mesa/src/gallium/frontends/rusticl/api/memory.rs
Karol Herbst 20c90fed5a rusticl: added
Initial code drop for Rusticl :)

Signed-off-by: Karol Herbst <kherbst@redhat.com>
Acked-by: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/15439>
2022-09-12 05:58:12 +00:00

1343 lines
51 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#![allow(non_upper_case_globals)]
extern crate mesa_rust_util;
extern crate rusticl_opencl_gen;
use crate::api::event::create_and_queue;
use crate::api::icd::*;
use crate::api::types::*;
use crate::api::util::*;
use crate::core::device::*;
use crate::core::memory::*;
use crate::*;
use self::mesa_rust_util::ptr::*;
use self::rusticl_opencl_gen::*;
use std::cmp::Ordering;
use std::os::raw::c_void;
use std::ptr;
use std::sync::Arc;
fn validate_mem_flags(flags: cl_mem_flags, images: bool) -> CLResult<()> {
let mut valid_flags = cl_bitfield::from(
CL_MEM_READ_WRITE | CL_MEM_WRITE_ONLY | CL_MEM_READ_ONLY | CL_MEM_KERNEL_READ_AND_WRITE,
);
if !images {
valid_flags |= cl_bitfield::from(
CL_MEM_USE_HOST_PTR
| CL_MEM_ALLOC_HOST_PTR
| CL_MEM_COPY_HOST_PTR
| CL_MEM_HOST_WRITE_ONLY
| CL_MEM_HOST_READ_ONLY
| CL_MEM_HOST_NO_ACCESS,
);
}
let read_write_group =
cl_bitfield::from(CL_MEM_READ_WRITE | CL_MEM_WRITE_ONLY | CL_MEM_READ_ONLY);
let alloc_host_group = cl_bitfield::from(CL_MEM_ALLOC_HOST_PTR | CL_MEM_USE_HOST_PTR);
let copy_host_group = cl_bitfield::from(CL_MEM_COPY_HOST_PTR | CL_MEM_USE_HOST_PTR);
let host_read_write_group =
cl_bitfield::from(CL_MEM_HOST_WRITE_ONLY | CL_MEM_HOST_READ_ONLY | CL_MEM_HOST_NO_ACCESS);
if (flags & !valid_flags != 0)
|| (flags & read_write_group).count_ones() > 1
|| (flags & alloc_host_group).count_ones() > 1
|| (flags & copy_host_group).count_ones() > 1
|| (flags & host_read_write_group).count_ones() > 1
{
return Err(CL_INVALID_VALUE);
}
Ok(())
}
fn filter_image_access_flags(flags: cl_mem_flags) -> cl_mem_flags {
flags
& (CL_MEM_READ_WRITE | CL_MEM_WRITE_ONLY | CL_MEM_READ_ONLY | CL_MEM_KERNEL_READ_AND_WRITE)
as cl_mem_flags
}
fn inherit_mem_flags(mut flags: cl_mem_flags, mem: &Mem) -> cl_mem_flags {
let read_write_mask = cl_bitfield::from(
CL_MEM_READ_WRITE |
CL_MEM_WRITE_ONLY |
CL_MEM_READ_ONLY |
// not in spec, but...
CL_MEM_KERNEL_READ_AND_WRITE,
);
let host_ptr_mask =
cl_bitfield::from(CL_MEM_USE_HOST_PTR | CL_MEM_ALLOC_HOST_PTR | CL_MEM_COPY_HOST_PTR);
let host_mask =
cl_bitfield::from(CL_MEM_HOST_WRITE_ONLY | CL_MEM_HOST_READ_ONLY | CL_MEM_HOST_NO_ACCESS);
// For CL_MEM_OBJECT_IMAGE1D_BUFFER image type, or an image created from another memory object
// (image or buffer)...
//
// ... if the CL_MEM_READ_WRITE, CL_MEM_READ_ONLY or CL_MEM_WRITE_ONLY values are not
// specified in flags, they are inherited from the corresponding memory access qualifiers
// associated with mem_object. ...
if flags & read_write_mask == 0 {
flags |= mem.flags & read_write_mask;
}
// ... The CL_MEM_USE_HOST_PTR, CL_MEM_ALLOC_HOST_PTR and CL_MEM_COPY_HOST_PTR values cannot
// be specified in flags but are inherited from the corresponding memory access qualifiers
// associated with mem_object. ...
flags &= !host_ptr_mask;
flags |= mem.flags & host_ptr_mask;
// ... If the CL_MEM_HOST_WRITE_ONLY, CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS values
// are not specified in flags, they are inherited from the corresponding memory access
// qualifiers associated with mem_object.
if flags & host_mask == 0 {
flags |= mem.flags & host_mask;
}
flags
}
fn image_type_valid(image_type: cl_mem_object_type) -> bool {
CL_IMAGE_TYPES.contains(&image_type)
}
fn validate_addressing_mode(addressing_mode: cl_addressing_mode) -> CLResult<()> {
match addressing_mode {
CL_ADDRESS_NONE
| CL_ADDRESS_CLAMP_TO_EDGE
| CL_ADDRESS_CLAMP
| CL_ADDRESS_REPEAT
| CL_ADDRESS_MIRRORED_REPEAT => Ok(()),
_ => Err(CL_INVALID_VALUE),
}
}
fn validate_filter_mode(filter_mode: cl_filter_mode) -> CLResult<()> {
match filter_mode {
CL_FILTER_NEAREST | CL_FILTER_LINEAR => Ok(()),
_ => Err(CL_INVALID_VALUE),
}
}
fn validate_host_ptr(host_ptr: *mut ::std::os::raw::c_void, flags: cl_mem_flags) -> CLResult<()> {
// CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or CL_MEM_COPY_HOST_PTR are
// set in flags
if host_ptr.is_null()
&& flags & (cl_mem_flags::from(CL_MEM_USE_HOST_PTR | CL_MEM_COPY_HOST_PTR)) != 0
{
return Err(CL_INVALID_HOST_PTR);
}
// or if host_ptr is not NULL but CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in
// flags.
if !host_ptr.is_null()
&& flags & (cl_mem_flags::from(CL_MEM_USE_HOST_PTR | CL_MEM_COPY_HOST_PTR)) == 0
{
return Err(CL_INVALID_HOST_PTR);
}
Ok(())
}
fn validate_matching_buffer_flags(mem: &Mem, flags: cl_mem_flags) -> CLResult<()> {
// CL_INVALID_VALUE if an image is being created from another memory object (buffer or image)
// under one of the following circumstances:
//
// 1) mem_object was created with CL_MEM_WRITE_ONLY and
// flags specifies CL_MEM_READ_WRITE or CL_MEM_READ_ONLY,
if bit_check(mem.flags, CL_MEM_WRITE_ONLY) && bit_check(flags, CL_MEM_READ_WRITE | CL_MEM_READ_ONLY) ||
// 2) mem_object was created with CL_MEM_READ_ONLY and
// flags specifies CL_MEM_READ_WRITE or CL_MEM_WRITE_ONLY,
bit_check(mem.flags, CL_MEM_READ_ONLY) && bit_check(flags, CL_MEM_READ_WRITE | CL_MEM_WRITE_ONLY) ||
// 3) flags specifies CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR or CL_MEM_COPY_HOST_PTR.
bit_check(flags, CL_MEM_USE_HOST_PTR | CL_MEM_ALLOC_HOST_PTR | CL_MEM_COPY_HOST_PTR) ||
// CL_INVALID_VALUE if an image is being created from another memory object (buffer or image)
// and mem_object was created with CL_MEM_HOST_WRITE_ONLY and flags specifies CL_MEM_HOST_READ_ONLY
bit_check(mem.flags, CL_MEM_HOST_WRITE_ONLY) && bit_check(flags, CL_MEM_HOST_READ_ONLY) ||
// or if mem_object was created with CL_MEM_HOST_READ_ONLY and flags specifies CL_MEM_HOST_WRITE_ONLY
bit_check(mem.flags, CL_MEM_HOST_READ_ONLY) && bit_check(flags, CL_MEM_HOST_WRITE_ONLY) ||
// or if mem_object was created with CL_MEM_HOST_NO_ACCESS and_flags_ specifies CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_WRITE_ONLY.
bit_check(mem.flags, CL_MEM_HOST_NO_ACCESS) && bit_check(flags, CL_MEM_HOST_READ_ONLY | CL_MEM_HOST_WRITE_ONLY)
{
return Err(CL_INVALID_VALUE);
}
Ok(())
}
impl CLInfo<cl_mem_info> for cl_mem {
fn query(&self, q: cl_mem_info) -> CLResult<Vec<u8>> {
let mem = self.get_ref()?;
Ok(match *q {
CL_MEM_ASSOCIATED_MEMOBJECT => {
let ptr = match mem.parent.as_ref() {
// Note we use as_ptr here which doesn't increase the reference count.
Some(parent) => Arc::as_ptr(parent),
None => ptr::null(),
};
cl_prop::<cl_mem>(cl_mem::from_ptr(ptr))
}
CL_MEM_CONTEXT => {
// Note we use as_ptr here which doesn't increase the reference count.
let ptr = Arc::as_ptr(&mem.context);
cl_prop::<cl_context>(cl_context::from_ptr(ptr))
}
CL_MEM_FLAGS => cl_prop::<cl_mem_flags>(mem.flags),
// TODO debugging feature
CL_MEM_MAP_COUNT => cl_prop::<cl_uint>(0),
CL_MEM_HOST_PTR => cl_prop::<*mut c_void>(mem.host_ptr),
CL_MEM_OFFSET => cl_prop::<usize>(mem.offset),
CL_MEM_REFERENCE_COUNT => cl_prop::<cl_uint>(self.refcnt()?),
CL_MEM_SIZE => cl_prop::<usize>(mem.size),
CL_MEM_TYPE => cl_prop::<cl_mem_object_type>(mem.mem_type),
_ => return Err(CL_INVALID_VALUE),
})
}
}
pub fn create_buffer(
context: cl_context,
flags: cl_mem_flags,
size: usize,
host_ptr: *mut ::std::os::raw::c_void,
) -> CLResult<cl_mem> {
let c = context.get_arc()?;
// CL_INVALID_VALUE if values specified in flags are not valid as defined in the Memory Flags table.
validate_mem_flags(flags, false)?;
// CL_INVALID_BUFFER_SIZE if size is 0
if size == 0 {
return Err(CL_INVALID_BUFFER_SIZE);
}
// ... or if size is greater than CL_DEVICE_MAX_MEM_ALLOC_SIZE for all devices in context.
for dev in &c.devs {
if checked_compare(size, Ordering::Greater, dev.max_mem_alloc()) {
return Err(CL_INVALID_BUFFER_SIZE);
}
}
validate_host_ptr(host_ptr, flags)?;
Ok(cl_mem::from_arc(Mem::new_buffer(c, flags, size, host_ptr)?))
}
pub fn create_sub_buffer(
buffer: cl_mem,
mut flags: cl_mem_flags,
buffer_create_type: cl_buffer_create_type,
buffer_create_info: *const ::std::os::raw::c_void,
) -> CLResult<cl_mem> {
let b = buffer.get_arc()?;
// CL_INVALID_MEM_OBJECT if buffer ... is a sub-buffer object.
if b.parent.is_some() {
return Err(CL_INVALID_MEM_OBJECT);
}
validate_matching_buffer_flags(&b, flags)?;
flags = inherit_mem_flags(flags, &b);
validate_mem_flags(flags, false)?;
let (offset, size) = match buffer_create_type {
CL_BUFFER_CREATE_TYPE_REGION => {
// buffer_create_info is a pointer to a cl_buffer_region structure specifying a region of
// the buffer.
// CL_INVALID_VALUE if value(s) specified in buffer_create_info (for a given
// buffer_create_type) is not valid or if buffer_create_info is NULL.
let region = unsafe { buffer_create_info.cast::<cl_buffer_region>().as_ref() }
.ok_or(CL_INVALID_VALUE)?;
// CL_INVALID_BUFFER_SIZE if the size field of the cl_buffer_region structure passed in
// buffer_create_info is 0.
if region.size == 0 {
return Err(CL_INVALID_BUFFER_SIZE);
}
// CL_INVALID_VALUE if the region specified by the cl_buffer_region structure passed in
// buffer_create_info is out of bounds in buffer.
if region.origin + region.size > b.size {
return Err(CL_INVALID_VALUE);
}
(region.origin, region.size)
}
// CL_INVALID_VALUE if the value specified in buffer_create_type is not valid.
_ => return Err(CL_INVALID_VALUE),
};
Ok(cl_mem::from_arc(Mem::new_sub_buffer(
b, flags, offset, size,
)))
// TODO
// CL_MISALIGNED_SUB_BUFFER_OFFSET if there are no devices in context associated with buffer for which the origin field of the cl_buffer_region structure passed in buffer_create_info is aligned to the CL_DEVICE_MEM_BASE_ADDR_ALIGN value.
}
pub fn set_mem_object_destructor_callback(
memobj: cl_mem,
pfn_notify: Option<MemCB>,
user_data: *mut ::std::os::raw::c_void,
) -> CLResult<()> {
let m = memobj.get_ref()?;
// CL_INVALID_VALUE if pfn_notify is NULL.
if pfn_notify.is_none() {
return Err(CL_INVALID_VALUE);
}
m.cbs
.lock()
.unwrap()
.push(cl_closure!(|m| pfn_notify(m, user_data)));
Ok(())
}
fn validate_image_format<'a>(
image_format: *const cl_image_format,
) -> CLResult<(&'a cl_image_format, u8)> {
// CL_INVALID_IMAGE_FORMAT_DESCRIPTOR ... if image_format is NULL.
let format = unsafe { image_format.as_ref() }.ok_or(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR)?;
let channels = match format.image_channel_order {
CL_R | CL_A | CL_DEPTH | CL_LUMINANCE | CL_INTENSITY => 1,
CL_RG | CL_RA | CL_Rx => 2,
CL_RGB | CL_RGx | CL_sRGB => 3,
CL_RGBA | CL_ARGB | CL_BGRA | CL_ABGR | CL_RGBx | CL_sRGBA | CL_sBGRA | CL_sRGBx => 4,
_ => return Err(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR),
};
let channel_size = match format.image_channel_data_type {
CL_SNORM_INT8 | CL_UNORM_INT8 | CL_SIGNED_INT8 | CL_UNSIGNED_INT8 => 1,
CL_SNORM_INT16 | CL_UNORM_INT16 | CL_SIGNED_INT16 | CL_UNSIGNED_INT16 | CL_HALF_FLOAT
| CL_UNORM_SHORT_565 | CL_UNORM_SHORT_555 => 2,
CL_SIGNED_INT32
| CL_UNSIGNED_INT32
| CL_FLOAT
| CL_UNORM_INT_101010
| CL_UNORM_INT_101010_2 => 4,
_ => return Err(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR),
};
let packed = [
CL_UNORM_SHORT_565,
CL_UNORM_SHORT_555,
CL_UNORM_INT_101010,
CL_UNORM_INT_101010,
]
.contains(&format.image_channel_data_type);
// special validation
let valid_combination = match format.image_channel_data_type {
CL_UNORM_SHORT_565 | CL_UNORM_SHORT_555 | CL_UNORM_INT_101010 => {
[CL_RGB, CL_RGBx].contains(&format.image_channel_data_type)
}
CL_UNORM_INT_101010_2 => format.image_channel_data_type == CL_RGBA,
_ => true,
};
if !valid_combination {
return Err(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR);
}
Ok((
format,
if packed {
channel_size
} else {
channels * channel_size
},
))
}
fn validate_image_desc(
image_desc: *const cl_image_desc,
host_ptr: *mut ::std::os::raw::c_void,
elem_size: usize,
devs: &[Arc<Device>],
) -> CLResult<cl_image_desc> {
// CL_INVALID_IMAGE_DESCRIPTOR if values specified in image_desc are not valid
const err: cl_int = CL_INVALID_IMAGE_DESCRIPTOR;
// CL_INVALID_IMAGE_DESCRIPTOR ... if image_desc is NULL.
let mut desc = *unsafe { image_desc.as_ref() }.ok_or(err)?;
// image_type describes the image type and must be either CL_MEM_OBJECT_IMAGE1D,
// CL_MEM_OBJECT_IMAGE1D_BUFFER, CL_MEM_OBJECT_IMAGE1D_ARRAY, CL_MEM_OBJECT_IMAGE2D,
// CL_MEM_OBJECT_IMAGE2D_ARRAY, or CL_MEM_OBJECT_IMAGE3D.
let (dims, array) = match desc.image_type {
CL_MEM_OBJECT_IMAGE1D | CL_MEM_OBJECT_IMAGE1D_BUFFER => (1, false),
CL_MEM_OBJECT_IMAGE1D_ARRAY => (1, true),
CL_MEM_OBJECT_IMAGE2D => (2, false),
CL_MEM_OBJECT_IMAGE2D_ARRAY => (2, true),
CL_MEM_OBJECT_IMAGE3D => (3, false),
_ => return Err(err),
};
// image_width is the width of the image in pixels. For a 2D image and image array, the image
// width must be a value ≥ 1 and ≤ CL_DEVICE_IMAGE2D_MAX_WIDTH. For a 3D image, the image width
// must be a value ≥ 1 and ≤ CL_DEVICE_IMAGE3D_MAX_WIDTH. For a 1D image buffer, the image width
// must be a value ≥ 1 and ≤ CL_DEVICE_IMAGE_MAX_BUFFER_SIZE. For a 1D image and 1D image array,
// the image width must be a value ≥ 1 and ≤ CL_DEVICE_IMAGE2D_MAX_WIDTH.
//
// image_height is the height of the image in pixels. This is only used if the image is a 2D or
// 3D image, or a 2D image array. For a 2D image or image array, the image height must be a
// value ≥ 1 and ≤ CL_DEVICE_IMAGE2D_MAX_HEIGHT. For a 3D image, the image height must be a
// value ≥ 1 and ≤ CL_DEVICE_IMAGE3D_MAX_HEIGHT.
//
// image_depth is the depth of the image in pixels. This is only used if the image is a 3D image
// and must be a value ≥ 1 and ≤ CL_DEVICE_IMAGE3D_MAX_DEPTH.
if desc.image_width < 1
|| desc.image_height < 1 && dims >= 2
|| desc.image_depth < 1 && dims >= 3
|| desc.image_array_size < 1 && array
{
return Err(err);
}
let max_size = if dims == 3 {
devs.iter().map(|d| d.image_3d_size()).min()
} else if desc.image_type == CL_MEM_OBJECT_IMAGE1D_BUFFER {
devs.iter().map(|d| d.image_buffer_size()).min()
} else {
devs.iter().map(|d| d.image_2d_size()).min()
}
.unwrap();
let max_array = devs.iter().map(|d| d.image_array_size()).min().unwrap();
// CL_INVALID_IMAGE_SIZE if image dimensions specified in image_desc exceed the maximum image
// dimensions described in the Device Queries table for all devices in context.
if desc.image_width > max_size
|| desc.image_height > max_size && dims >= 2
|| desc.image_depth > max_size && dims >= 3
|| desc.image_array_size > max_array && array
{
return Err(CL_INVALID_IMAGE_SIZE);
}
// num_mip_levels and num_samples must be 0.
if desc.num_mip_levels != 0 || desc.num_samples != 0 {
return Err(err);
}
// mem_object may refer to a valid buffer or image memory object. mem_object can be a buffer
// memory object if image_type is CL_MEM_OBJECT_IMAGE1D_BUFFER or CL_MEM_OBJECT_IMAGE2D.
// mem_object can be an image object if image_type is CL_MEM_OBJECT_IMAGE2D. Otherwise it must
// be NULL.
//
// TODO: cl_khr_image2d_from_buffer is an optional feature
let p = unsafe { &desc.anon_1.mem_object };
if !p.is_null() {
let p = p.get_ref()?;
if !match desc.image_type {
CL_MEM_OBJECT_IMAGE1D_BUFFER => p.is_buffer(),
CL_MEM_OBJECT_IMAGE2D => !p.is_buffer(),
_ => false,
} {
return Err(CL_INVALID_OPERATION);
}
}
// image_row_pitch is the scan-line pitch in bytes. This must be 0 if host_ptr is NULL and can
// be either 0 or ≥ image_width × size of element in bytes if host_ptr is not NULL. If host_ptr
// is not NULL and image_row_pitch = 0, image_row_pitch is calculated as image_width × size of
// element in bytes. If image_row_pitch is not 0, it must be a multiple of the image element
// size in bytes. For a 2D image created from a buffer, the pitch specified (or computed if
// pitch specified is 0) must be a multiple of the maximum of the
// CL_DEVICE_IMAGE_PITCH_ALIGNMENT value for all devices in the context associated with the
// buffer specified by mem_object that support images.
//
// image_slice_pitch is the size in bytes of each 2D slice in the 3D image or the size in bytes
// of each image in a 1D or 2D image array. This must be 0 if host_ptr is NULL. If host_ptr is
// not NULL, image_slice_pitch can be either 0 or ≥ image_row_pitch × image_height for a 2D
// image array or 3D image and can be either 0 or ≥ image_row_pitch for a 1D image array. If
// host_ptr is not NULL and image_slice_pitch = 0, image_slice_pitch is calculated as
// image_row_pitch × image_height for a 2D image array or 3D image and image_row_pitch for a 1D
// image array. If image_slice_pitch is not 0, it must be a multiple of the image_row_pitch.
if host_ptr.is_null() {
if desc.image_row_pitch != 0 || desc.image_slice_pitch != 0 {
return Err(err);
}
} else {
if desc.image_row_pitch == 0 {
desc.image_row_pitch = desc.image_width * elem_size;
} else if desc.image_row_pitch % elem_size != 0 {
return Err(err);
}
if dims == 3 || array {
let valid_slice_pitch =
desc.image_row_pitch * if dims == 1 { 1 } else { desc.image_height };
if desc.image_slice_pitch == 0 {
desc.image_slice_pitch = valid_slice_pitch;
} else if desc.image_slice_pitch < valid_slice_pitch
|| desc.image_slice_pitch % desc.image_row_pitch != 0
{
return Err(err);
}
}
}
Ok(desc)
}
fn desc_eq_no_buffer(a: &cl_image_desc, b: &cl_image_desc) -> bool {
a.image_type == b.image_type
&& a.image_width == b.image_width
&& a.image_height == b.image_height
&& a.image_depth == b.image_depth
&& a.image_array_size == b.image_array_size
&& a.image_row_pitch == b.image_row_pitch
&& a.image_slice_pitch == b.image_slice_pitch
&& a.num_mip_levels == b.num_mip_levels
&& a.num_samples == b.num_samples
}
fn validate_buffer(
desc: &cl_image_desc,
mut flags: cl_mem_flags,
format: &cl_image_format,
host_ptr: *mut ::std::os::raw::c_void,
elem_size: usize,
) -> CLResult<cl_mem_flags> {
// CL_INVALID_IMAGE_DESCRIPTOR if values specified in image_desc are not valid
const err: cl_int = CL_INVALID_IMAGE_DESCRIPTOR;
let mem_object = unsafe { desc.anon_1.mem_object };
// mem_object may refer to a valid buffer or image memory object. mem_object can be a buffer
// memory object if image_type is CL_MEM_OBJECT_IMAGE1D_BUFFER or CL_MEM_OBJECT_IMAGE2D
// mem_object can be an image object if image_type is CL_MEM_OBJECT_IMAGE2D. Otherwise it must
// be NULL. The image pixels are taken from the memory objects data store. When the contents of
// the specified memory objects data store are modified, those changes are reflected in the
// contents of the image object and vice-versa at corresponding synchronization points.
if !mem_object.is_null() {
let mem = mem_object.get_ref()?;
match mem.mem_type {
CL_MEM_OBJECT_BUFFER => {
match desc.image_type {
// For a 1D image buffer created from a buffer object, the image_width × size of
// element in bytes must be ≤ size of the buffer object.
CL_MEM_OBJECT_IMAGE1D_BUFFER => {
if desc.image_width * elem_size > mem.size {
return Err(err);
}
}
// For a 2D image created from a buffer object, the image_row_pitch × image_height
// must be ≤ size of the buffer object specified by mem_object.
CL_MEM_OBJECT_IMAGE2D => {
//TODO
//• CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if a 2D image is created from a buffer and the row pitch and base address alignment does not follow the rules described for creating a 2D image from a buffer.
if desc.image_row_pitch * desc.image_height > mem.size {
return Err(err);
}
}
_ => return Err(err),
}
}
// For an image object created from another image object, the values specified in the
// image descriptor except for mem_object must match the image descriptor information
// associated with mem_object.
CL_MEM_OBJECT_IMAGE2D => {
if desc.image_type != mem.mem_type || !desc_eq_no_buffer(desc, &mem.image_desc) {
return Err(err);
}
// CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if a 2D image is created from a 2D image object
// and the rules described above are not followed.
// Creating a 2D image object from another 2D image object creates a new 2D image
// object that shares the image data store with mem_object but views the pixels in the
// image with a different image channel order. Restrictions are:
//
// The image channel data type specified in image_format must match the image channel
// data type associated with mem_object.
if format.image_channel_data_type != mem.image_format.image_channel_data_type {
return Err(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR);
}
// The image channel order specified in image_format must be compatible with the image
// channel order associated with mem_object. Compatible image channel orders are:
if format.image_channel_order != mem.image_format.image_channel_order {
// in image_format | in mem_object:
// CL_sBGRA | CL_BGRA
// CL_BGRA | CL_sBGRA
// CL_sRGBA | CL_RGBA
// CL_RGBA | CL_sRGBA
// CL_sRGB | CL_RGB
// CL_RGB | CL_sRGB
// CL_sRGBx | CL_RGBx
// CL_RGBx | CL_sRGBx
// CL_DEPTH | CL_R
match (
format.image_channel_order,
mem.image_format.image_channel_order,
) {
(CL_sBGRA, CL_BGRA)
| (CL_BGRA, CL_sBGRA)
| (CL_sRGBA, CL_RGBA)
| (CL_RGBA, CL_sRGBA)
| (CL_sRGB, CL_RGB)
| (CL_RGB, CL_sRGB)
| (CL_sRGBx, CL_RGBx)
| (CL_RGBx, CL_sRGBx)
| (CL_DEPTH, CL_R) => (),
_ => return Err(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR),
}
}
}
_ => return Err(err),
}
// If the buffer object specified by mem_object was created with CL_MEM_USE_HOST_PTR, the
// host_ptr specified to clCreateBuffer or clCreateBufferWithProperties must be aligned to
// the maximum of the CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT value for all devices in the
// context associated with the buffer specified by mem_object that support images.
if mem.flags & CL_MEM_USE_HOST_PTR as cl_mem_flags != 0 {
for dev in &mem.context.devs {
let addr_alignment = dev.image_base_address_alignment();
if addr_alignment == 0 {
return Err(CL_INVALID_OPERATION);
} else if !is_alligned(host_ptr, addr_alignment as usize) {
return Err(err);
}
}
}
validate_matching_buffer_flags(mem, flags)?;
flags = inherit_mem_flags(flags, mem);
// implied by spec
} else if desc.image_type == CL_MEM_OBJECT_IMAGE1D_BUFFER {
return Err(err);
}
Ok(flags)
}
impl CLInfo<cl_image_info> for cl_mem {
fn query(&self, q: cl_image_info) -> CLResult<Vec<u8>> {
let mem = self.get_ref()?;
Ok(match *q {
CL_IMAGE_ARRAY_SIZE => cl_prop::<usize>(mem.image_desc.image_array_size),
CL_IMAGE_BUFFER => cl_prop::<cl_mem>(unsafe { mem.image_desc.anon_1.buffer }),
CL_IMAGE_DEPTH => cl_prop::<usize>(mem.image_desc.image_depth),
CL_IMAGE_ELEMENT_SIZE => cl_prop::<usize>(mem.image_elem_size.into()),
CL_IMAGE_FORMAT => cl_prop::<cl_image_format>(mem.image_format),
CL_IMAGE_HEIGHT => cl_prop::<usize>(mem.image_desc.image_height),
CL_IMAGE_NUM_MIP_LEVELS => cl_prop::<cl_uint>(mem.image_desc.num_mip_levels),
CL_IMAGE_NUM_SAMPLES => cl_prop::<cl_uint>(mem.image_desc.num_samples),
CL_IMAGE_ROW_PITCH => cl_prop::<usize>(mem.image_desc.image_row_pitch),
CL_IMAGE_SLICE_PITCH => cl_prop::<usize>(mem.image_desc.image_slice_pitch),
CL_IMAGE_WIDTH => cl_prop::<usize>(mem.image_desc.image_width),
_ => return Err(CL_INVALID_VALUE),
})
}
}
pub fn create_image(
context: cl_context,
mut flags: cl_mem_flags,
image_format: *const cl_image_format,
image_desc: *const cl_image_desc,
host_ptr: *mut ::std::os::raw::c_void,
) -> CLResult<cl_mem> {
let c = context.get_arc()?;
// CL_INVALID_OPERATION if there are no devices in context that support images (i.e.
// CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).
c.devs
.iter()
.find(|d| d.image_supported())
.ok_or(CL_INVALID_OPERATION)?;
let (format, elem_size) = validate_image_format(image_format)?;
let desc = validate_image_desc(image_desc, host_ptr, elem_size.into(), &c.devs)?;
flags = validate_buffer(&desc, flags, format, host_ptr, elem_size.into())?;
// For all image types except CL_MEM_OBJECT_IMAGE1D_BUFFER, if the value specified for flags is 0, the
// default is used which is CL_MEM_READ_WRITE.
if flags == 0 && desc.image_type != CL_MEM_OBJECT_IMAGE1D_BUFFER {
flags = CL_MEM_READ_WRITE.into();
}
validate_mem_flags(flags, false)?;
validate_host_ptr(host_ptr, flags)?;
let filtered_flags = filter_image_access_flags(flags);
// CL_IMAGE_FORMAT_NOT_SUPPORTED if there are no devices in context that support image_format.
c.devs
.iter()
.filter_map(|d| d.formats.get(format))
.filter_map(|f| f.get(&desc.image_type))
.find(|f| *f & filtered_flags == filtered_flags)
.ok_or(CL_IMAGE_FORMAT_NOT_SUPPORTED)?;
Ok(cl_mem::from_arc(Mem::new_image(
c,
desc.image_type,
flags,
format,
desc,
elem_size,
host_ptr,
)))
}
pub fn get_supported_image_formats(
context: cl_context,
flags: cl_mem_flags,
image_type: cl_mem_object_type,
num_entries: cl_uint,
image_formats: *mut cl_image_format,
num_image_formats: *mut cl_uint,
) -> CLResult<()> {
let c = context.get_ref()?;
// CL_INVALID_VALUE if flags
validate_mem_flags(flags, true)?;
// or image_type are not valid
if !image_type_valid(image_type) {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_VALUE ... if num_entries is 0 and image_formats is not NULL.
if num_entries == 0 && !image_formats.is_null() {
return Err(CL_INVALID_VALUE);
}
let mut res = Vec::<cl_image_format>::new();
let filtered_flags = filter_image_access_flags(flags);
for dev in &c.devs {
for f in &dev.formats {
let s = f.1.get(&image_type).unwrap_or(&0);
if filtered_flags & s == filtered_flags {
res.push(*f.0);
}
}
}
res.sort();
res.dedup();
num_image_formats.write_checked(res.len() as cl_uint);
unsafe { image_formats.copy_checked(res.as_ptr(), res.len()) };
Ok(())
}
impl CLInfo<cl_sampler_info> for cl_sampler {
fn query(&self, q: cl_sampler_info) -> CLResult<Vec<u8>> {
let sampler = self.get_ref()?;
Ok(match q {
CL_SAMPLER_ADDRESSING_MODE => cl_prop::<cl_addressing_mode>(sampler.addressing_mode),
CL_SAMPLER_CONTEXT => {
// Note we use as_ptr here which doesn't increase the reference count.
let ptr = Arc::as_ptr(&sampler.context);
cl_prop::<cl_context>(cl_context::from_ptr(ptr))
}
CL_SAMPLER_FILTER_MODE => cl_prop::<cl_filter_mode>(sampler.filter_mode),
CL_SAMPLER_NORMALIZED_COORDS => cl_prop::<bool>(sampler.normalized_coords),
CL_SAMPLER_REFERENCE_COUNT => cl_prop::<cl_uint>(self.refcnt()?),
// CL_INVALID_VALUE if param_name is not one of the supported values
_ => return Err(CL_INVALID_VALUE),
})
}
}
pub fn create_sampler(
context: cl_context,
normalized_coords: cl_bool,
addressing_mode: cl_addressing_mode,
filter_mode: cl_filter_mode,
) -> CLResult<cl_sampler> {
let c = context.get_arc()?;
// CL_INVALID_OPERATION if images are not supported by any device associated with context (i.e.
// CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).
c.devs
.iter()
.find(|d| d.image_supported())
.ok_or(CL_INVALID_OPERATION)?;
// CL_INVALID_VALUE if addressing_mode, filter_mode, normalized_coords or a combination of these
// arguements are not valid.
validate_addressing_mode(addressing_mode)?;
validate_filter_mode(filter_mode)?;
let sampler = Sampler::new(
c,
check_cl_bool(normalized_coords).ok_or(CL_INVALID_VALUE)?,
addressing_mode,
filter_mode,
);
Ok(cl_sampler::from_arc(sampler))
}
pub fn enqueue_write_buffer(
command_queue: cl_command_queue,
buffer: cl_mem,
blocking_write: cl_bool,
offset: usize,
cb: usize,
ptr: *const ::std::os::raw::c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = command_queue.get_arc()?;
let b = buffer.get_arc()?;
let block = check_cl_bool(blocking_write).ok_or(CL_INVALID_VALUE)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_VALUE if the region being read or written specified by (offset, size) is out of
// bounds or if ptr is a NULL value.
if offset + cb > b.size || ptr.is_null() {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_CONTEXT if the context associated with command_queue and buffer are not the same
if b.context != q.context {
return Err(CL_INVALID_CONTEXT);
}
// CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write operations are blocking
// and the execution status of any of the events in event_wait_list is a negative integer value.
if block && evs.iter().any(|e| e.is_error()) {
return Err(CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST);
}
// CL_INVALID_OPERATION if clEnqueueWriteBuffer is called on buffer which has been created with
// CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.
if bit_check(b.flags, CL_MEM_HOST_READ_ONLY | CL_MEM_HOST_NO_ACCESS) {
return Err(CL_INVALID_OPERATION);
}
create_and_queue(
q,
CL_COMMAND_WRITE_BUFFER,
evs,
event,
block,
Box::new(move |q, ctx| b.write_from_user(q, ctx, offset, ptr, cb)),
)
// TODO
// CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.
}
pub fn enqueue_read_buffer_rect(
command_queue: cl_command_queue,
buffer: cl_mem,
blocking_read: cl_bool,
buffer_origin: *const usize,
host_origin: *const usize,
region: *const usize,
mut buffer_row_pitch: usize,
mut buffer_slice_pitch: usize,
mut host_row_pitch: usize,
mut host_slice_pitch: usize,
ptr: *mut ::std::os::raw::c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let block = check_cl_bool(blocking_read).ok_or(CL_INVALID_VALUE)?;
let q = command_queue.get_arc()?;
let buf = buffer.get_arc()?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_OPERATION if clEnqueueReadBufferRect is called on buffer which has been created
// with CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.
if bit_check(buf.flags, CL_MEM_HOST_WRITE_ONLY | CL_MEM_HOST_NO_ACCESS) {
return Err(CL_INVALID_OPERATION);
}
// CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write operations are blocking
// and the execution status of any of the events in event_wait_list is a negative integer value.
if block && evs.iter().any(|e| e.is_error()) {
return Err(CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST);
}
// CL_INVALID_VALUE if buffer_origin, host_origin, or region is NULL.
if buffer_origin.is_null() ||
host_origin.is_null() ||
region.is_null() ||
// CL_INVALID_VALUE if ptr is NULL.
ptr.is_null()
{
return Err(CL_INVALID_VALUE);
}
let r = unsafe { CLVec::from_raw(region) };
let buf_ori = unsafe { CLVec::from_raw(buffer_origin) };
let host_ori = unsafe { CLVec::from_raw(host_origin) };
// CL_INVALID_VALUE if any region array element is 0.
if r.contains(&0) ||
// CL_INVALID_VALUE if buffer_row_pitch is not 0 and is less than region[0].
buffer_row_pitch != 0 && buffer_row_pitch < r[0] ||
// CL_INVALID_VALUE if host_row_pitch is not 0 and is less than region[0].
host_row_pitch != 0 && host_row_pitch < r[0]
{
return Err(CL_INVALID_VALUE);
}
// If buffer_row_pitch is 0, buffer_row_pitch is computed as region[0].
if buffer_row_pitch == 0 {
buffer_row_pitch = r[0];
}
// If host_row_pitch is 0, host_row_pitch is computed as region[0].
if host_row_pitch == 0 {
host_row_pitch = r[0];
}
// CL_INVALID_VALUE if buffer_slice_pitch is not 0 and is less than region[1] × buffer_row_pitch and not a multiple of buffer_row_pitch.
if buffer_slice_pitch != 0 && buffer_slice_pitch < r[1] * buffer_row_pitch && buffer_slice_pitch % buffer_row_pitch != 0 ||
// CL_INVALID_VALUE if host_slice_pitch is not 0 and is less than region[1] × host_row_pitch and not a multiple of host_row_pitch.
host_slice_pitch != 0 && host_slice_pitch < r[1] * host_row_pitch && host_slice_pitch % host_row_pitch != 0
{
return Err(CL_INVALID_VALUE);
}
// If buffer_slice_pitch is 0, buffer_slice_pitch is computed as region[1] × buffer_row_pitch.
if buffer_slice_pitch == 0 {
buffer_slice_pitch = r[1] * buffer_row_pitch;
}
// If host_slice_pitch is 0, host_slice_pitch is computed as region[1] × host_row_pitch.
if host_slice_pitch == 0 {
host_slice_pitch = r[1] * host_row_pitch
}
// CL_INVALID_VALUE if the region being read or written specified by (buffer_origin, region,
// buffer_row_pitch, buffer_slice_pitch) is out of bounds.
if !CLVec::is_in_bound(
r,
buf_ori,
[1, buffer_row_pitch, buffer_slice_pitch],
buf.size,
) {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_CONTEXT if the context associated with command_queue and buffer are not the same
if q.context != buf.context {
return Err(CL_INVALID_CONTEXT);
}
create_and_queue(
q,
CL_COMMAND_READ_BUFFER_RECT,
evs,
event,
block,
Box::new(move |q, ctx| {
buf.read_to_user_rect(
ptr,
q,
ctx,
&r,
&buf_ori,
buffer_row_pitch,
buffer_slice_pitch,
&host_ori,
host_row_pitch,
host_slice_pitch,
)
}),
)
// TODO
// CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.
}
pub fn enqueue_write_buffer_rect(
command_queue: cl_command_queue,
buffer: cl_mem,
blocking_write: cl_bool,
buffer_origin: *const usize,
host_origin: *const usize,
region: *const usize,
mut buffer_row_pitch: usize,
mut buffer_slice_pitch: usize,
mut host_row_pitch: usize,
mut host_slice_pitch: usize,
ptr: *const ::std::os::raw::c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let block = check_cl_bool(blocking_write).ok_or(CL_INVALID_VALUE)?;
let q = command_queue.get_arc()?;
let buf = buffer.get_arc()?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_OPERATION if clEnqueueWriteBufferRect is called on buffer which has been created
// with CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.
if bit_check(buf.flags, CL_MEM_HOST_READ_ONLY | CL_MEM_HOST_NO_ACCESS) {
return Err(CL_INVALID_OPERATION);
}
// CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write operations are blocking
// and the execution status of any of the events in event_wait_list is a negative integer value.
if block && evs.iter().any(|e| e.is_error()) {
return Err(CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST);
}
// CL_INVALID_VALUE if buffer_origin, host_origin, or region is NULL.
if buffer_origin.is_null() ||
host_origin.is_null() ||
region.is_null() ||
// CL_INVALID_VALUE if ptr is NULL.
ptr.is_null()
{
return Err(CL_INVALID_VALUE);
}
let r = unsafe { CLVec::from_raw(region) };
let buf_ori = unsafe { CLVec::from_raw(buffer_origin) };
let host_ori = unsafe { CLVec::from_raw(host_origin) };
// CL_INVALID_VALUE if any region array element is 0.
if r.contains(&0) ||
// CL_INVALID_VALUE if buffer_row_pitch is not 0 and is less than region[0].
buffer_row_pitch != 0 && buffer_row_pitch < r[0] ||
// CL_INVALID_VALUE if host_row_pitch is not 0 and is less than region[0].
host_row_pitch != 0 && host_row_pitch < r[0]
{
return Err(CL_INVALID_VALUE);
}
// If buffer_row_pitch is 0, buffer_row_pitch is computed as region[0].
if buffer_row_pitch == 0 {
buffer_row_pitch = r[0];
}
// If host_row_pitch is 0, host_row_pitch is computed as region[0].
if host_row_pitch == 0 {
host_row_pitch = r[0];
}
// CL_INVALID_VALUE if buffer_slice_pitch is not 0 and is less than region[1] × buffer_row_pitch and not a multiple of buffer_row_pitch.
if buffer_slice_pitch != 0 && buffer_slice_pitch < r[1] * buffer_row_pitch && buffer_slice_pitch % buffer_row_pitch != 0 ||
// CL_INVALID_VALUE if host_slice_pitch is not 0 and is less than region[1] × host_row_pitch and not a multiple of host_row_pitch.
host_slice_pitch != 0 && host_slice_pitch < r[1] * host_row_pitch && host_slice_pitch % host_row_pitch != 0
{
return Err(CL_INVALID_VALUE);
}
// If buffer_slice_pitch is 0, buffer_slice_pitch is computed as region[1] × buffer_row_pitch.
if buffer_slice_pitch == 0 {
buffer_slice_pitch = r[1] * buffer_row_pitch;
}
// If host_slice_pitch is 0, host_slice_pitch is computed as region[1] × host_row_pitch.
if host_slice_pitch == 0 {
host_slice_pitch = r[1] * host_row_pitch
}
// CL_INVALID_VALUE if the region being read or written specified by (buffer_origin, region,
// buffer_row_pitch, buffer_slice_pitch) is out of bounds.
if !CLVec::is_in_bound(
r,
buf_ori,
[1, buffer_row_pitch, buffer_slice_pitch],
buf.size,
) {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_CONTEXT if the context associated with command_queue and buffer are not the same
if q.context != buf.context {
return Err(CL_INVALID_CONTEXT);
}
create_and_queue(
q,
CL_COMMAND_WRITE_BUFFER_RECT,
evs,
event,
block,
Box::new(move |q, ctx| {
buf.write_from_user_rect(
ptr,
q,
ctx,
&r,
&host_ori,
host_row_pitch,
host_slice_pitch,
&buf_ori,
buffer_row_pitch,
buffer_slice_pitch,
)
}),
)
// TODO
// CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.
}
pub fn enqueue_copy_buffer_rect(
command_queue: cl_command_queue,
src_buffer: cl_mem,
dst_buffer: cl_mem,
src_origin: *const usize,
dst_origin: *const usize,
region: *const usize,
mut src_row_pitch: usize,
mut src_slice_pitch: usize,
mut dst_row_pitch: usize,
mut dst_slice_pitch: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = command_queue.get_arc()?;
let src = src_buffer.get_arc()?;
let dst = dst_buffer.get_arc()?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_VALUE if src_origin, dst_origin, or region is NULL.
if src_origin.is_null() || dst_origin.is_null() || region.is_null() {
return Err(CL_INVALID_VALUE);
}
let r = unsafe { CLVec::from_raw(region) };
let src_ori = unsafe { CLVec::from_raw(src_origin) };
let dst_ori = unsafe { CLVec::from_raw(dst_origin) };
// CL_INVALID_VALUE if any region array element is 0.
if r.contains(&0) ||
// CL_INVALID_VALUE if src_row_pitch is not 0 and is less than region[0].
src_row_pitch != 0 && src_row_pitch < r[0] ||
// CL_INVALID_VALUE if dst_row_pitch is not 0 and is less than region[0].
dst_row_pitch != 0 && dst_row_pitch < r[0]
{
return Err(CL_INVALID_VALUE);
}
// If src_row_pitch is 0, src_row_pitch is computed as region[0].
if src_row_pitch == 0 {
src_row_pitch = r[0];
}
// If dst_row_pitch is 0, dst_row_pitch is computed as region[0].
if dst_row_pitch == 0 {
dst_row_pitch = r[0];
}
// CL_INVALID_VALUE if src_slice_pitch is not 0 and is less than region[1] × src_row_pitch
if src_slice_pitch != 0 && src_slice_pitch < r[1] * src_row_pitch ||
// CL_INVALID_VALUE if dst_slice_pitch is not 0 and is less than region[1] × dst_row_pitch
dst_slice_pitch != 0 && dst_slice_pitch < r[1] * dst_row_pitch ||
// if src_slice_pitch is not 0 and is not a multiple of src_row_pitch.
src_slice_pitch != 0 && src_slice_pitch % src_row_pitch != 0 ||
// if dst_slice_pitch is not 0 and is not a multiple of dst_row_pitch.
dst_slice_pitch != 0 && dst_slice_pitch % dst_row_pitch != 0
{
return Err(CL_INVALID_VALUE);
}
// If src_slice_pitch is 0, src_slice_pitch is computed as region[1] × src_row_pitch.
if src_slice_pitch == 0 {
src_slice_pitch = r[1] * src_row_pitch;
}
// If dst_slice_pitch is 0, dst_slice_pitch is computed as region[1] × dst_row_pitch.
if dst_slice_pitch == 0 {
dst_slice_pitch = r[1] * dst_row_pitch;
}
// CL_INVALID_VALUE if src_buffer and dst_buffer are the same buffer object and src_slice_pitch
// is not equal to dst_slice_pitch and src_row_pitch is not equal to dst_row_pitch.
if src_buffer == dst_buffer
&& src_slice_pitch != dst_slice_pitch
&& src_row_pitch != dst_row_pitch
{
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_VALUE if (src_origin, region, src_row_pitch, src_slice_pitch) or (dst_origin,
// region, dst_row_pitch, dst_slice_pitch) require accessing elements outside the src_buffer
// and dst_buffer buffer objects respectively.
if !CLVec::is_in_bound(r, src_ori, [1, src_row_pitch, src_slice_pitch], src.size)
|| !CLVec::is_in_bound(r, dst_ori, [1, dst_row_pitch, dst_slice_pitch], dst.size)
{
return Err(CL_INVALID_VALUE);
}
// CL_MEM_COPY_OVERLAP if src_buffer and dst_buffer are the same buffer or sub-buffer object and
// the source and destination regions overlap or if src_buffer and dst_buffer are different
// sub-buffers of the same associated buffer object and they overlap.
if src.has_same_parent(&dst)
&& check_copy_overlap(
&src_ori,
src.offset,
&dst_ori,
dst.offset,
&r,
src_row_pitch,
src_slice_pitch,
)
{
return Err(CL_MEM_COPY_OVERLAP);
}
// CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and dst_buffer
// are not the same
if src.context != q.context || dst.context != q.context {
return Err(CL_INVALID_CONTEXT);
}
create_and_queue(
q,
CL_COMMAND_COPY_BUFFER_RECT,
evs,
event,
false,
Box::new(move |q, ctx| {
src.copy_to(
&dst,
q,
ctx,
&r,
&src_ori,
src_row_pitch,
src_slice_pitch,
&dst_ori,
dst_row_pitch,
dst_slice_pitch,
)
}),
)
// TODO
// CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.
}
pub fn enqueue_map_buffer(
command_queue: cl_command_queue,
buffer: cl_mem,
blocking_map: cl_bool,
map_flags: cl_map_flags,
offset: usize,
size: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<*mut c_void> {
let q = command_queue.get_arc()?;
let b = buffer.get_arc()?;
let block = check_cl_bool(blocking_map).ok_or(CL_INVALID_VALUE)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_VALUE if region being mapped given by (offset, size) is out of bounds or if size
// is 0
if offset + size > b.size || size == 0 {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_VALUE ... if values specified in map_flags are not valid.
let valid_flags =
cl_bitfield::from(CL_MAP_READ | CL_MAP_WRITE | CL_MAP_WRITE_INVALIDATE_REGION);
let read_write_group = cl_bitfield::from(CL_MAP_READ | CL_MAP_WRITE);
let invalidate_group = cl_bitfield::from(CL_MAP_WRITE_INVALIDATE_REGION);
if (map_flags & !valid_flags != 0)
|| ((map_flags & read_write_group != 0) && (map_flags & invalidate_group != 0))
{
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_OPERATION if buffer has been created with CL_MEM_HOST_WRITE_ONLY or
// CL_MEM_HOST_NO_ACCESS and CL_MAP_READ is set in map_flags
if bit_check(b.flags, CL_MEM_HOST_WRITE_ONLY | CL_MEM_HOST_NO_ACCESS) &&
bit_check(map_flags, CL_MAP_READ) ||
// or if buffer has been created with CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS and
// CL_MAP_WRITE or CL_MAP_WRITE_INVALIDATE_REGION is set in map_flags.
bit_check(b.flags, CL_MEM_HOST_READ_ONLY | CL_MEM_HOST_NO_ACCESS) &&
bit_check(map_flags, CL_MAP_WRITE | CL_MAP_WRITE_INVALIDATE_REGION)
{
return Err(CL_INVALID_OPERATION);
}
// CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the map operation is blocking and the
// execution status of any of the events in event_wait_list is a negative integer value.
if block && evs.iter().any(|e| e.is_error()) {
return Err(CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST);
}
// CL_INVALID_CONTEXT if context associated with command_queue and buffer are not the same
if b.context != q.context {
return Err(CL_INVALID_CONTEXT);
}
create_and_queue(
q.clone(),
CL_COMMAND_MAP_BUFFER,
evs,
event,
block,
// we don't really have anything to do here?
Box::new(|_, _| Ok(())),
)?;
Ok(b.map(&q, offset, size, block))
// TODO
// CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for the device associated with queue. This error code is missing before version 1.1.
// CL_MAP_FAILURE if there is a failure to map the requested region into the host address space. This error cannot occur for buffer objects created with CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR.
// CL_INVALID_OPERATION if mapping would lead to overlapping regions being mapped for writing.
}
pub fn enqueue_unmap_mem_object(
command_queue: cl_command_queue,
memobj: cl_mem,
mapped_ptr: *mut ::std::os::raw::c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = command_queue.get_arc()?;
let m = memobj.get_arc()?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_CONTEXT if context associated with command_queue and memobj are not the same
if q.context != m.context {
return Err(CL_INVALID_CONTEXT);
}
// CL_INVALID_VALUE if mapped_ptr is not a valid pointer returned by clEnqueueMapBuffer or
// clEnqueueMapImage for memobj.
if !m.is_mapped_ptr(mapped_ptr) {
return Err(CL_INVALID_VALUE);
}
create_and_queue(
q,
CL_COMMAND_UNMAP_MEM_OBJECT,
evs,
event,
false,
Box::new(move |q, _| {
m.unmap(q, mapped_ptr);
Ok(())
}),
)
}