mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2026-01-02 03:00:24 +01:00
In the C23 standard unreachable() is now a predefined function-like macro in <stddef.h> See https://android.googlesource.com/platform/bionic/+/HEAD/docs/c23.md#is-now-a-predefined-function_like-macro-in And this causes build errors when building for C23: ----------------------------------------------------------------------- In file included from ../src/util/log.h:30, from ../src/util/log.c:30: ../src/util/macros.h:123:9: warning: "unreachable" redefined 123 | #define unreachable(str) \ | ^~~~~~~~~~~ In file included from ../src/util/macros.h:31: /usr/lib/gcc/x86_64-linux-gnu/14/include/stddef.h:456:9: note: this is the location of the previous definition 456 | #define unreachable() (__builtin_unreachable ()) | ^~~~~~~~~~~ ----------------------------------------------------------------------- So don't redefine it with the same name, but use the name UNREACHABLE() to also signify it's a macro. Using a different name also makes sense because the behavior of the macro was extending the one of __builtin_unreachable() anyway, and it also had a different signature, accepting one argument, compared to the standard unreachable() with no arguments. This change improves the chances of building mesa with the C23 standard, which for instance is the default in recent AOSP versions. All the instances of the macro, including the definition, were updated with the following command line: git grep -l '[^_]unreachable(' -- "src/**" | sort | uniq | \ while read file; \ do \ sed -e 's/\([^_]\)unreachable(/\1UNREACHABLE(/g' -i "$file"; \ done && \ sed -e 's/#undef unreachable/#undef UNREACHABLE/g' -i src/intel/isl/isl_aux_info.c Reviewed-by: Erik Faye-Lund <erik.faye-lund@collabora.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/36437>
346 lines
14 KiB
C
346 lines
14 KiB
C
/*
|
||
* Copyright © Microsoft Corporation
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
* copy of this software and associated documentation files (the "Software"),
|
||
* to deal in the Software without restriction, including without limitation
|
||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
* and/or sell copies of the Software, and to permit persons to whom the
|
||
* Software is furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice (including the next
|
||
* paragraph) shall be included in all copies or substantial portions of the
|
||
* Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
* IN THE SOFTWARE.
|
||
*/
|
||
|
||
#include "nir_builder.h"
|
||
|
||
/* The following float-to-half conversion routines are based on the "half" library:
|
||
* https://sourceforge.net/projects/half/
|
||
*
|
||
* half - IEEE 754-based half-precision floating-point library.
|
||
*
|
||
* Copyright (c) 2012-2019 Christian Rau <rauy@users.sourceforge.net>
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
|
||
* files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
|
||
* modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
|
||
* Software is furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
|
||
* WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
||
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
||
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
*
|
||
* Version 2.1.0
|
||
*/
|
||
|
||
static nir_def *
|
||
half_rounded(nir_builder *b, nir_def *value, nir_def *guard, nir_def *sticky,
|
||
nir_def *sign, nir_rounding_mode mode)
|
||
{
|
||
switch (mode) {
|
||
case nir_rounding_mode_rtne:
|
||
return nir_iadd(b, value, nir_iand(b, guard, nir_ior(b, sticky, value)));
|
||
case nir_rounding_mode_ru:
|
||
sign = nir_ushr_imm(b, sign, 31);
|
||
return nir_iadd(b, value, nir_iand(b, nir_inot(b, sign), nir_ior(b, guard, sticky)));
|
||
case nir_rounding_mode_rd:
|
||
sign = nir_ushr_imm(b, sign, 31);
|
||
return nir_iadd(b, value, nir_iand(b, sign, nir_ior(b, guard, sticky)));
|
||
default:
|
||
return value;
|
||
}
|
||
}
|
||
|
||
static nir_def *
|
||
float_to_half_impl(nir_builder *b, nir_def *src, nir_rounding_mode mode)
|
||
{
|
||
nir_def *f32infinity = nir_imm_int(b, 255 << 23);
|
||
nir_def *f16max = nir_imm_int(b, (127 + 16) << 23);
|
||
|
||
nir_def *sign = nir_iand_imm(b, src, 0x80000000);
|
||
nir_def *one = nir_imm_int(b, 1);
|
||
|
||
nir_def *abs = nir_iand_imm(b, src, 0x7FFFFFFF);
|
||
/* NaN or INF. For rtne, overflow also becomes INF, so combine the comparisons */
|
||
nir_push_if(b, nir_ige(b, abs, mode == nir_rounding_mode_rtne ? f16max : f32infinity));
|
||
nir_def *inf_nanfp16 = nir_bcsel(b,
|
||
nir_ilt(b, f32infinity, abs),
|
||
nir_imm_int(b, 0x7E00),
|
||
nir_imm_int(b, 0x7C00));
|
||
nir_push_else(b, NULL);
|
||
|
||
nir_def *overflowed_fp16 = NULL;
|
||
if (mode != nir_rounding_mode_rtne) {
|
||
/* Handle overflow */
|
||
nir_push_if(b, nir_ige(b, abs, f16max));
|
||
switch (mode) {
|
||
case nir_rounding_mode_rtz:
|
||
overflowed_fp16 = nir_imm_int(b, 0x7BFF);
|
||
break;
|
||
case nir_rounding_mode_ru:
|
||
/* Negative becomes max float, positive becomes inf */
|
||
overflowed_fp16 = nir_bcsel(b, nir_i2b(b, sign), nir_imm_int(b, 0x7BFF), nir_imm_int(b, 0x7C00));
|
||
break;
|
||
case nir_rounding_mode_rd:
|
||
/* Negative becomes inf, positive becomes max float */
|
||
overflowed_fp16 = nir_bcsel(b, nir_i2b(b, sign), nir_imm_int(b, 0x7C00), nir_imm_int(b, 0x7BFF));
|
||
break;
|
||
default:
|
||
UNREACHABLE("Should've been handled already");
|
||
}
|
||
nir_push_else(b, NULL);
|
||
}
|
||
|
||
nir_def *zero = nir_imm_int(b, 0);
|
||
|
||
nir_push_if(b, nir_ige_imm(b, abs, 113 << 23));
|
||
|
||
/* FP16 will be normal */
|
||
nir_def *value = nir_ior(b,
|
||
nir_ishl_imm(b,
|
||
nir_iadd_imm(b,
|
||
nir_ushr_imm(b, abs, 23),
|
||
-112),
|
||
10),
|
||
nir_iand_imm(b, nir_ushr_imm(b, abs, 13), 0x3FFF));
|
||
nir_def *guard = nir_iand(b, nir_ushr_imm(b, abs, 12), one);
|
||
nir_def *sticky = nir_bcsel(b, nir_ine(b, nir_iand_imm(b, abs, 0xFFF), zero), one, zero);
|
||
nir_def *normal_fp16 = half_rounded(b, value, guard, sticky, sign, mode);
|
||
|
||
nir_push_else(b, NULL);
|
||
nir_push_if(b, nir_ige_imm(b, abs, 102 << 23));
|
||
|
||
/* FP16 will be denormal */
|
||
nir_def *i = nir_isub_imm(b, 125, nir_ushr_imm(b, abs, 23));
|
||
nir_def *masked = nir_ior_imm(b, nir_iand_imm(b, abs, 0x7FFFFF), 0x800000);
|
||
value = nir_ushr(b, masked, nir_iadd(b, i, one));
|
||
guard = nir_iand(b, nir_ushr(b, masked, i), one);
|
||
sticky = nir_bcsel(b, nir_ine(b, nir_iand(b, masked, nir_isub(b, nir_ishl(b, one, i), one)), zero), one, zero);
|
||
nir_def *denormal_fp16 = half_rounded(b, value, guard, sticky, sign, mode);
|
||
|
||
nir_push_else(b, NULL);
|
||
|
||
/* Handle underflow. Nonzero values need to shift up or down for round-up or round-down */
|
||
nir_def *underflowed_fp16 = zero;
|
||
if (mode == nir_rounding_mode_ru ||
|
||
mode == nir_rounding_mode_rd) {
|
||
nir_push_if(b, nir_i2b(b, abs));
|
||
|
||
if (mode == nir_rounding_mode_ru)
|
||
underflowed_fp16 = nir_bcsel(b, nir_i2b(b, sign), zero, one);
|
||
else
|
||
underflowed_fp16 = nir_bcsel(b, nir_i2b(b, sign), one, zero);
|
||
|
||
nir_push_else(b, NULL);
|
||
nir_pop_if(b, NULL);
|
||
underflowed_fp16 = nir_if_phi(b, underflowed_fp16, zero);
|
||
}
|
||
|
||
nir_pop_if(b, NULL);
|
||
nir_def *underflowed_or_denorm_fp16 = nir_if_phi(b, denormal_fp16, underflowed_fp16);
|
||
|
||
nir_pop_if(b, NULL);
|
||
nir_def *finite_fp16 = nir_if_phi(b, normal_fp16, underflowed_or_denorm_fp16);
|
||
|
||
nir_def *finite_or_overflowed_fp16 = finite_fp16;
|
||
if (mode != nir_rounding_mode_rtne) {
|
||
nir_pop_if(b, NULL);
|
||
finite_or_overflowed_fp16 = nir_if_phi(b, overflowed_fp16, finite_fp16);
|
||
}
|
||
|
||
nir_pop_if(b, NULL);
|
||
nir_def *fp16 = nir_if_phi(b, inf_nanfp16, finite_or_overflowed_fp16);
|
||
|
||
return nir_u2u16(b, nir_ior(b, fp16, nir_ushr_imm(b, sign, 16)));
|
||
}
|
||
|
||
static nir_def *
|
||
split_f2f16_conversion(nir_builder *b, nir_def *src, nir_rounding_mode rnd)
|
||
{
|
||
nir_def *tmp = nir_f2f32(b, src);
|
||
|
||
if (rnd == nir_rounding_mode_rtne) {
|
||
/* We round down from double to half float by going through float in
|
||
* between, but this can give us inaccurate results in some cases. One
|
||
* such case is 0x40ee6a0000000001, which should round to 0x7b9b, but
|
||
* going through float first turns into 0x7b9a instead. This is because
|
||
* the first non-fitting bit is set, so we get a tie, but with the least
|
||
* significant bit of the original number set, the tie should break
|
||
* rounding up. The cast to float, however, turns into 0x47735000, which
|
||
* when going to half still ties, but now we lost the tie-up bit, and
|
||
* instead we round to the nearest even, which in this case is down.
|
||
*
|
||
* To fix this, we check if the original would have tied, and if the tie
|
||
* would have rounded up, and if both are true, set the least
|
||
* significant bit of the intermediate float to 1, so that a tie on the
|
||
* next cast rounds up as well. If the rounding already got rid of the
|
||
* tie, that set bit will just be truncated anyway and the end result
|
||
* doesn't change.
|
||
*
|
||
* Another failing case is 0x40effdffffffffff. This one doesn't have the
|
||
* tie from double to half, so it just rounds down to 0x7bff (65504.0),
|
||
* but going through float first, it turns into 0x477ff000, which does
|
||
* have the tie bit for half set, and when that one gets rounded it
|
||
* turns into 0x7c00 (Infinity).
|
||
* The fix for that one is to make sure the intermediate float does not
|
||
* have the tie bit set if the original didn't have it.
|
||
*
|
||
* For the RTZ case, we don't need to do anything, as the intermediate
|
||
* float should be ok already.
|
||
*/
|
||
int significand_bits16 = 10;
|
||
int significand_bits32 = 23;
|
||
int significand_bits64 = 52;
|
||
int f64_to_16_tie_bit = significand_bits64 - significand_bits16 - 1;
|
||
int f32_to_16_tie_bit = significand_bits32 - significand_bits16 - 1;
|
||
uint64_t f64_rounds_up_mask = ((1ULL << f64_to_16_tie_bit) - 1);
|
||
|
||
nir_def *would_tie = nir_iand_imm(b, src, 1ULL << f64_to_16_tie_bit);
|
||
nir_def *would_rnd_up = nir_iand_imm(b, src, f64_rounds_up_mask);
|
||
|
||
nir_def *tie_up = nir_b2i32(b, nir_ine_imm(b, would_rnd_up, 0));
|
||
|
||
nir_def *break_tie = nir_bcsel(b,
|
||
nir_ine_imm(b, would_tie, 0),
|
||
nir_imm_int(b, ~0),
|
||
nir_imm_int(b, ~(1U << f32_to_16_tie_bit)));
|
||
|
||
tmp = nir_ior(b, tmp, tie_up);
|
||
tmp = nir_iand(b, tmp, break_tie);
|
||
}
|
||
|
||
return tmp;
|
||
}
|
||
|
||
static bool
|
||
lower_fp16_cast_impl(nir_builder *b, nir_instr *instr, void *data)
|
||
{
|
||
nir_lower_fp16_cast_options options = *(nir_lower_fp16_cast_options *)data;
|
||
nir_src *src;
|
||
nir_def *dst;
|
||
uint8_t *swizzle = NULL;
|
||
nir_rounding_mode mode = nir_rounding_mode_undef;
|
||
|
||
if (instr->type == nir_instr_type_alu) {
|
||
nir_alu_instr *alu = nir_instr_as_alu(instr);
|
||
src = &alu->src[0].src;
|
||
swizzle = alu->src[0].swizzle;
|
||
dst = &alu->def;
|
||
switch (alu->op) {
|
||
case nir_op_f2f16:
|
||
if (b->shader->info.float_controls_execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16)
|
||
mode = nir_rounding_mode_rtz;
|
||
else if (b->shader->info.float_controls_execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16)
|
||
mode = nir_rounding_mode_rtne;
|
||
break;
|
||
case nir_op_f2f16_rtne:
|
||
mode = nir_rounding_mode_rtne;
|
||
break;
|
||
case nir_op_f2f16_rtz:
|
||
mode = nir_rounding_mode_rtz;
|
||
break;
|
||
case nir_op_f2f64:
|
||
if (src->ssa->bit_size == 16 && (options & nir_lower_fp16_split_fp64)) {
|
||
b->cursor = nir_before_instr(instr);
|
||
nir_src_rewrite(src, nir_f2f32(b, src->ssa));
|
||
return true;
|
||
}
|
||
return false;
|
||
default:
|
||
return false;
|
||
}
|
||
} else if (instr->type == nir_instr_type_intrinsic) {
|
||
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
||
if (intrin->intrinsic != nir_intrinsic_convert_alu_types)
|
||
return false;
|
||
|
||
src = &intrin->src[0];
|
||
dst = &intrin->def;
|
||
mode = nir_intrinsic_rounding_mode(intrin);
|
||
|
||
if (nir_intrinsic_src_type(intrin) == nir_type_float16 &&
|
||
nir_intrinsic_dest_type(intrin) == nir_type_float64 &&
|
||
(options & nir_lower_fp16_split_fp64)) {
|
||
b->cursor = nir_before_instr(instr);
|
||
nir_src_rewrite(src, nir_f2f32(b, src->ssa));
|
||
return true;
|
||
}
|
||
|
||
if (nir_intrinsic_dest_type(intrin) != nir_type_float16)
|
||
return false;
|
||
} else {
|
||
return false;
|
||
}
|
||
|
||
bool progress = false;
|
||
if (src->ssa->bit_size == 64 && (options & nir_lower_fp16_split_fp64)) {
|
||
b->cursor = nir_before_instr(instr);
|
||
nir_src_rewrite(src, split_f2f16_conversion(b, src->ssa, mode));
|
||
if (instr->type == nir_instr_type_intrinsic)
|
||
nir_intrinsic_set_src_type(nir_instr_as_intrinsic(instr), nir_type_float32);
|
||
progress = true;
|
||
}
|
||
|
||
nir_lower_fp16_cast_options req_option = 0;
|
||
switch (mode) {
|
||
case nir_rounding_mode_rtz:
|
||
req_option = nir_lower_fp16_rtz;
|
||
break;
|
||
case nir_rounding_mode_rtne:
|
||
req_option = nir_lower_fp16_rtne;
|
||
break;
|
||
case nir_rounding_mode_ru:
|
||
req_option = nir_lower_fp16_ru;
|
||
break;
|
||
case nir_rounding_mode_rd:
|
||
req_option = nir_lower_fp16_rd;
|
||
break;
|
||
case nir_rounding_mode_undef:
|
||
if ((options & nir_lower_fp16_all) == nir_lower_fp16_all) {
|
||
/* Pick one arbitrarily for lowering */
|
||
mode = nir_rounding_mode_rtne;
|
||
req_option = nir_lower_fp16_rtne;
|
||
}
|
||
/* Otherwise assume the backend can handle f2f16 with undef rounding */
|
||
break;
|
||
default:
|
||
UNREACHABLE("Invalid rounding mode");
|
||
}
|
||
if (!(options & req_option))
|
||
return progress;
|
||
|
||
b->cursor = nir_before_instr(instr);
|
||
nir_def *rets[NIR_MAX_VEC_COMPONENTS] = { NULL };
|
||
|
||
for (unsigned i = 0; i < dst->num_components; i++) {
|
||
nir_def *comp = nir_channel(b, src->ssa, swizzle ? swizzle[i] : i);
|
||
if (comp->bit_size == 64)
|
||
comp = split_f2f16_conversion(b, comp, mode);
|
||
rets[i] = float_to_half_impl(b, comp, mode);
|
||
}
|
||
|
||
nir_def *new_val = nir_vec(b, rets, dst->num_components);
|
||
nir_def_rewrite_uses(dst, new_val);
|
||
return true;
|
||
}
|
||
|
||
bool
|
||
nir_lower_fp16_casts(nir_shader *shader, nir_lower_fp16_cast_options options)
|
||
{
|
||
return nir_shader_instructions_pass(shader,
|
||
lower_fp16_cast_impl,
|
||
nir_metadata_none,
|
||
&options);
|
||
}
|