mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-23 13:20:14 +01:00
When lowering precision on integers from GLSL ES, we can end up with 16 bit integer loop counters. So let's tolerate this as well. This was probably not caught earlier because most NIR drivers disable GLSL-level loop-unrolling, and no non-NIR driver sets LowerPrecisionInt16 to true. This was discovered while trying to wire up int16 support for Zink, which doesn't currently disable GLSL loop-unrolling. Reviewed-by: Alyssa Rosenzweig <alyssa@collabora.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/10125>
858 lines
24 KiB
C++
858 lines
24 KiB
C++
/*
|
|
* Copyright © 2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "compiler/glsl_types.h"
|
|
#include "loop_analysis.h"
|
|
#include "ir_hierarchical_visitor.h"
|
|
|
|
static void try_add_loop_terminator(loop_variable_state *ls, ir_if *ir);
|
|
|
|
static bool all_expression_operands_are_loop_constant(ir_rvalue *,
|
|
hash_table *);
|
|
|
|
static ir_rvalue *get_basic_induction_increment(ir_assignment *, hash_table *);
|
|
|
|
/**
|
|
* Find an initializer of a variable outside a loop
|
|
*
|
|
* Works backwards from the loop to find the pre-loop value of the variable.
|
|
* This is used, for example, to find the initial value of loop induction
|
|
* variables.
|
|
*
|
|
* \param loop Loop where \c var is an induction variable
|
|
* \param var Variable whose initializer is to be found
|
|
*
|
|
* \return
|
|
* The \c ir_rvalue assigned to the variable outside the loop. May return
|
|
* \c NULL if no initializer can be found.
|
|
*/
|
|
static ir_rvalue *
|
|
find_initial_value(ir_loop *loop, ir_variable *var)
|
|
{
|
|
for (exec_node *node = loop->prev; !node->is_head_sentinel();
|
|
node = node->prev) {
|
|
ir_instruction *ir = (ir_instruction *) node;
|
|
|
|
switch (ir->ir_type) {
|
|
case ir_type_call:
|
|
case ir_type_loop:
|
|
case ir_type_loop_jump:
|
|
case ir_type_return:
|
|
case ir_type_if:
|
|
return NULL;
|
|
|
|
case ir_type_function:
|
|
case ir_type_function_signature:
|
|
assert(!"Should not get here.");
|
|
return NULL;
|
|
|
|
case ir_type_assignment: {
|
|
ir_assignment *assign = ir->as_assignment();
|
|
ir_variable *assignee = assign->lhs->whole_variable_referenced();
|
|
|
|
if (assignee == var)
|
|
return (assign->condition != NULL) ? NULL : assign->rhs;
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static int
|
|
calculate_iterations(ir_rvalue *from, ir_rvalue *to, ir_rvalue *increment,
|
|
enum ir_expression_operation op, bool continue_from_then,
|
|
bool swap_compare_operands, bool inc_before_terminator)
|
|
{
|
|
if (from == NULL || to == NULL || increment == NULL)
|
|
return -1;
|
|
|
|
void *mem_ctx = ralloc_context(NULL);
|
|
|
|
ir_expression *const sub =
|
|
new(mem_ctx) ir_expression(ir_binop_sub, from->type, to, from);
|
|
|
|
ir_expression *const div =
|
|
new(mem_ctx) ir_expression(ir_binop_div, sub->type, sub, increment);
|
|
|
|
ir_constant *iter = div->constant_expression_value(mem_ctx);
|
|
if (iter == NULL) {
|
|
ralloc_free(mem_ctx);
|
|
return -1;
|
|
}
|
|
|
|
if (!iter->type->is_integer()) {
|
|
const ir_expression_operation op = iter->type->is_double()
|
|
? ir_unop_d2i : ir_unop_f2i;
|
|
ir_rvalue *cast =
|
|
new(mem_ctx) ir_expression(op, glsl_type::int_type, iter, NULL);
|
|
|
|
iter = cast->constant_expression_value(mem_ctx);
|
|
}
|
|
|
|
int64_t iter_value = iter->get_int64_component(0);
|
|
|
|
/* Code after this block works under assumption that iterator will be
|
|
* incremented or decremented until it hits the limit,
|
|
* however the loop condition can be false on the first iteration.
|
|
* Handle such loops first.
|
|
*/
|
|
{
|
|
ir_rvalue *first_value = from;
|
|
if (inc_before_terminator) {
|
|
first_value =
|
|
new(mem_ctx) ir_expression(ir_binop_add, from->type, from, increment);
|
|
}
|
|
|
|
ir_expression *cmp = swap_compare_operands
|
|
? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, first_value)
|
|
: new(mem_ctx) ir_expression(op, glsl_type::bool_type, first_value, to);
|
|
if (continue_from_then)
|
|
cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
|
|
|
|
ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
|
|
assert(cmp_result != NULL);
|
|
if (cmp_result->get_bool_component(0)) {
|
|
ralloc_free(mem_ctx);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Make sure that the calculated number of iterations satisfies the exit
|
|
* condition. This is needed to catch off-by-one errors and some types of
|
|
* ill-formed loops. For example, we need to detect that the following
|
|
* loop does not have a maximum iteration count.
|
|
*
|
|
* for (float x = 0.0; x != 0.9; x += 0.2)
|
|
* ;
|
|
*/
|
|
const int bias[] = { -1, 0, 1 };
|
|
bool valid_loop = false;
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(bias); i++) {
|
|
/* Increment may be of type int, uint or float. */
|
|
switch (increment->type->base_type) {
|
|
case GLSL_TYPE_INT:
|
|
iter = new(mem_ctx) ir_constant(int32_t(iter_value + bias[i]));
|
|
break;
|
|
case GLSL_TYPE_INT16:
|
|
iter = new(mem_ctx) ir_constant(int16_t(iter_value + bias[i]));
|
|
break;
|
|
case GLSL_TYPE_INT64:
|
|
iter = new(mem_ctx) ir_constant(int64_t(iter_value + bias[i]));
|
|
break;
|
|
case GLSL_TYPE_UINT:
|
|
iter = new(mem_ctx) ir_constant(unsigned(iter_value + bias[i]));
|
|
break;
|
|
case GLSL_TYPE_UINT16:
|
|
iter = new(mem_ctx) ir_constant(uint16_t(iter_value + bias[i]));
|
|
break;
|
|
case GLSL_TYPE_UINT64:
|
|
iter = new(mem_ctx) ir_constant(uint64_t(iter_value + bias[i]));
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
iter = new(mem_ctx) ir_constant(float(iter_value + bias[i]));
|
|
break;
|
|
case GLSL_TYPE_FLOAT16:
|
|
iter = new(mem_ctx) ir_constant(float16_t(float(iter_value + bias[i])));
|
|
break;
|
|
case GLSL_TYPE_DOUBLE:
|
|
iter = new(mem_ctx) ir_constant(double(iter_value + bias[i]));
|
|
break;
|
|
default:
|
|
unreachable("Unsupported type for loop iterator.");
|
|
}
|
|
|
|
ir_expression *const mul =
|
|
new(mem_ctx) ir_expression(ir_binop_mul, increment->type, iter,
|
|
increment);
|
|
|
|
ir_expression *const add =
|
|
new(mem_ctx) ir_expression(ir_binop_add, mul->type, mul, from);
|
|
|
|
ir_expression *cmp = swap_compare_operands
|
|
? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, add)
|
|
: new(mem_ctx) ir_expression(op, glsl_type::bool_type, add, to);
|
|
if (continue_from_then)
|
|
cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
|
|
|
|
ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
|
|
|
|
assert(cmp_result != NULL);
|
|
if (cmp_result->get_bool_component(0)) {
|
|
iter_value += bias[i];
|
|
valid_loop = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ralloc_free(mem_ctx);
|
|
|
|
if (inc_before_terminator) {
|
|
iter_value--;
|
|
}
|
|
|
|
return (valid_loop) ? iter_value : -1;
|
|
}
|
|
|
|
static bool
|
|
incremented_before_terminator(ir_loop *loop, ir_variable *var,
|
|
ir_if *terminator)
|
|
{
|
|
for (exec_node *node = loop->body_instructions.get_head();
|
|
!node->is_tail_sentinel();
|
|
node = node->get_next()) {
|
|
ir_instruction *ir = (ir_instruction *) node;
|
|
|
|
switch (ir->ir_type) {
|
|
case ir_type_if:
|
|
if (ir->as_if() == terminator)
|
|
return false;
|
|
break;
|
|
|
|
case ir_type_assignment: {
|
|
ir_assignment *assign = ir->as_assignment();
|
|
ir_variable *assignee = assign->lhs->whole_variable_referenced();
|
|
|
|
if (assignee == var) {
|
|
assert(assign->condition == NULL);
|
|
return true;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
unreachable("Unable to find induction variable");
|
|
}
|
|
|
|
/**
|
|
* Record the fact that the given loop variable was referenced inside the loop.
|
|
*
|
|
* \arg in_assignee is true if the reference was on the LHS of an assignment.
|
|
*
|
|
* \arg in_conditional_code_or_nested_loop is true if the reference occurred
|
|
* inside an if statement or a nested loop.
|
|
*
|
|
* \arg current_assignment is the ir_assignment node that the loop variable is
|
|
* on the LHS of, if any (ignored if \c in_assignee is false).
|
|
*/
|
|
void
|
|
loop_variable::record_reference(bool in_assignee,
|
|
bool in_conditional_code_or_nested_loop,
|
|
ir_assignment *current_assignment)
|
|
{
|
|
if (in_assignee) {
|
|
assert(current_assignment != NULL);
|
|
|
|
if (in_conditional_code_or_nested_loop ||
|
|
current_assignment->condition != NULL) {
|
|
this->conditional_or_nested_assignment = true;
|
|
}
|
|
|
|
if (this->first_assignment == NULL) {
|
|
assert(this->num_assignments == 0);
|
|
|
|
this->first_assignment = current_assignment;
|
|
}
|
|
|
|
this->num_assignments++;
|
|
} else if (this->first_assignment == current_assignment) {
|
|
/* This catches the case where the variable is used in the RHS of an
|
|
* assignment where it is also in the LHS.
|
|
*/
|
|
this->read_before_write = true;
|
|
}
|
|
}
|
|
|
|
|
|
loop_state::loop_state()
|
|
{
|
|
this->ht = _mesa_pointer_hash_table_create(NULL);
|
|
this->mem_ctx = ralloc_context(NULL);
|
|
this->loop_found = false;
|
|
}
|
|
|
|
|
|
loop_state::~loop_state()
|
|
{
|
|
_mesa_hash_table_destroy(this->ht, NULL);
|
|
ralloc_free(this->mem_ctx);
|
|
}
|
|
|
|
|
|
loop_variable_state *
|
|
loop_state::insert(ir_loop *ir)
|
|
{
|
|
loop_variable_state *ls = new(this->mem_ctx) loop_variable_state;
|
|
|
|
_mesa_hash_table_insert(this->ht, ir, ls);
|
|
this->loop_found = true;
|
|
|
|
return ls;
|
|
}
|
|
|
|
|
|
loop_variable_state *
|
|
loop_state::get(const ir_loop *ir)
|
|
{
|
|
hash_entry *entry = _mesa_hash_table_search(this->ht, ir);
|
|
return entry ? (loop_variable_state *) entry->data : NULL;
|
|
}
|
|
|
|
|
|
loop_variable *
|
|
loop_variable_state::get(const ir_variable *ir)
|
|
{
|
|
if (ir == NULL)
|
|
return NULL;
|
|
|
|
hash_entry *entry = _mesa_hash_table_search(this->var_hash, ir);
|
|
return entry ? (loop_variable *) entry->data : NULL;
|
|
}
|
|
|
|
|
|
loop_variable *
|
|
loop_variable_state::insert(ir_variable *var)
|
|
{
|
|
void *mem_ctx = ralloc_parent(this);
|
|
loop_variable *lv = rzalloc(mem_ctx, loop_variable);
|
|
|
|
lv->var = var;
|
|
|
|
_mesa_hash_table_insert(this->var_hash, lv->var, lv);
|
|
this->variables.push_tail(lv);
|
|
|
|
return lv;
|
|
}
|
|
|
|
|
|
loop_terminator *
|
|
loop_variable_state::insert(ir_if *if_stmt, bool continue_from_then)
|
|
{
|
|
void *mem_ctx = ralloc_parent(this);
|
|
loop_terminator *t = new(mem_ctx) loop_terminator(if_stmt,
|
|
continue_from_then);
|
|
|
|
this->terminators.push_tail(t);
|
|
|
|
return t;
|
|
}
|
|
|
|
|
|
/**
|
|
* If the given variable already is recorded in the state for this loop,
|
|
* return the corresponding loop_variable object that records information
|
|
* about it.
|
|
*
|
|
* Otherwise, create a new loop_variable object to record information about
|
|
* the variable, and set its \c read_before_write field appropriately based on
|
|
* \c in_assignee.
|
|
*
|
|
* \arg in_assignee is true if this variable was encountered on the LHS of an
|
|
* assignment.
|
|
*/
|
|
loop_variable *
|
|
loop_variable_state::get_or_insert(ir_variable *var, bool in_assignee)
|
|
{
|
|
loop_variable *lv = this->get(var);
|
|
|
|
if (lv == NULL) {
|
|
lv = this->insert(var);
|
|
lv->read_before_write = !in_assignee;
|
|
}
|
|
|
|
return lv;
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
class loop_analysis : public ir_hierarchical_visitor {
|
|
public:
|
|
loop_analysis(loop_state *loops);
|
|
|
|
virtual ir_visitor_status visit(ir_loop_jump *);
|
|
virtual ir_visitor_status visit(ir_dereference_variable *);
|
|
|
|
virtual ir_visitor_status visit_enter(ir_call *);
|
|
|
|
virtual ir_visitor_status visit_enter(ir_loop *);
|
|
virtual ir_visitor_status visit_leave(ir_loop *);
|
|
virtual ir_visitor_status visit_enter(ir_assignment *);
|
|
virtual ir_visitor_status visit_leave(ir_assignment *);
|
|
virtual ir_visitor_status visit_enter(ir_if *);
|
|
virtual ir_visitor_status visit_leave(ir_if *);
|
|
|
|
loop_state *loops;
|
|
|
|
int if_statement_depth;
|
|
|
|
ir_assignment *current_assignment;
|
|
|
|
exec_list state;
|
|
};
|
|
|
|
} /* anonymous namespace */
|
|
|
|
loop_analysis::loop_analysis(loop_state *loops)
|
|
: loops(loops), if_statement_depth(0), current_assignment(NULL)
|
|
{
|
|
/* empty */
|
|
}
|
|
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit(ir_loop_jump *ir)
|
|
{
|
|
(void) ir;
|
|
|
|
assert(!this->state.is_empty());
|
|
|
|
loop_variable_state *const ls =
|
|
(loop_variable_state *) this->state.get_head();
|
|
|
|
ls->num_loop_jumps++;
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit_enter(ir_call *)
|
|
{
|
|
/* Mark every loop that we're currently analyzing as containing an ir_call
|
|
* (even those at outer nesting levels).
|
|
*/
|
|
foreach_in_list(loop_variable_state, ls, &this->state) {
|
|
ls->contains_calls = true;
|
|
}
|
|
|
|
return visit_continue_with_parent;
|
|
}
|
|
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit(ir_dereference_variable *ir)
|
|
{
|
|
/* If we're not somewhere inside a loop, there's nothing to do.
|
|
*/
|
|
if (this->state.is_empty())
|
|
return visit_continue;
|
|
|
|
bool nested = false;
|
|
|
|
foreach_in_list(loop_variable_state, ls, &this->state) {
|
|
ir_variable *var = ir->variable_referenced();
|
|
loop_variable *lv = ls->get_or_insert(var, this->in_assignee);
|
|
|
|
lv->record_reference(this->in_assignee,
|
|
nested || this->if_statement_depth > 0,
|
|
this->current_assignment);
|
|
nested = true;
|
|
}
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit_enter(ir_loop *ir)
|
|
{
|
|
loop_variable_state *ls = this->loops->insert(ir);
|
|
this->state.push_head(ls);
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit_leave(ir_loop *ir)
|
|
{
|
|
loop_variable_state *const ls =
|
|
(loop_variable_state *) this->state.pop_head();
|
|
|
|
/* Function calls may contain side effects. These could alter any of our
|
|
* variables in ways that cannot be known, and may even terminate shader
|
|
* execution (say, calling discard in the fragment shader). So we can't
|
|
* rely on any of our analysis about assignments to variables.
|
|
*
|
|
* We could perform some conservative analysis (prove there's no statically
|
|
* possible assignment, etc.) but it isn't worth it for now; function
|
|
* inlining will allow us to unroll loops anyway.
|
|
*/
|
|
if (ls->contains_calls)
|
|
return visit_continue;
|
|
|
|
foreach_in_list(ir_instruction, node, &ir->body_instructions) {
|
|
/* Skip over declarations at the start of a loop.
|
|
*/
|
|
if (node->as_variable())
|
|
continue;
|
|
|
|
ir_if *if_stmt = ((ir_instruction *) node)->as_if();
|
|
|
|
if (if_stmt != NULL)
|
|
try_add_loop_terminator(ls, if_stmt);
|
|
}
|
|
|
|
|
|
foreach_in_list_safe(loop_variable, lv, &ls->variables) {
|
|
/* Move variables that are already marked as being loop constant to
|
|
* a separate list. These trivially don't need to be tested.
|
|
*/
|
|
if (lv->is_loop_constant()) {
|
|
lv->remove();
|
|
ls->constants.push_tail(lv);
|
|
}
|
|
}
|
|
|
|
/* Each variable assigned in the loop that isn't already marked as being loop
|
|
* constant might still be loop constant. The requirements at this point
|
|
* are:
|
|
*
|
|
* - Variable is written before it is read.
|
|
*
|
|
* - Only one assignment to the variable.
|
|
*
|
|
* - All operands on the RHS of the assignment are also loop constants.
|
|
*
|
|
* The last requirement is the reason for the progress loop. A variable
|
|
* marked as a loop constant on one pass may allow other variables to be
|
|
* marked as loop constant on following passes.
|
|
*/
|
|
bool progress;
|
|
do {
|
|
progress = false;
|
|
|
|
foreach_in_list_safe(loop_variable, lv, &ls->variables) {
|
|
if (lv->conditional_or_nested_assignment || (lv->num_assignments > 1))
|
|
continue;
|
|
|
|
/* Process the RHS of the assignment. If all of the variables
|
|
* accessed there are loop constants, then add this
|
|
*/
|
|
ir_rvalue *const rhs = lv->first_assignment->rhs;
|
|
if (all_expression_operands_are_loop_constant(rhs, ls->var_hash)) {
|
|
lv->rhs_clean = true;
|
|
|
|
if (lv->is_loop_constant()) {
|
|
progress = true;
|
|
|
|
lv->remove();
|
|
ls->constants.push_tail(lv);
|
|
}
|
|
}
|
|
}
|
|
} while (progress);
|
|
|
|
/* The remaining variables that are not loop invariant might be loop
|
|
* induction variables.
|
|
*/
|
|
foreach_in_list_safe(loop_variable, lv, &ls->variables) {
|
|
/* If there is more than one assignment to a variable, it cannot be a
|
|
* loop induction variable. This isn't strictly true, but this is a
|
|
* very simple induction variable detector, and it can't handle more
|
|
* complex cases.
|
|
*/
|
|
if (lv->num_assignments > 1)
|
|
continue;
|
|
|
|
/* All of the variables with zero assignments in the loop are loop
|
|
* invariant, and they should have already been filtered out.
|
|
*/
|
|
assert(lv->num_assignments == 1);
|
|
assert(lv->first_assignment != NULL);
|
|
|
|
/* The assignment to the variable in the loop must be unconditional and
|
|
* not inside a nested loop.
|
|
*/
|
|
if (lv->conditional_or_nested_assignment)
|
|
continue;
|
|
|
|
/* Basic loop induction variables have a single assignment in the loop
|
|
* that has the form 'VAR = VAR + i' or 'VAR = VAR - i' where i is a
|
|
* loop invariant.
|
|
*/
|
|
ir_rvalue *const inc =
|
|
get_basic_induction_increment(lv->first_assignment, ls->var_hash);
|
|
if (inc != NULL) {
|
|
lv->increment = inc;
|
|
|
|
lv->remove();
|
|
ls->induction_variables.push_tail(lv);
|
|
}
|
|
}
|
|
|
|
/* Search the loop terminating conditions for those of the form 'i < c'
|
|
* where i is a loop induction variable, c is a constant, and < is any
|
|
* relative operator. From each of these we can infer an iteration count.
|
|
* Also figure out which terminator (if any) produces the smallest
|
|
* iteration count--this is the limiting terminator.
|
|
*/
|
|
foreach_in_list(loop_terminator, t, &ls->terminators) {
|
|
ir_if *if_stmt = t->ir;
|
|
|
|
/* If-statements can be either 'if (expr)' or 'if (deref)'. We only care
|
|
* about the former here.
|
|
*/
|
|
ir_expression *cond = if_stmt->condition->as_expression();
|
|
if (cond == NULL)
|
|
continue;
|
|
|
|
switch (cond->operation) {
|
|
case ir_binop_less:
|
|
case ir_binop_gequal: {
|
|
/* The expressions that we care about will either be of the form
|
|
* 'counter < limit' or 'limit < counter'. Figure out which is
|
|
* which.
|
|
*/
|
|
ir_rvalue *counter = cond->operands[0]->as_dereference_variable();
|
|
ir_constant *limit = cond->operands[1]->as_constant();
|
|
enum ir_expression_operation cmp = cond->operation;
|
|
bool swap_compare_operands = false;
|
|
|
|
if (limit == NULL) {
|
|
counter = cond->operands[1]->as_dereference_variable();
|
|
limit = cond->operands[0]->as_constant();
|
|
swap_compare_operands = true;
|
|
}
|
|
|
|
if ((counter == NULL) || (limit == NULL))
|
|
break;
|
|
|
|
ir_variable *var = counter->variable_referenced();
|
|
|
|
ir_rvalue *init = find_initial_value(ir, var);
|
|
|
|
loop_variable *lv = ls->get(var);
|
|
if (lv != NULL && lv->is_induction_var()) {
|
|
bool inc_before_terminator =
|
|
incremented_before_terminator(ir, var, t->ir);
|
|
|
|
t->iterations = calculate_iterations(init, limit, lv->increment,
|
|
cmp, t->continue_from_then,
|
|
swap_compare_operands,
|
|
inc_before_terminator);
|
|
|
|
if (t->iterations >= 0 &&
|
|
(ls->limiting_terminator == NULL ||
|
|
t->iterations < ls->limiting_terminator->iterations)) {
|
|
ls->limiting_terminator = t;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit_enter(ir_if *ir)
|
|
{
|
|
(void) ir;
|
|
|
|
if (!this->state.is_empty())
|
|
this->if_statement_depth++;
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit_leave(ir_if *ir)
|
|
{
|
|
(void) ir;
|
|
|
|
if (!this->state.is_empty())
|
|
this->if_statement_depth--;
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit_enter(ir_assignment *ir)
|
|
{
|
|
/* If we're not somewhere inside a loop, there's nothing to do.
|
|
*/
|
|
if (this->state.is_empty())
|
|
return visit_continue_with_parent;
|
|
|
|
this->current_assignment = ir;
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit_leave(ir_assignment *ir)
|
|
{
|
|
/* Since the visit_enter exits with visit_continue_with_parent for this
|
|
* case, the loop state stack should never be empty here.
|
|
*/
|
|
assert(!this->state.is_empty());
|
|
|
|
assert(this->current_assignment == ir);
|
|
this->current_assignment = NULL;
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
|
|
class examine_rhs : public ir_hierarchical_visitor {
|
|
public:
|
|
examine_rhs(hash_table *loop_variables)
|
|
{
|
|
this->only_uses_loop_constants = true;
|
|
this->loop_variables = loop_variables;
|
|
}
|
|
|
|
virtual ir_visitor_status visit(ir_dereference_variable *ir)
|
|
{
|
|
hash_entry *entry = _mesa_hash_table_search(this->loop_variables,
|
|
ir->var);
|
|
loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
|
|
|
|
assert(lv != NULL);
|
|
|
|
if (lv->is_loop_constant()) {
|
|
return visit_continue;
|
|
} else {
|
|
this->only_uses_loop_constants = false;
|
|
return visit_stop;
|
|
}
|
|
}
|
|
|
|
hash_table *loop_variables;
|
|
bool only_uses_loop_constants;
|
|
};
|
|
|
|
|
|
bool
|
|
all_expression_operands_are_loop_constant(ir_rvalue *ir, hash_table *variables)
|
|
{
|
|
examine_rhs v(variables);
|
|
|
|
ir->accept(&v);
|
|
|
|
return v.only_uses_loop_constants;
|
|
}
|
|
|
|
|
|
ir_rvalue *
|
|
get_basic_induction_increment(ir_assignment *ir, hash_table *var_hash)
|
|
{
|
|
/* The RHS must be a binary expression.
|
|
*/
|
|
ir_expression *const rhs = ir->rhs->as_expression();
|
|
if ((rhs == NULL)
|
|
|| ((rhs->operation != ir_binop_add)
|
|
&& (rhs->operation != ir_binop_sub)))
|
|
return NULL;
|
|
|
|
/* One of the of operands of the expression must be the variable assigned.
|
|
* If the operation is subtraction, the variable in question must be the
|
|
* "left" operand.
|
|
*/
|
|
ir_variable *const var = ir->lhs->variable_referenced();
|
|
|
|
ir_variable *const op0 = rhs->operands[0]->variable_referenced();
|
|
ir_variable *const op1 = rhs->operands[1]->variable_referenced();
|
|
|
|
if (((op0 != var) && (op1 != var))
|
|
|| ((op1 == var) && (rhs->operation == ir_binop_sub)))
|
|
return NULL;
|
|
|
|
ir_rvalue *inc = (op0 == var) ? rhs->operands[1] : rhs->operands[0];
|
|
|
|
if (inc->as_constant() == NULL) {
|
|
ir_variable *const inc_var = inc->variable_referenced();
|
|
if (inc_var != NULL) {
|
|
hash_entry *entry = _mesa_hash_table_search(var_hash, inc_var);
|
|
loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
|
|
|
|
if (lv == NULL || !lv->is_loop_constant()) {
|
|
assert(lv != NULL);
|
|
inc = NULL;
|
|
}
|
|
} else
|
|
inc = NULL;
|
|
}
|
|
|
|
if ((inc != NULL) && (rhs->operation == ir_binop_sub)) {
|
|
void *mem_ctx = ralloc_parent(ir);
|
|
|
|
inc = new(mem_ctx) ir_expression(ir_unop_neg,
|
|
inc->type,
|
|
inc->clone(mem_ctx, NULL),
|
|
NULL);
|
|
}
|
|
|
|
return inc;
|
|
}
|
|
|
|
|
|
/**
|
|
* Detect whether an if-statement is a loop terminating condition, if so
|
|
* add it to the list of loop terminators.
|
|
*
|
|
* Detects if-statements of the form
|
|
*
|
|
* (if (expression bool ...) (...then_instrs...break))
|
|
*
|
|
* or
|
|
*
|
|
* (if (expression bool ...) ... (...else_instrs...break))
|
|
*/
|
|
void
|
|
try_add_loop_terminator(loop_variable_state *ls, ir_if *ir)
|
|
{
|
|
ir_instruction *inst = (ir_instruction *) ir->then_instructions.get_tail();
|
|
ir_instruction *else_inst =
|
|
(ir_instruction *) ir->else_instructions.get_tail();
|
|
|
|
if (is_break(inst) || is_break(else_inst))
|
|
ls->insert(ir, is_break(else_inst));
|
|
}
|
|
|
|
|
|
loop_state *
|
|
analyze_loop_variables(exec_list *instructions)
|
|
{
|
|
loop_state *loops = new loop_state;
|
|
loop_analysis v(loops);
|
|
|
|
v.run(instructions);
|
|
return v.loops;
|
|
}
|