_pool_finish(&device->push_descriptor_buffer_pool);
|
||
if (device->physical->indirect_descriptors)
|
||
anv_state_pool_finish(&device->indirect_push_descriptor_pool);
|
||
anv_state_pool_finish(&device->binding_table_pool);
|
||
if (device->info->verx10 >= 125)
|
||
anv_state_pool_finish(&device->scratch_surface_state_pool);
|
||
anv_state_pool_finish(&device->internal_surface_state_pool);
|
||
if (device->physical->indirect_descriptors)
|
||
anv_state_pool_finish(&device->bindless_surface_state_pool);
|
||
anv_state_pool_finish(&device->instruction_state_pool);
|
||
if (device->vk.enabled_extensions.EXT_descriptor_buffer)
|
||
anv_state_pool_finish(&device->dynamic_state_db_pool);
|
||
anv_state_pool_finish(&device->dynamic_state_pool);
|
||
anv_state_pool_finish(&device->general_state_pool);
|
||
|
||
if (device->vk.enabled_extensions.KHR_acceleration_structure)
|
||
anv_bo_pool_finish(&device->bvh_bo_pool);
|
||
anv_bo_pool_finish(&device->batch_bo_pool);
|
||
|
||
anv_bo_cache_finish(&device->bo_cache);
|
||
|
||
util_vma_heap_finish(&device->vma_trtt);
|
||
util_vma_heap_finish(&device->vma_samplers);
|
||
util_vma_heap_finish(&device->vma_desc_buf);
|
||
util_vma_heap_finish(&device->vma_desc);
|
||
util_vma_heap_finish(&device->vma_hi);
|
||
util_vma_heap_finish(&device->vma_lo);
|
||
pthread_mutex_destroy(&device->vma_mutex);
|
||
|
||
pthread_cond_destroy(&device->queue_submit);
|
||
pthread_mutex_destroy(&device->mutex);
|
||
|
||
ralloc_free(device->fp64_nir);
|
||
|
||
anv_device_destroy_context_or_vm(device);
|
||
|
||
if (INTEL_DEBUG(DEBUG_BATCH | DEBUG_BATCH_STATS)) {
|
||
for (unsigned i = 0; i < pdevice->queue.family_count; i++) {
|
||
if (INTEL_DEBUG(DEBUG_BATCH_STATS))
|
||
intel_batch_print_stats(&device->decoder[i]);
|
||
intel_batch_decode_ctx_finish(&device->decoder[i]);
|
||
}
|
||
}
|
||
|
||
close(device->fd);
|
||
|
||
vk_device_finish(&device->vk);
|
||
vk_free(&device->vk.alloc, device);
|
||
}
|
||
|
||
VkResult anv_EnumerateInstanceLayerProperties(
|
||
uint32_t* pPropertyCount,
|
||
VkLayerProperties* pProperties)
|
||
{
|
||
if (pProperties == NULL) {
|
||
*pPropertyCount = 0;
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
/* None supported at this time */
|
||
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
|
||
}
|
||
|
||
VkResult
|
||
anv_device_wait(struct anv_device *device, struct anv_bo *bo,
|
||
int64_t timeout)
|
||
{
|
||
int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
|
||
if (ret == -1 && errno == ETIME) {
|
||
return VK_TIMEOUT;
|
||
} else if (ret == -1) {
|
||
/* We don't know the real error. */
|
||
return vk_device_set_lost(&device->vk, "gem wait failed: %m");
|
||
} else {
|
||
return VK_SUCCESS;
|
||
}
|
||
}
|
||
|
||
static struct util_vma_heap *
|
||
anv_vma_heap_for_flags(struct anv_device *device,
|
||
enum anv_bo_alloc_flags alloc_flags)
|
||
{
|
||
if (alloc_flags & ANV_BO_ALLOC_TRTT)
|
||
return &device->vma_trtt;
|
||
|
||
if (alloc_flags & ANV_BO_ALLOC_DESCRIPTOR_BUFFER_POOL)
|
||
return &device->vma_desc_buf;
|
||
|
||
if (alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS)
|
||
return &device->vma_lo;
|
||
|
||
if (alloc_flags & ANV_BO_ALLOC_DESCRIPTOR_POOL)
|
||
return &device->vma_desc;
|
||
|
||
if (alloc_flags & ANV_BO_ALLOC_SAMPLER_POOL)
|
||
return &device->vma_samplers;
|
||
|
||
return &device->vma_hi;
|
||
}
|
||
|
||
uint64_t
|
||
anv_vma_alloc(struct anv_device *device,
|
||
uint64_t size, uint64_t align,
|
||
enum anv_bo_alloc_flags alloc_flags,
|
||
uint64_t client_address,
|
||
struct util_vma_heap **out_vma_heap)
|
||
{
|
||
pthread_mutex_lock(&device->vma_mutex);
|
||
|
||
uint64_t addr = 0;
|
||
*out_vma_heap = anv_vma_heap_for_flags(device, alloc_flags);
|
||
|
||
if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) {
|
||
assert(*out_vma_heap == &device->vma_hi ||
|
||
*out_vma_heap == &device->vma_desc_buf ||
|
||
*out_vma_heap == &device->vma_trtt);
|
||
|
||
if (client_address) {
|
||
if (util_vma_heap_alloc_addr(*out_vma_heap,
|
||
client_address, size)) {
|
||
addr = client_address;
|
||
}
|
||
} else {
|
||
(*out_vma_heap)->alloc_high = false;
|
||
addr = util_vma_heap_alloc(*out_vma_heap, size, align);
|
||
(*out_vma_heap)->alloc_high = true;
|
||
}
|
||
/* We don't want to fall back to other heaps */
|
||
goto done;
|
||
}
|
||
|
||
assert(client_address == 0);
|
||
|
||
addr = util_vma_heap_alloc(*out_vma_heap, size, align);
|
||
|
||
done:
|
||
pthread_mutex_unlock(&device->vma_mutex);
|
||
|
||
assert(addr == intel_48b_address(addr));
|
||
return intel_canonical_address(addr);
|
||
}
|
||
|
||
void
|
||
anv_vma_free(struct anv_device *device,
|
||
struct util_vma_heap *vma_heap,
|
||
uint64_t address, uint64_t size)
|
||
{
|
||
assert(vma_heap == &device->vma_lo ||
|
||
vma_heap == &device->vma_hi ||
|
||
vma_heap == &device->vma_desc ||
|
||
vma_heap == &device->vma_desc_buf ||
|
||
vma_heap == &device->vma_samplers ||
|
||
vma_heap == &device->vma_trtt);
|
||
|
||
const uint64_t addr_48b = intel_48b_address(address);
|
||
|
||
pthread_mutex_lock(&device->vma_mutex);
|
||
|
||
util_vma_heap_free(vma_heap, addr_48b, size);
|
||
|
||
pthread_mutex_unlock(&device->vma_mutex);
|
||
}
|
||
|
||
VkResult anv_AllocateMemory(
|
||
VkDevice _device,
|
||
const VkMemoryAllocateInfo* pAllocateInfo,
|
||
const VkAllocationCallbacks* pAllocator,
|
||
VkDeviceMemory* pMem)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
struct anv_physical_device *pdevice = device->physical;
|
||
struct anv_device_memory *mem;
|
||
VkResult result = VK_SUCCESS;
|
||
|
||
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
|
||
|
||
VkDeviceSize aligned_alloc_size =
|
||
align64(pAllocateInfo->allocationSize, 4096);
|
||
|
||
assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
|
||
const struct anv_memory_type *mem_type =
|
||
&pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
|
||
assert(mem_type->heapIndex < pdevice->memory.heap_count);
|
||
struct anv_memory_heap *mem_heap =
|
||
&pdevice->memory.heaps[mem_type->heapIndex];
|
||
|
||
if (aligned_alloc_size > mem_heap->size)
|
||
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
||
|
||
uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
|
||
if (mem_heap_used + aligned_alloc_size > mem_heap->size)
|
||
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
||
|
||
mem = vk_device_memory_create(&device->vk, pAllocateInfo,
|
||
pAllocator, sizeof(*mem));
|
||
if (mem == NULL)
|
||
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
||
|
||
mem->type = mem_type;
|
||
mem->map = NULL;
|
||
mem->map_size = 0;
|
||
mem->map_delta = 0;
|
||
|
||
enum anv_bo_alloc_flags alloc_flags = 0;
|
||
|
||
const VkImportMemoryFdInfoKHR *fd_info = NULL;
|
||
const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
|
||
const struct wsi_memory_allocate_info *wsi_info = NULL;
|
||
uint64_t client_address = 0;
|
||
|
||
vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
|
||
/* VK_STRUCTURE_TYPE_WSI_MEMORY_ALLOCATE_INFO_MESA isn't a real enum
|
||
* value, so use cast to avoid compiler warn
|
||
*/
|
||
switch ((uint32_t)ext->sType) {
|
||
case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
|
||
case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
|
||
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
|
||
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_KHR:
|
||
case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO:
|
||
/* handled by vk_device_memory_create */
|
||
break;
|
||
|
||
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
|
||
fd_info = (void *)ext;
|
||
break;
|
||
|
||
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
|
||
dedicated_info = (void *)ext;
|
||
break;
|
||
|
||
case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO: {
|
||
const VkMemoryOpaqueCaptureAddressAllocateInfo *addr_info =
|
||
(const VkMemoryOpaqueCaptureAddressAllocateInfo *)ext;
|
||
client_address = addr_info->opaqueCaptureAddress;
|
||
break;
|
||
}
|
||
|
||
case VK_STRUCTURE_TYPE_WSI_MEMORY_ALLOCATE_INFO_MESA:
|
||
wsi_info = (void *)ext;
|
||
break;
|
||
|
||
default:
|
||
vk_debug_ignored_stype(ext->sType);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If i915 reported a mappable/non_mappable vram regions and the
|
||
* application want lmem mappable, then we need to use the
|
||
* I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS flag to create our BO.
|
||
*/
|
||
if (pdevice->vram_mappable.size > 0 &&
|
||
pdevice->vram_non_mappable.size > 0 &&
|
||
(mem_type->propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) &&
|
||
(mem_type->propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT))
|
||
alloc_flags |= ANV_BO_ALLOC_LOCAL_MEM_CPU_VISIBLE;
|
||
|
||
if (!mem_heap->is_local_mem)
|
||
alloc_flags |= ANV_BO_ALLOC_NO_LOCAL_MEM;
|
||
|
||
if (mem->vk.alloc_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT)
|
||
alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
|
||
|
||
if (mem_type->propertyFlags & VK_MEMORY_PROPERTY_PROTECTED_BIT)
|
||
alloc_flags |= ANV_BO_ALLOC_PROTECTED;
|
||
|
||
/* For now, always allocated AUX-TT aligned memory, regardless of dedicated
|
||
* allocations. An application can for example, suballocate a large
|
||
* VkDeviceMemory and try to bind an image created with a CCS modifier. In
|
||
* that case we cannot disable CCS if the alignment doesn´t meet the AUX-TT
|
||
* requirements, so we need to ensure both the VkDeviceMemory and the
|
||
* alignment reported through vkGetImageMemoryRequirements() meet the
|
||
* AUX-TT requirement.
|
||
*
|
||
* TODO: when we enable EXT_descriptor_buffer, we'll be able to drop the
|
||
* AUX-TT alignment for that type of allocation.
|
||
*/
|
||
if (device->info->has_aux_map)
|
||
alloc_flags |= ANV_BO_ALLOC_AUX_TT_ALIGNED;
|
||
|
||
/* If the allocation is not dedicated nor a host pointer, allocate
|
||
* additional CCS space.
|
||
*
|
||
* TODO: If we ever ship VK_EXT_descriptor_buffer (ahahah... :() we could
|
||
* drop this flag in the descriptor buffer case as we don't need any
|
||
* compression there.
|
||
*
|
||
* TODO: We could also create new memory types for allocations that don't
|
||
* need any compression.
|
||
*/
|
||
if (device->physical->alloc_aux_tt_mem &&
|
||
dedicated_info == NULL &&
|
||
mem->vk.host_ptr == NULL)
|
||
alloc_flags |= ANV_BO_ALLOC_AUX_CCS;
|
||
|
||
/* TODO: Android, ChromeOS and other applications may need another way to
|
||
* allocate buffers that can be scanout to display but it should pretty
|
||
* easy to catch those as Xe KMD driver will print warnings in dmesg when
|
||
* scanning buffers allocated without proper flag set.
|
||
*/
|
||
if (wsi_info)
|
||
alloc_flags |= ANV_BO_ALLOC_SCANOUT;
|
||
|
||
/* Anything imported or exported is EXTERNAL */
|
||
if (mem->vk.export_handle_types || mem->vk.import_handle_type) {
|
||
alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
|
||
|
||
/* wsi has its own way of synchronizing with the compositor */
|
||
if (pdevice->instance->external_memory_implicit_sync &&
|
||
!wsi_info && dedicated_info &&
|
||
dedicated_info->image != VK_NULL_HANDLE) {
|
||
ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
|
||
|
||
/* Apply implicit sync to be compatible with clients relying on
|
||
* implicit fencing. This matches the behavior in iris i915_batch
|
||
* submit. An example client is VA-API (iHD), so only dedicated
|
||
* image scenario has to be covered.
|
||
*/
|
||
alloc_flags |= ANV_BO_ALLOC_IMPLICIT_SYNC;
|
||
|
||
/* For color attachment, apply IMPLICIT_WRITE so a client on the
|
||
* consumer side relying on implicit fencing can have a fence to
|
||
* wait for render complete.
|
||
*/
|
||
if (image->vk.usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
|
||
alloc_flags |= ANV_BO_ALLOC_IMPLICIT_WRITE;
|
||
}
|
||
}
|
||
|
||
if (mem_type->descriptor_buffer)
|
||
alloc_flags |= ANV_BO_ALLOC_DESCRIPTOR_BUFFER_POOL;
|
||
|
||
if (mem->vk.ahardware_buffer) {
|
||
result = anv_import_ahw_memory(_device, mem);
|
||
if (result != VK_SUCCESS)
|
||
goto fail;
|
||
|
||
goto success;
|
||
}
|
||
|
||
/* The Vulkan spec permits handleType to be 0, in which case the struct is
|
||
* ignored.
|
||
*/
|
||
if (fd_info && fd_info->handleType) {
|
||
/* At the moment, we support only the below handle types. */
|
||
assert(fd_info->handleType ==
|
||
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
|
||
fd_info->handleType ==
|
||
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
|
||
|
||
result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
|
||
client_address, &mem->bo);
|
||
if (result != VK_SUCCESS)
|
||
goto fail;
|
||
|
||
/* For security purposes, we reject importing the bo if it's smaller
|
||
* than the requested allocation size. This prevents a malicious client
|
||
* from passing a buffer to a trusted client, lying about the size, and
|
||
* telling the trusted client to try and texture from an image that goes
|
||
* out-of-bounds. This sort of thing could lead to GPU hangs or worse
|
||
* in the trusted client. The trusted client can protect itself against
|
||
* this sort of attack but only if it can trust the buffer size.
|
||
*/
|
||
if (mem->bo->size < aligned_alloc_size) {
|
||
result = vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
|
||
"aligned allocationSize too large for "
|
||
"VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
|
||
"%"PRIu64"B > %"PRIu64"B",
|
||
aligned_alloc_size, mem->bo->size);
|
||
anv_device_release_bo(device, mem->bo);
|
||
goto fail;
|
||
}
|
||
|
||
/* From the Vulkan spec:
|
||
*
|
||
* "Importing memory from a file descriptor transfers ownership of
|
||
* the file descriptor from the application to the Vulkan
|
||
* implementation. The application must not perform any operations on
|
||
* the file descriptor after a successful import."
|
||
*
|
||
* If the import fails, we leave the file descriptor open.
|
||
*/
|
||
close(fd_info->fd);
|
||
goto success;
|
||
}
|
||
|
||
if (mem->vk.host_ptr) {
|
||
if (mem->vk.import_handle_type ==
|
||
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
|
||
result = vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
|
||
goto fail;
|
||
}
|
||
|
||
assert(mem->vk.import_handle_type ==
|
||
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
|
||
|
||
result = anv_device_import_bo_from_host_ptr(device,
|
||
mem->vk.host_ptr,
|
||
mem->vk.size,
|
||
alloc_flags,
|
||
client_address,
|
||
&mem->bo);
|
||
if (result != VK_SUCCESS)
|
||
goto fail;
|
||
|
||
goto success;
|
||
}
|
||
|
||
if (alloc_flags & (ANV_BO_ALLOC_EXTERNAL | ANV_BO_ALLOC_SCANOUT)) {
|
||
alloc_flags |= ANV_BO_ALLOC_HOST_COHERENT;
|
||
} else if (mem_type->propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
|
||
if (mem_type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
|
||
alloc_flags |= ANV_BO_ALLOC_HOST_COHERENT;
|
||
if (mem_type->propertyFlags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT)
|
||
alloc_flags |= ANV_BO_ALLOC_HOST_CACHED;
|
||
} else {
|
||
/* Required to set some host mode to have a valid pat index set */
|
||
alloc_flags |= ANV_BO_ALLOC_HOST_COHERENT;
|
||
}
|
||
|
||
/* Regular allocate (not importing memory). */
|
||
|
||
result = anv_device_alloc_bo(device, "user", pAllocateInfo->allocationSize,
|
||
alloc_flags, client_address, &mem->bo);
|
||
if (result != VK_SUCCESS)
|
||
goto fail;
|
||
|
||
if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
|
||
ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
|
||
|
||
/* Some legacy (non-modifiers) consumers need the tiling to be set on
|
||
* the BO. In this case, we have a dedicated allocation.
|
||
*/
|
||
if (image->vk.wsi_legacy_scanout) {
|
||
const struct isl_surf *surf = &image->planes[0].primary_surface.isl;
|
||
result = anv_device_set_bo_tiling(device, mem->bo,
|
||
surf->row_pitch_B,
|
||
surf->tiling);
|
||
if (result != VK_SUCCESS) {
|
||
anv_device_release_bo(device, mem->bo);
|
||
goto fail;
|
||
}
|
||
}
|
||
}
|
||
|
||
success:
|
||
mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
|
||
if (mem_heap_used > mem_heap->size) {
|
||
p_atomic_add(&mem_heap->used, -mem->bo->size);
|
||
anv_device_release_bo(device, mem->bo);
|
||
result = vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
|
||
"Out of heap memory");
|
||
goto fail;
|
||
}
|
||
|
||
pthread_mutex_lock(&device->mutex);
|
||
list_addtail(&mem->link, &device->memory_objects);
|
||
pthread_mutex_unlock(&device->mutex);
|
||
|
||
ANV_RMV(heap_create, device, mem, false, 0);
|
||
|
||
*pMem = anv_device_memory_to_handle(mem);
|
||
|
||
return VK_SUCCESS;
|
||
|
||
fail:
|
||
vk_device_memory_destroy(&device->vk, pAllocator, &mem->vk);
|
||
|
||
return result;
|
||
}
|
||
|
||
VkResult anv_GetMemoryFdKHR(
|
||
VkDevice device_h,
|
||
const VkMemoryGetFdInfoKHR* pGetFdInfo,
|
||
int* pFd)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, dev, device_h);
|
||
ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
|
||
|
||
assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
|
||
|
||
assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
|
||
pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
|
||
|
||
return anv_device_export_bo(dev, mem->bo, pFd);
|
||
}
|
||
|
||
VkResult anv_GetMemoryFdPropertiesKHR(
|
||
VkDevice _device,
|
||
VkExternalMemoryHandleTypeFlagBits handleType,
|
||
int fd,
|
||
VkMemoryFdPropertiesKHR* pMemoryFdProperties)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
|
||
switch (handleType) {
|
||
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
|
||
/* dma-buf can be imported as any memory type */
|
||
pMemoryFdProperties->memoryTypeBits =
|
||
(1 << device->physical->memory.type_count) - 1;
|
||
return VK_SUCCESS;
|
||
|
||
default:
|
||
/* The valid usage section for this function says:
|
||
*
|
||
* "handleType must not be one of the handle types defined as
|
||
* opaque."
|
||
*
|
||
* So opaque handle types fall into the default "unsupported" case.
|
||
*/
|
||
return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
|
||
}
|
||
}
|
||
|
||
VkResult anv_GetMemoryHostPointerPropertiesEXT(
|
||
VkDevice _device,
|
||
VkExternalMemoryHandleTypeFlagBits handleType,
|
||
const void* pHostPointer,
|
||
VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
|
||
assert(pMemoryHostPointerProperties->sType ==
|
||
VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
|
||
|
||
switch (handleType) {
|
||
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
|
||
/* Host memory can be imported as any memory type. */
|
||
pMemoryHostPointerProperties->memoryTypeBits =
|
||
(1ull << device->physical->memory.type_count) - 1;
|
||
|
||
return VK_SUCCESS;
|
||
|
||
default:
|
||
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
|
||
}
|
||
}
|
||
|
||
void anv_FreeMemory(
|
||
VkDevice _device,
|
||
VkDeviceMemory _mem,
|
||
const VkAllocationCallbacks* pAllocator)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
|
||
|
||
if (mem == NULL)
|
||
return;
|
||
|
||
pthread_mutex_lock(&device->mutex);
|
||
list_del(&mem->link);
|
||
pthread_mutex_unlock(&device->mutex);
|
||
|
||
if (mem->map) {
|
||
const VkMemoryUnmapInfoKHR unmap = {
|
||
.sType = VK_STRUCTURE_TYPE_MEMORY_UNMAP_INFO_KHR,
|
||
.memory = _mem,
|
||
};
|
||
anv_UnmapMemory2KHR(_device, &unmap);
|
||
}
|
||
|
||
p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used,
|
||
-mem->bo->size);
|
||
|
||
anv_device_release_bo(device, mem->bo);
|
||
|
||
ANV_RMV(resource_destroy, device, mem);
|
||
|
||
vk_device_memory_destroy(&device->vk, pAllocator, &mem->vk);
|
||
}
|
||
|
||
VkResult anv_MapMemory2KHR(
|
||
VkDevice _device,
|
||
const VkMemoryMapInfoKHR* pMemoryMapInfo,
|
||
void** ppData)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
ANV_FROM_HANDLE(anv_device_memory, mem, pMemoryMapInfo->memory);
|
||
|
||
if (mem == NULL) {
|
||
*ppData = NULL;
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
if (mem->vk.host_ptr) {
|
||
*ppData = mem->vk.host_ptr + pMemoryMapInfo->offset;
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
/* From the Vulkan spec version 1.0.32 docs for MapMemory:
|
||
*
|
||
* * memory must have been created with a memory type that reports
|
||
* VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
|
||
*/
|
||
if (!(mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) {
|
||
return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED,
|
||
"Memory object not mappable.");
|
||
}
|
||
|
||
assert(pMemoryMapInfo->size > 0);
|
||
const VkDeviceSize offset = pMemoryMapInfo->offset;
|
||
const VkDeviceSize size =
|
||
vk_device_memory_range(&mem->vk, pMemoryMapInfo->offset,
|
||
pMemoryMapInfo->size);
|
||
|
||
if (size != (size_t)size) {
|
||
return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED,
|
||
"requested size 0x%"PRIx64" does not fit in %u bits",
|
||
size, (unsigned)(sizeof(size_t) * 8));
|
||
}
|
||
|
||
/* From the Vulkan 1.2.194 spec:
|
||
*
|
||
* "memory must not be currently host mapped"
|
||
*/
|
||
if (mem->map != NULL) {
|
||
return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED,
|
||
"Memory object already mapped.");
|
||
}
|
||
|
||
void *placed_addr = NULL;
|
||
if (pMemoryMapInfo->flags & VK_MEMORY_MAP_PLACED_BIT_EXT) {
|
||
const VkMemoryMapPlacedInfoEXT *placed_info =
|
||
vk_find_struct_const(pMemoryMapInfo->pNext, MEMORY_MAP_PLACED_INFO_EXT);
|
||
assert(placed_info != NULL);
|
||
placed_addr = placed_info->pPlacedAddress;
|
||
}
|
||
|
||
/* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
|
||
uint64_t map_offset;
|
||
if (!device->physical->info.has_mmap_offset)
|
||
map_offset = offset & ~4095ull;
|
||
else
|
||
map_offset = 0;
|
||
assert(offset >= map_offset);
|
||
uint64_t map_size = (offset + size) - map_offset;
|
||
|
||
/* Let's map whole pages */
|
||
map_size = align64(map_size, 4096);
|
||
|
||
void *map;
|
||
VkResult result = anv_device_map_bo(device, mem->bo, map_offset,
|
||
map_size, placed_addr, &map);
|
||
if (result != VK_SUCCESS)
|
||
return result;
|
||
|
||
mem->map = map;
|
||
mem->map_size = map_size;
|
||
mem->map_delta = (offset - map_offset);
|
||
*ppData = mem->map + mem->map_delta;
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
VkResult anv_UnmapMemory2KHR(
|
||
VkDevice _device,
|
||
const VkMemoryUnmapInfoKHR* pMemoryUnmapInfo)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
ANV_FROM_HANDLE(anv_device_memory, mem, pMemoryUnmapInfo->memory);
|
||
|
||
if (mem == NULL || mem->vk.host_ptr)
|
||
return VK_SUCCESS;
|
||
|
||
VkResult result =
|
||
anv_device_unmap_bo(device, mem->bo, mem->map, mem->map_size,
|
||
pMemoryUnmapInfo->flags & VK_MEMORY_UNMAP_RESERVE_BIT_EXT);
|
||
if (result != VK_SUCCESS)
|
||
return result;
|
||
|
||
mem->map = NULL;
|
||
mem->map_size = 0;
|
||
mem->map_delta = 0;
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
VkResult anv_FlushMappedMemoryRanges(
|
||
VkDevice _device,
|
||
uint32_t memoryRangeCount,
|
||
const VkMappedMemoryRange* pMemoryRanges)
|
||
{
|
||
#ifdef SUPPORT_INTEL_INTEGRATED_GPUS
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
|
||
if (!device->physical->memory.need_flush)
|
||
return VK_SUCCESS;
|
||
|
||
/* Make sure the writes we're flushing have landed. */
|
||
__builtin_ia32_mfence();
|
||
|
||
for (uint32_t i = 0; i < memoryRangeCount; i++) {
|
||
ANV_FROM_HANDLE(anv_device_memory, mem, pMemoryRanges[i].memory);
|
||
if (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
|
||
continue;
|
||
|
||
uint64_t map_offset = pMemoryRanges[i].offset + mem->map_delta;
|
||
if (map_offset >= mem->map_size)
|
||
continue;
|
||
|
||
intel_flush_range(mem->map + map_offset,
|
||
MIN2(pMemoryRanges[i].size,
|
||
mem->map_size - map_offset));
|
||
}
|
||
#endif
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
VkResult anv_InvalidateMappedMemoryRanges(
|
||
VkDevice _device,
|
||
uint32_t memoryRangeCount,
|
||
const VkMappedMemoryRange* pMemoryRanges)
|
||
{
|
||
#ifdef SUPPORT_INTEL_INTEGRATED_GPUS
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
|
||
if (!device->physical->memory.need_flush)
|
||
return VK_SUCCESS;
|
||
|
||
for (uint32_t i = 0; i < memoryRangeCount; i++) {
|
||
ANV_FROM_HANDLE(anv_device_memory, mem, pMemoryRanges[i].memory);
|
||
if (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
|
||
continue;
|
||
|
||
uint64_t map_offset = pMemoryRanges[i].offset + mem->map_delta;
|
||
if (map_offset >= mem->map_size)
|
||
continue;
|
||
|
||
intel_invalidate_range(mem->map + map_offset,
|
||
MIN2(pMemoryRanges[i].size,
|
||
mem->map_size - map_offset));
|
||
}
|
||
|
||
/* Make sure no reads get moved up above the invalidate. */
|
||
__builtin_ia32_mfence();
|
||
#endif
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
void anv_GetDeviceMemoryCommitment(
|
||
VkDevice device,
|
||
VkDeviceMemory memory,
|
||
VkDeviceSize* pCommittedMemoryInBytes)
|
||
{
|
||
*pCommittedMemoryInBytes = 0;
|
||
}
|
||
|
||
static void
|
||
anv_bind_buffer_memory(struct anv_device *device,
|
||
const VkBindBufferMemoryInfo *pBindInfo)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
|
||
ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
|
||
|
||
assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
|
||
assert(!anv_buffer_is_sparse(buffer));
|
||
|
||
const VkBindMemoryStatusKHR *bind_status =
|
||
vk_find_struct_const(pBindInfo->pNext, BIND_MEMORY_STATUS_KHR);
|
||
|
||
if (mem) {
|
||
assert(pBindInfo->memoryOffset < mem->vk.size);
|
||
assert(mem->vk.size - pBindInfo->memoryOffset >= buffer->vk.size);
|
||
buffer->address = (struct anv_address) {
|
||
.bo = mem->bo,
|
||
.offset = pBindInfo->memoryOffset,
|
||
};
|
||
} else {
|
||
buffer->address = ANV_NULL_ADDRESS;
|
||
}
|
||
|
||
ANV_RMV(buffer_bind, device, buffer);
|
||
|
||
if (bind_status)
|
||
*bind_status->pResult = VK_SUCCESS;
|
||
}
|
||
|
||
VkResult anv_BindBufferMemory2(
|
||
VkDevice _device,
|
||
uint32_t bindInfoCount,
|
||
const VkBindBufferMemoryInfo* pBindInfos)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
|
||
for (uint32_t i = 0; i < bindInfoCount; i++)
|
||
anv_bind_buffer_memory(device, &pBindInfos[i]);
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
// Event functions
|
||
|
||
VkResult anv_CreateEvent(
|
||
VkDevice _device,
|
||
const VkEventCreateInfo* pCreateInfo,
|
||
const VkAllocationCallbacks* pAllocator,
|
||
VkEvent* pEvent)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
struct anv_event *event;
|
||
|
||
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
|
||
|
||
event = vk_object_alloc(&device->vk, pAllocator, sizeof(*event),
|
||
VK_OBJECT_TYPE_EVENT);
|
||
if (event == NULL)
|
||
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
||
|
||
event->state = anv_state_pool_alloc(&device->dynamic_state_pool,
|
||
sizeof(uint64_t), 8);
|
||
*(uint64_t *)event->state.map = VK_EVENT_RESET;
|
||
|
||
ANV_RMV(event_create, device, event, pCreateInfo->flags, false);
|
||
|
||
*pEvent = anv_event_to_handle(event);
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
void anv_DestroyEvent(
|
||
VkDevice _device,
|
||
VkEvent _event,
|
||
const VkAllocationCallbacks* pAllocator)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
ANV_FROM_HANDLE(anv_event, event, _event);
|
||
|
||
if (!event)
|
||
return;
|
||
|
||
ANV_RMV(resource_destroy, device, event);
|
||
|
||
anv_state_pool_free(&device->dynamic_state_pool, event->state);
|
||
|
||
vk_object_free(&device->vk, pAllocator, event);
|
||
}
|
||
|
||
VkResult anv_GetEventStatus(
|
||
VkDevice _device,
|
||
VkEvent _event)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
ANV_FROM_HANDLE(anv_event, event, _event);
|
||
|
||
if (vk_device_is_lost(&device->vk))
|
||
return VK_ERROR_DEVICE_LOST;
|
||
|
||
return *(uint64_t *)event->state.map;
|
||
}
|
||
|
||
VkResult anv_SetEvent(
|
||
VkDevice _device,
|
||
VkEvent _event)
|
||
{
|
||
ANV_FROM_HANDLE(anv_event, event, _event);
|
||
|
||
*(uint64_t *)event->state.map = VK_EVENT_SET;
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
VkResult anv_ResetEvent(
|
||
VkDevice _device,
|
||
VkEvent _event)
|
||
{
|
||
ANV_FROM_HANDLE(anv_event, event, _event);
|
||
|
||
*(uint64_t *)event->state.map = VK_EVENT_RESET;
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
// Buffer functions
|
||
|
||
static void
|
||
anv_get_buffer_memory_requirements(struct anv_device *device,
|
||
VkBufferCreateFlags flags,
|
||
VkDeviceSize size,
|
||
VkBufferUsageFlags usage,
|
||
bool is_sparse,
|
||
VkMemoryRequirements2* pMemoryRequirements)
|
||
{
|
||
/* The Vulkan spec (git aaed022) says:
|
||
*
|
||
* memoryTypeBits is a bitfield and contains one bit set for every
|
||
* supported memory type for the resource. The bit `1<<i` is set if and
|
||
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
|
||
* structure for the physical device is supported.
|
||
*
|
||
* We have special memory types for descriptor buffers.
|
||
*/
|
||
uint32_t memory_types =
|
||
(flags & VK_BUFFER_CREATE_PROTECTED_BIT) ?
|
||
device->physical->memory.protected_mem_types :
|
||
((usage & (VK_BUFFER_USAGE_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT |
|
||
VK_BUFFER_USAGE_SAMPLER_DESCRIPTOR_BUFFER_BIT_EXT)) ?
|
||
device->physical->memory.desc_buffer_mem_types :
|
||
device->physical->memory.default_buffer_mem_types);
|
||
|
||
/* The GPU appears to write back to main memory in cachelines. Writes to a
|
||
* buffers should not clobber with writes to another buffers so make sure
|
||
* those are in different cachelines.
|
||
*/
|
||
uint32_t alignment = 64;
|
||
|
||
/* From the spec, section "Sparse Buffer and Fully-Resident Image Block
|
||
* Size":
|
||
* "The sparse block size in bytes for sparse buffers and fully-resident
|
||
* images is reported as VkMemoryRequirements::alignment. alignment
|
||
* represents both the memory alignment requirement and the binding
|
||
* granularity (in bytes) for sparse resources."
|
||
*/
|
||
if (is_sparse) {
|
||
alignment = ANV_SPARSE_BLOCK_SIZE;
|
||
size = align64(size, alignment);
|
||
}
|
||
|
||
pMemoryRequirements->memoryRequirements.size = size;
|
||
pMemoryRequirements->memoryRequirements.alignment = alignment;
|
||
|
||
/* Storage and Uniform buffers should have their size aligned to
|
||
* 32-bits to avoid boundary checks when last DWord is not complete.
|
||
* This would ensure that not internal padding would be needed for
|
||
* 16-bit types.
|
||
*/
|
||
if (device->robust_buffer_access &&
|
||
(usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
|
||
usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
|
||
pMemoryRequirements->memoryRequirements.size = align64(size, 4);
|
||
|
||
pMemoryRequirements->memoryRequirements.memoryTypeBits = memory_types;
|
||
|
||
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
|
||
switch (ext->sType) {
|
||
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
|
||
VkMemoryDedicatedRequirements *requirements = (void *)ext;
|
||
requirements->prefersDedicatedAllocation = false;
|
||
requirements->requiresDedicatedAllocation = false;
|
||
break;
|
||
}
|
||
|
||
default:
|
||
vk_debug_ignored_stype(ext->sType);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
void anv_GetDeviceBufferMemoryRequirements(
|
||
VkDevice _device,
|
||
const VkDeviceBufferMemoryRequirements* pInfo,
|
||
VkMemoryRequirements2* pMemoryRequirements)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
const bool is_sparse =
|
||
pInfo->pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT;
|
||
|
||
if ((device->physical->sparse_type == ANV_SPARSE_TYPE_NOT_SUPPORTED) &&
|
||
INTEL_DEBUG(DEBUG_SPARSE) &&
|
||
pInfo->pCreateInfo->flags & (VK_BUFFER_CREATE_SPARSE_BINDING_BIT |
|
||
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT |
|
||
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT))
|
||
fprintf(stderr, "=== %s %s:%d flags:0x%08x\n", __func__, __FILE__,
|
||
__LINE__, pInfo->pCreateInfo->flags);
|
||
|
||
anv_get_buffer_memory_requirements(device,
|
||
pInfo->pCreateInfo->flags,
|
||
pInfo->pCreateInfo->size,
|
||
pInfo->pCreateInfo->usage,
|
||
is_sparse,
|
||
pMemoryRequirements);
|
||
}
|
||
|
||
VkResult anv_CreateBuffer(
|
||
VkDevice _device,
|
||
const VkBufferCreateInfo* pCreateInfo,
|
||
const VkAllocationCallbacks* pAllocator,
|
||
VkBuffer* pBuffer)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
struct anv_buffer *buffer;
|
||
|
||
if ((device->physical->sparse_type == ANV_SPARSE_TYPE_NOT_SUPPORTED) &&
|
||
INTEL_DEBUG(DEBUG_SPARSE) &&
|
||
pCreateInfo->flags & (VK_BUFFER_CREATE_SPARSE_BINDING_BIT |
|
||
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT |
|
||
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT))
|
||
fprintf(stderr, "=== %s %s:%d flags:0x%08x\n", __func__, __FILE__,
|
||
__LINE__, pCreateInfo->flags);
|
||
|
||
/* Don't allow creating buffers bigger than our address space. The real
|
||
* issue here is that we may align up the buffer size and we don't want
|
||
* doing so to cause roll-over. However, no one has any business
|
||
* allocating a buffer larger than our GTT size.
|
||
*/
|
||
if (pCreateInfo->size > device->physical->gtt_size)
|
||
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
||
|
||
buffer = vk_buffer_create(&device->vk, pCreateInfo,
|
||
pAllocator, sizeof(*buffer));
|
||
if (buffer == NULL)
|
||
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
||
|
||
buffer->address = ANV_NULL_ADDRESS;
|
||
if (anv_buffer_is_sparse(buffer)) {
|
||
enum anv_bo_alloc_flags alloc_flags = 0;
|
||
uint64_t client_address = 0;
|
||
|
||
if (buffer->vk.create_flags & VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT) {
|
||
alloc_flags = ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
|
||
const VkBufferOpaqueCaptureAddressCreateInfo *opaque_addr_info =
|
||
vk_find_struct_const(pCreateInfo->pNext,
|
||
BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO);
|
||
if (opaque_addr_info)
|
||
client_address = opaque_addr_info->opaqueCaptureAddress;
|
||
}
|
||
|
||
if (buffer->vk.create_flags & VK_BUFFER_CREATE_DESCRIPTOR_BUFFER_CAPTURE_REPLAY_BIT_EXT) {
|
||
alloc_flags = ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
|
||
|
||
const VkOpaqueCaptureDescriptorDataCreateInfoEXT *opaque_info =
|
||
vk_find_struct_const(pCreateInfo->pNext,
|
||
OPAQUE_CAPTURE_DESCRIPTOR_DATA_CREATE_INFO_EXT);
|
||
if (opaque_info)
|
||
client_address = *((const uint64_t *)opaque_info->opaqueCaptureDescriptorData);
|
||
}
|
||
|
||
VkResult result = anv_init_sparse_bindings(device, buffer->vk.size,
|
||
&buffer->sparse_data,
|
||
alloc_flags, client_address,
|
||
&buffer->address);
|
||
if (result != VK_SUCCESS) {
|
||
vk_buffer_destroy(&device->vk, pAllocator, &buffer->vk);
|
||
return result;
|
||
}
|
||
}
|
||
|
||
ANV_RMV(buffer_create, device, false, buffer);
|
||
|
||
*pBuffer = anv_buffer_to_handle(buffer);
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
void anv_DestroyBuffer(
|
||
VkDevice _device,
|
||
VkBuffer _buffer,
|
||
const VkAllocationCallbacks* pAllocator)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
|
||
|
||
if (!buffer)
|
||
return;
|
||
|
||
ANV_RMV(buffer_destroy, device, buffer);
|
||
|
||
if (anv_buffer_is_sparse(buffer)) {
|
||
assert(buffer->address.offset == buffer->sparse_data.address);
|
||
anv_free_sparse_bindings(device, &buffer->sparse_data);
|
||
}
|
||
|
||
vk_buffer_destroy(&device->vk, pAllocator, &buffer->vk);
|
||
}
|
||
|
||
VkDeviceAddress anv_GetBufferDeviceAddress(
|
||
VkDevice device,
|
||
const VkBufferDeviceAddressInfo* pInfo)
|
||
{
|
||
ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
|
||
|
||
assert(!anv_address_is_null(buffer->address));
|
||
|
||
return anv_address_physical(buffer->address);
|
||
}
|
||
|
||
uint64_t anv_GetBufferOpaqueCaptureAddress(
|
||
VkDevice device,
|
||
const VkBufferDeviceAddressInfo* pInfo)
|
||
{
|
||
ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
|
||
|
||
return anv_address_physical(buffer->address);
|
||
}
|
||
|
||
VkResult anv_GetBufferOpaqueCaptureDescriptorDataEXT(
|
||
VkDevice device,
|
||
const VkBufferCaptureDescriptorDataInfoEXT* pInfo,
|
||
void* pData)
|
||
{
|
||
ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
|
||
|
||
*((uint64_t *)pData) = anv_address_physical(buffer->address);
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress(
|
||
VkDevice device,
|
||
const VkDeviceMemoryOpaqueCaptureAddressInfo* pInfo)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
|
||
|
||
assert(memory->bo->alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS);
|
||
|
||
return intel_48b_address(memory->bo->offset);
|
||
}
|
||
|
||
void
|
||
anv_fill_buffer_surface_state(struct anv_device *device,
|
||
void *surface_state_ptr,
|
||
enum isl_format format,
|
||
struct isl_swizzle swizzle,
|
||
isl_surf_usage_flags_t usage,
|
||
struct anv_address address,
|
||
uint32_t range, uint32_t stride)
|
||
{
|
||
isl_buffer_fill_state(&device->isl_dev, surface_state_ptr,
|
||
.address = anv_address_physical(address),
|
||
.mocs = isl_mocs(&device->isl_dev, usage,
|
||
address.bo && anv_bo_is_external(address.bo)),
|
||
.size_B = range,
|
||
.format = format,
|
||
.swizzle = swizzle,
|
||
.stride_B = stride);
|
||
}
|
||
|
||
VkResult anv_GetSamplerOpaqueCaptureDescriptorDataEXT(
|
||
VkDevice _device,
|
||
const VkSamplerCaptureDescriptorDataInfoEXT* pInfo,
|
||
void* pData)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
ANV_FROM_HANDLE(anv_sampler, sampler, pInfo->sampler);
|
||
|
||
if (sampler->custom_border_color_db.alloc_size != 0) {
|
||
*((uint32_t *)pData) =
|
||
anv_state_reserved_array_pool_state_index(
|
||
&device->custom_border_colors_db,
|
||
sampler->custom_border_color_db);
|
||
} else {
|
||
*((uint32_t *)pData) = 0;
|
||
}
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
void anv_DestroySampler(
|
||
VkDevice _device,
|
||
VkSampler _sampler,
|
||
const VkAllocationCallbacks* pAllocator)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
|
||
|
||
if (!sampler)
|
||
return;
|
||
|
||
if (sampler->bindless_state.map) {
|
||
anv_state_pool_free(&device->dynamic_state_pool,
|
||
sampler->bindless_state);
|
||
}
|
||
|
||
if (sampler->custom_border_color.map) {
|
||
anv_state_reserved_pool_free(&device->custom_border_colors,
|
||
sampler->custom_border_color);
|
||
}
|
||
if (sampler->custom_border_color_db.map) {
|
||
anv_state_reserved_array_pool_free(&device->custom_border_colors_db,
|
||
sampler->custom_border_color_db);
|
||
}
|
||
|
||
vk_sampler_destroy(&device->vk, pAllocator, &sampler->vk);
|
||
}
|
||
|
||
static const VkTimeDomainKHR anv_time_domains[] = {
|
||
VK_TIME_DOMAIN_DEVICE_KHR,
|
||
VK_TIME_DOMAIN_CLOCK_MONOTONIC_KHR,
|
||
#ifdef CLOCK_MONOTONIC_RAW
|
||
VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_KHR,
|
||
#endif
|
||
};
|
||
|
||
VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsKHR(
|
||
VkPhysicalDevice physicalDevice,
|
||
uint32_t *pTimeDomainCount,
|
||
VkTimeDomainKHR *pTimeDomains)
|
||
{
|
||
int d;
|
||
VK_OUTARRAY_MAKE_TYPED(VkTimeDomainKHR, out, pTimeDomains, pTimeDomainCount);
|
||
|
||
for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
|
||
vk_outarray_append_typed(VkTimeDomainKHR, &out, i) {
|
||
*i = anv_time_domains[d];
|
||
}
|
||
}
|
||
|
||
return vk_outarray_status(&out);
|
||
}
|
||
|
||
static inline clockid_t
|
||
anv_get_default_cpu_clock_id(void)
|
||
{
|
||
#ifdef CLOCK_MONOTONIC_RAW
|
||
return CLOCK_MONOTONIC_RAW;
|
||
#else
|
||
return CLOCK_MONOTONIC;
|
||
#endif
|
||
}
|
||
|
||
static inline clockid_t
|
||
vk_time_domain_to_clockid(VkTimeDomainKHR domain)
|
||
{
|
||
switch (domain) {
|
||
#ifdef CLOCK_MONOTONIC_RAW
|
||
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_KHR:
|
||
return CLOCK_MONOTONIC_RAW;
|
||
#endif
|
||
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_KHR:
|
||
return CLOCK_MONOTONIC;
|
||
default:
|
||
unreachable("Missing");
|
||
return CLOCK_MONOTONIC;
|
||
}
|
||
}
|
||
|
||
static inline bool
|
||
is_cpu_time_domain(VkTimeDomainKHR domain)
|
||
{
|
||
return domain == VK_TIME_DOMAIN_CLOCK_MONOTONIC_KHR ||
|
||
domain == VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_KHR;
|
||
}
|
||
|
||
static inline bool
|
||
is_gpu_time_domain(VkTimeDomainKHR domain)
|
||
{
|
||
return domain == VK_TIME_DOMAIN_DEVICE_KHR;
|
||
}
|
||
|
||
VkResult anv_GetCalibratedTimestampsKHR(
|
||
VkDevice _device,
|
||
uint32_t timestampCount,
|
||
const VkCalibratedTimestampInfoKHR *pTimestampInfos,
|
||
uint64_t *pTimestamps,
|
||
uint64_t *pMaxDeviation)
|
||
{
|
||
ANV_FROM_HANDLE(anv_device, device, _device);
|
||
const uint64_t timestamp_frequency = device->info->timestamp_frequency;
|
||
const uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
|
||
uint32_t d, increment;
|
||
uint64_t begin, end;
|
||
uint64_t max_clock_period = 0;
|
||
const enum intel_kmd_type kmd_type = device->physical->info.kmd_type;
|
||
const bool has_correlate_timestamp = kmd_type == INTEL_KMD_TYPE_XE;
|
||
clockid_t cpu_clock_id = -1;
|
||
|
||
begin = end = vk_clock_gettime(anv_get_default_cpu_clock_id());
|
||
|
||
for (d = 0, increment = 1; d < timestampCount; d += increment) {
|
||
const VkTimeDomainKHR current = pTimestampInfos[d].timeDomain;
|
||
/* If we have a request pattern like this :
|
||
* - domain0 = VK_TIME_DOMAIN_CLOCK_MONOTONIC_KHR or VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_KHR
|
||
* - domain1 = VK_TIME_DOMAIN_DEVICE_KHR
|
||
* - domain2 = domain0 (optional)
|
||
*
|
||
* We can combine all of those into a single ioctl for maximum accuracy.
|
||
*/
|
||
if (has_correlate_timestamp && (d + 1) < timestampCount) {
|
||
const VkTimeDomainKHR next = pTimestampInfos[d + 1].timeDomain;
|
||
|
||
if ((is_cpu_time_domain(current) && is_gpu_time_domain(next)) ||
|
||
(is_gpu_time_domain(current) && is_cpu_time_domain(next))) {
|
||
/* We'll consume at least 2 elements. */
|
||
increment = 2;
|
||
|
||
if (is_cpu_time_domain(current))
|
||
cpu_clock_id = vk_time_domain_to_clockid(current);
|
||
else
|
||
cpu_clock_id = vk_time_domain_to_clockid(next);
|
||
|
||
uint64_t cpu_timestamp, gpu_timestamp, cpu_delta_timestamp, cpu_end_timestamp;
|
||
if (!intel_gem_read_correlate_cpu_gpu_timestamp(device->fd,
|
||
kmd_type,
|
||
INTEL_ENGINE_CLASS_RENDER,
|
||
0 /* engine_instance */,
|
||
cpu_clock_id,
|
||
&cpu_timestamp,
|
||
&gpu_timestamp,
|
||
&cpu_delta_timestamp))
|
||
return vk_device_set_lost(&device->vk, "Failed to read correlate timestamp %m");
|
||
|
||
cpu_end_timestamp = cpu_timestamp + cpu_delta_timestamp;
|
||
if (is_cpu_time_domain(current)) {
|
||
pTimestamps[d] = cpu_timestamp;
|
||
pTimestamps[d + 1] = gpu_timestamp;
|
||
} else {
|
||
pTimestamps[d] = gpu_timestamp;
|
||
pTimestamps[d + 1] = cpu_end_timestamp;
|
||
}
|
||
max_clock_period = MAX2(max_clock_period, device_period);
|
||
|
||
/* If we can consume a third element */
|
||
if ((d + 2) < timestampCount &&
|
||
is_cpu_time_domain(current) &&
|
||
current == pTimestampInfos[d + 2].timeDomain) {
|
||
pTimestamps[d + 2] = cpu_end_timestamp;
|
||
increment++;
|
||
}
|
||
|
||
/* If we're the first element, we can replace begin */
|
||
if (d == 0 && cpu_clock_id == anv_get_default_cpu_clock_id())
|
||
begin = cpu_timestamp;
|
||
|
||
/* If we're in the same clock domain as begin/end. We can set the end. */
|
||
if (cpu_clock_id == anv_get_default_cpu_clock_id())
|
||
end = cpu_end_timestamp;
|
||
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* fallback to regular method */
|
||
increment = 1;
|
||
switch (current) {
|
||
case VK_TIME_DOMAIN_DEVICE_KHR:
|
||
if (!intel_gem_read_render_timestamp(device->fd,
|
||
device->info->kmd_type,
|
||
&pTimestamps[d])) {
|
||
return vk_device_set_lost(&device->vk, "Failed to read the "
|
||
"TIMESTAMP register: %m");
|
||
}
|
||
max_clock_period = MAX2(max_clock_period, device_period);
|
||
break;
|
||
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_KHR:
|
||
pTimestamps[d] = vk_clock_gettime(CLOCK_MONOTONIC);
|
||
max_clock_period = MAX2(max_clock_period, 1);
|
||
break;
|
||
|
||
#ifdef CLOCK_MONOTONIC_RAW
|
||
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_KHR:
|
||
pTimestamps[d] = begin;
|
||
break;
|
||
#endif
|
||
default:
|
||
pTimestamps[d] = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If last timestamp was not get with has_correlate_timestamp method or
|
||
* if it was but last cpu clock is not the default one, get time again
|
||
*/
|
||
if (increment == 1 || cpu_clock_id != anv_get_default_cpu_clock_id())
|
||
end = vk_clock_gettime(anv_get_default_cpu_clock_id());
|
||
|
||
*pMaxDeviation = vk_time_max_deviation(begin, end, max_clock_period);
|
||
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
void anv_GetPhysicalDeviceMultisamplePropertiesEXT(
|
||
VkPhysicalDevice physicalDevice,
|
||
VkSampleCountFlagBits samples,
|
||
VkMultisamplePropertiesEXT* pMultisampleProperties)
|
||
{
|
||
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
||
|
||
assert(pMultisampleProperties->sType ==
|
||
VK_STRUCTURE_TYPE_MULTISAMPLE_PROPERTIES_EXT);
|
||
|
||
VkExtent2D grid_size;
|
||
if (samples & isl_device_get_sample_counts(&physical_device->isl_dev)) {
|
||
grid_size.width = 1;
|
||
grid_size.height = 1;
|
||
} else {
|
||
grid_size.width = 0;
|
||
grid_size.height = 0;
|
||
}
|
||
pMultisampleProperties->maxSampleLocationGridSize = grid_size;
|
||
|
||
vk_foreach_struct(ext, pMultisampleProperties->pNext)
|
||
vk_debug_ignored_stype(ext->sType);
|
||
}
|
||
|
||
VkResult anv_GetPhysicalDeviceFragmentShadingRatesKHR(
|
||
VkPhysicalDevice physicalDevice,
|
||
uint32_t* pFragmentShadingRateCount,
|
||
VkPhysicalDeviceFragmentShadingRateKHR* pFragmentShadingRates)
|
||
{
|
||
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
||
VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceFragmentShadingRateKHR, out,
|
||
pFragmentShadingRates, pFragmentShadingRateCount);
|
||
|
||
#define append_rate(_samples, _width, _height) \
|
||
do { \
|
||
vk_outarray_append_typed(VkPhysicalDeviceFragmentShadingRateKHR, &out, __r) { \
|
||
__r->sampleCounts = _samples; \
|
||
__r->fragmentSize = (VkExtent2D) { \
|
||
.width = _width, \
|
||
.height = _height, \
|
||
}; \
|
||
} \
|
||
} while (0)
|
||
|
||
VkSampleCountFlags sample_counts =
|
||
isl_device_get_sample_counts(&physical_device->isl_dev);
|
||
|
||
/* BSpec 47003: There are a number of restrictions on the sample count
|
||
* based off the coarse pixel size.
|
||
*/
|
||
static const VkSampleCountFlags cp_size_sample_limits[] = {
|
||
[1] = ISL_SAMPLE_COUNT_16_BIT | ISL_SAMPLE_COUNT_8_BIT |
|
||
ISL_SAMPLE_COUNT_4_BIT | ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
|
||
[2] = ISL_SAMPLE_COUNT_4_BIT | ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
|
||
[4] = ISL_SAMPLE_COUNT_4_BIT | ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
|
||
[8] = ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
|
||
[16] = ISL_SAMPLE_COUNT_1_BIT,
|
||
};
|
||
|
||
for (uint32_t x = 4; x >= 1; x /= 2) {
|
||
for (uint32_t y = 4; y >= 1; y /= 2) {
|
||
if (physical_device->info.has_coarse_pixel_primitive_and_cb) {
|
||
/* BSpec 47003:
|
||
* "CPsize 1x4 and 4x1 are not supported"
|
||
*/
|
||
if ((x == 1 && y == 4) || (x == 4 && y == 1))
|
||
continue;
|
||
|
||
/* For size {1, 1}, the sample count must be ~0
|
||
*
|
||
* 4x2 is also a specially case.
|
||
*/
|
||
if (x == 1 && y == 1)
|
||
append_rate(~0, x, y);
|
||
else if (x == 4 && y == 2)
|
||
append_rate(ISL_SAMPLE_COUNT_1_BIT, x, y);
|
||
else
|
||
append_rate(cp_size_sample_limits[x * y], x, y);
|
||
} else {
|
||
/* For size {1, 1}, the sample count must be ~0 */
|
||
if (x == 1 && y == 1)
|
||
append_rate(~0, x, y);
|
||
else
|
||
append_rate(sample_counts, x, y);
|
||
}
|
||
}
|
||
}
|
||
|
||
#undef append_rate
|
||
|
||
return vk_outarray_status(&out);
|
||
}
|
||
|
||
const struct intel_device_info_pat_entry *
|
||
anv_device_get_pat_entry(struct anv_device *device,
|
||
enum anv_bo_alloc_flags alloc_flags)
|
||
{
|
||
if (alloc_flags & ANV_BO_ALLOC_IMPORTED)
|
||
return &device->info->pat.cached_coherent;
|
||
|
||
/* PAT indexes has no actual effect in DG2 and DG1, smem caches will always
|
||
* be snopped by GPU and lmem will always be WC.
|
||
* This might change in future discrete platforms.
|
||
*/
|
||
if (anv_physical_device_has_vram(device->physical)) {
|
||
if (alloc_flags & ANV_BO_ALLOC_NO_LOCAL_MEM)
|
||
return &device->info->pat.cached_coherent;
|
||
return &device->info->pat.writecombining;
|
||
}
|
||
|
||
if ((alloc_flags & (ANV_BO_ALLOC_HOST_CACHED_COHERENT)) == ANV_BO_ALLOC_HOST_CACHED_COHERENT)
|
||
return &device->info->pat.cached_coherent;
|
||
else if (alloc_flags & (ANV_BO_ALLOC_EXTERNAL | ANV_BO_ALLOC_SCANOUT))
|
||
return &device->info->pat.scanout;
|
||
else if (alloc_flags & ANV_BO_ALLOC_HOST_CACHED)
|
||
return &device->info->pat.writeback_incoherent;
|
||
else
|
||
return &device->info->pat.writecombining;
|
||
}
|
||
|
||
static VkComponentTypeKHR
|
||
convert_component_type(enum intel_cooperative_matrix_component_type t)
|
||
{
|
||
switch (t) {
|
||
case INTEL_CMAT_FLOAT16: return VK_COMPONENT_TYPE_FLOAT16_KHR;
|
||
case INTEL_CMAT_FLOAT32: return VK_COMPONENT_TYPE_FLOAT32_KHR;
|
||
case INTEL_CMAT_SINT32: return VK_COMPONENT_TYPE_SINT32_KHR;
|
||
case INTEL_CMAT_SINT8: return VK_COMPONENT_TYPE_SINT8_KHR;
|
||
case INTEL_CMAT_UINT32: return VK_COMPONENT_TYPE_UINT32_KHR;
|
||
case INTEL_CMAT_UINT8: return VK_COMPONENT_TYPE_UINT8_KHR;
|
||
}
|
||
unreachable("invalid cooperative matrix component type in configuration");
|
||
}
|
||
|
||
static VkScopeKHR
|
||
convert_scope(enum intel_cmat_scope scope)
|
||
{
|
||
switch (scope) {
|
||
case INTEL_CMAT_SCOPE_SUBGROUP: return VK_SCOPE_SUBGROUP_KHR;
|
||
default:
|
||
unreachable("invalid cooperative matrix scope in configuration");
|
||
}
|
||
}
|
||
|
||
VkResult anv_GetPhysicalDeviceCooperativeMatrixPropertiesKHR(
|
||
VkPhysicalDevice physicalDevice,
|
||
uint32_t* pPropertyCount,
|
||
VkCooperativeMatrixPropertiesKHR* pProperties)
|
||
{
|
||
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
||
const struct intel_device_info *devinfo = &pdevice->info;
|
||
|
||
assert(anv_has_cooperative_matrix(pdevice));
|
||
|
||
VK_OUTARRAY_MAKE_TYPED(VkCooperativeMatrixPropertiesKHR, out, pProperties, pPropertyCount);
|
||
|
||
for (int i = 0; i < ARRAY_SIZE(devinfo->cooperative_matrix_configurations); i++) {
|
||
const struct intel_cooperative_matrix_configuration *cfg =
|
||
&devinfo->cooperative_matrix_configurations[i];
|
||
|
||
if (cfg->scope == INTEL_CMAT_SCOPE_NONE)
|
||
break;
|
||
|
||
vk_outarray_append_typed(VkCooperativeMatrixPropertiesKHR, &out, prop) {
|
||
prop->sType = VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_PROPERTIES_KHR;
|
||
|
||
prop->MSize = cfg->m;
|
||
prop->NSize = cfg->n;
|
||
prop->KSize = cfg->k;
|
||
|
||
prop->AType = convert_component_type(cfg->a);
|
||
prop->BType = convert_component_type(cfg->b);
|
||
prop->CType = convert_component_type(cfg->c);
|
||
prop->ResultType = convert_component_type(cfg->result);
|
||
|
||
prop->saturatingAccumulation = VK_FALSE;
|
||
prop->scope = convert_scope(cfg->scope);
|
||
}
|
||
|
||
/* VUID-RuntimeSpirv-saturatingAccumulation-08983 says:
|
||
*
|
||
* For OpCooperativeMatrixMulAddKHR, the SaturatingAccumulation
|
||
* cooperative matrix operand must be present if and only if
|
||
* VkCooperativeMatrixPropertiesKHR::saturatingAccumulation is
|
||
* VK_TRUE.
|
||
*
|
||
* As a result, we have to advertise integer configs both with and
|
||
* without this flag set.
|
||
*
|
||
* The DPAS instruction does not support the .sat modifier, so only
|
||
* advertise the configurations when the DPAS would be lowered.
|
||
*
|
||
* FINISHME: It should be possible to do better than full lowering on
|
||
* platforms that support DPAS. Emit a DPAS with a NULL accumulator
|
||
* argument, then perform the correct sequence of saturating add
|
||
* instructions.
|
||
*/
|
||
if (cfg->a != INTEL_CMAT_FLOAT16 &&
|
||
(devinfo->verx10 < 125 || debug_get_bool_option("INTEL_LOWER_DPAS", false))) {
|
||
vk_outarray_append_typed(VkCooperativeMatrixPropertiesKHR, &out, prop) {
|
||
prop->sType = VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_PROPERTIES_KHR;
|
||
|
||
prop->MSize = cfg->m;
|
||
prop->NSize = cfg->n;
|
||
prop->KSize = cfg->k;
|
||
|
||
prop->AType = convert_component_type(cfg->a);
|
||
prop->BType = convert_component_type(cfg->b);
|
||
prop->CType = convert_component_type(cfg->c);
|
||
prop->ResultType = convert_component_type(cfg->result);
|
||
|
||
prop->saturatingAccumulation = VK_TRUE;
|
||
prop->scope = convert_scope(cfg->scope);
|
||
}
|
||
}
|
||
}
|
||
|
||
return vk_outarray_status(&out);
|
||
}
|