mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-24 11:00:11 +01:00
In the linear allocation only the parent (context) can be used to allocate new children, so let's use an opaque type to identify the linear context. This is similar to what's done in GC allocator. Update the documentation and a couple of function names to refer to linear context instead of linear parent. Reviewed-by: Marek Olšák <marek.olsak@amd.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/25280>
1516 lines
51 KiB
C
1516 lines
51 KiB
C
/*
|
|
* Copyright © 2016 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "nir.h"
|
|
#include "nir_builder.h"
|
|
#include "nir_deref.h"
|
|
|
|
#include "util/bitscan.h"
|
|
#include "util/u_dynarray.h"
|
|
|
|
static const bool debug = false;
|
|
|
|
/**
|
|
* Variable-based copy propagation
|
|
*
|
|
* Normally, NIR trusts in SSA form for most of its copy-propagation needs.
|
|
* However, there are cases, especially when dealing with indirects, where SSA
|
|
* won't help you. This pass is for those times. Specifically, it handles
|
|
* the following things that the rest of NIR can't:
|
|
*
|
|
* 1) Copy-propagation on variables that have indirect access. This includes
|
|
* propagating from indirect stores into indirect loads.
|
|
*
|
|
* 2) Removal of redundant load_deref intrinsics. We can't trust regular CSE
|
|
* to do this because it isn't aware of variable writes that may alias the
|
|
* value and make the former load invalid.
|
|
*
|
|
* This pass uses an intermediate solution between being local / "per-block"
|
|
* and a complete data-flow analysis. It follows the control flow graph, and
|
|
* propagate the available copy information forward, invalidating data at each
|
|
* cf_node.
|
|
*
|
|
* Removal of dead writes to variables is handled by another pass.
|
|
*/
|
|
|
|
struct copies {
|
|
struct list_head node;
|
|
|
|
/* Hash table of copies referenced by variables */
|
|
struct hash_table *ht;
|
|
|
|
/* Array of derefs that can't be chased back to a variable */
|
|
struct util_dynarray arr;
|
|
};
|
|
|
|
struct copies_dynarray {
|
|
struct list_head node;
|
|
struct util_dynarray arr;
|
|
|
|
/* The copies structure this dynarray was cloned or created for */
|
|
struct copies *owner;
|
|
};
|
|
|
|
struct vars_written {
|
|
nir_variable_mode modes;
|
|
|
|
/* Key is deref and value is the uintptr_t with the write mask. */
|
|
struct hash_table *derefs;
|
|
};
|
|
|
|
struct value {
|
|
bool is_ssa;
|
|
union {
|
|
struct {
|
|
nir_def *def[NIR_MAX_VEC_COMPONENTS];
|
|
uint8_t component[NIR_MAX_VEC_COMPONENTS];
|
|
} ssa;
|
|
nir_deref_and_path deref;
|
|
};
|
|
};
|
|
|
|
static void
|
|
value_set_ssa_components(struct value *value, nir_def *def,
|
|
unsigned num_components)
|
|
{
|
|
value->is_ssa = true;
|
|
for (unsigned i = 0; i < num_components; i++) {
|
|
value->ssa.def[i] = def;
|
|
value->ssa.component[i] = i;
|
|
}
|
|
}
|
|
|
|
struct copy_entry {
|
|
struct value src;
|
|
|
|
nir_deref_and_path dst;
|
|
};
|
|
|
|
struct copy_prop_var_state {
|
|
nir_function_impl *impl;
|
|
|
|
void *mem_ctx;
|
|
linear_ctx *lin_ctx;
|
|
|
|
/* Maps nodes to vars_written. Used to invalidate copy entries when
|
|
* visiting each node.
|
|
*/
|
|
struct hash_table *vars_written_map;
|
|
|
|
/* List of copy structures ready for reuse */
|
|
struct list_head unused_copy_structs_list;
|
|
|
|
bool progress;
|
|
};
|
|
|
|
static bool
|
|
value_equals_store_src(struct value *value, nir_intrinsic_instr *intrin)
|
|
{
|
|
assert(intrin->intrinsic == nir_intrinsic_store_deref);
|
|
nir_component_mask_t write_mask = nir_intrinsic_write_mask(intrin);
|
|
|
|
for (unsigned i = 0; i < intrin->num_components; i++) {
|
|
if ((write_mask & (1 << i)) &&
|
|
(value->ssa.def[i] != intrin->src[1].ssa ||
|
|
value->ssa.component[i] != i))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct vars_written *
|
|
create_vars_written(struct copy_prop_var_state *state)
|
|
{
|
|
struct vars_written *written =
|
|
linear_zalloc_child(state->lin_ctx, sizeof(struct vars_written));
|
|
written->derefs = _mesa_pointer_hash_table_create(state->mem_ctx);
|
|
return written;
|
|
}
|
|
|
|
static void
|
|
gather_vars_written(struct copy_prop_var_state *state,
|
|
struct vars_written *written,
|
|
nir_cf_node *cf_node)
|
|
{
|
|
struct vars_written *new_written = NULL;
|
|
|
|
switch (cf_node->type) {
|
|
case nir_cf_node_function: {
|
|
nir_function_impl *impl = nir_cf_node_as_function(cf_node);
|
|
foreach_list_typed_safe(nir_cf_node, cf_node, node, &impl->body)
|
|
gather_vars_written(state, NULL, cf_node);
|
|
break;
|
|
}
|
|
|
|
case nir_cf_node_block: {
|
|
if (!written)
|
|
break;
|
|
|
|
nir_block *block = nir_cf_node_as_block(cf_node);
|
|
nir_foreach_instr(instr, block) {
|
|
if (instr->type == nir_instr_type_call) {
|
|
written->modes |= nir_var_shader_out |
|
|
nir_var_shader_temp |
|
|
nir_var_function_temp |
|
|
nir_var_mem_ssbo |
|
|
nir_var_mem_shared |
|
|
nir_var_mem_global;
|
|
continue;
|
|
}
|
|
|
|
if (instr->type != nir_instr_type_intrinsic)
|
|
continue;
|
|
|
|
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
|
switch (intrin->intrinsic) {
|
|
case nir_intrinsic_barrier:
|
|
if (nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_ACQUIRE)
|
|
written->modes |= nir_intrinsic_memory_modes(intrin);
|
|
break;
|
|
|
|
case nir_intrinsic_emit_vertex:
|
|
case nir_intrinsic_emit_vertex_with_counter:
|
|
written->modes = nir_var_shader_out;
|
|
break;
|
|
|
|
case nir_intrinsic_trace_ray:
|
|
case nir_intrinsic_execute_callable:
|
|
case nir_intrinsic_rt_trace_ray:
|
|
case nir_intrinsic_rt_execute_callable: {
|
|
nir_deref_instr *payload =
|
|
nir_src_as_deref(*nir_get_shader_call_payload_src(intrin));
|
|
|
|
nir_component_mask_t mask = (1 << glsl_get_vector_elements(payload->type)) - 1;
|
|
|
|
struct hash_entry *ht_entry =
|
|
_mesa_hash_table_search(written->derefs, payload);
|
|
if (ht_entry) {
|
|
ht_entry->data = (void *)(mask | (uintptr_t)ht_entry->data);
|
|
} else {
|
|
_mesa_hash_table_insert(written->derefs, payload,
|
|
(void *)(uintptr_t)mask);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case nir_intrinsic_report_ray_intersection:
|
|
written->modes |= nir_var_mem_ssbo |
|
|
nir_var_mem_global |
|
|
nir_var_shader_call_data |
|
|
nir_var_ray_hit_attrib;
|
|
break;
|
|
|
|
case nir_intrinsic_ignore_ray_intersection:
|
|
case nir_intrinsic_terminate_ray:
|
|
written->modes |= nir_var_mem_ssbo |
|
|
nir_var_mem_global |
|
|
nir_var_shader_call_data;
|
|
break;
|
|
|
|
case nir_intrinsic_deref_atomic:
|
|
case nir_intrinsic_deref_atomic_swap:
|
|
case nir_intrinsic_store_deref:
|
|
case nir_intrinsic_copy_deref:
|
|
case nir_intrinsic_memcpy_deref: {
|
|
/* Destination in all of store_deref, copy_deref and the atomics is src[0]. */
|
|
nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
|
|
|
|
uintptr_t mask = intrin->intrinsic == nir_intrinsic_store_deref ? nir_intrinsic_write_mask(intrin) : (1 << glsl_get_vector_elements(dst->type)) - 1;
|
|
|
|
struct hash_entry *ht_entry = _mesa_hash_table_search(written->derefs, dst);
|
|
if (ht_entry)
|
|
ht_entry->data = (void *)(mask | (uintptr_t)ht_entry->data);
|
|
else
|
|
_mesa_hash_table_insert(written->derefs, dst, (void *)mask);
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case nir_cf_node_if: {
|
|
nir_if *if_stmt = nir_cf_node_as_if(cf_node);
|
|
|
|
new_written = create_vars_written(state);
|
|
|
|
foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->then_list)
|
|
gather_vars_written(state, new_written, cf_node);
|
|
|
|
foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->else_list)
|
|
gather_vars_written(state, new_written, cf_node);
|
|
|
|
break;
|
|
}
|
|
|
|
case nir_cf_node_loop: {
|
|
nir_loop *loop = nir_cf_node_as_loop(cf_node);
|
|
assert(!nir_loop_has_continue_construct(loop));
|
|
|
|
new_written = create_vars_written(state);
|
|
|
|
foreach_list_typed_safe(nir_cf_node, cf_node, node, &loop->body)
|
|
gather_vars_written(state, new_written, cf_node);
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
unreachable("Invalid CF node type");
|
|
}
|
|
|
|
if (new_written) {
|
|
/* Merge new information to the parent control flow node. */
|
|
if (written) {
|
|
written->modes |= new_written->modes;
|
|
hash_table_foreach(new_written->derefs, new_entry) {
|
|
struct hash_entry *old_entry =
|
|
_mesa_hash_table_search_pre_hashed(written->derefs, new_entry->hash,
|
|
new_entry->key);
|
|
if (old_entry) {
|
|
nir_component_mask_t merged = (uintptr_t)new_entry->data |
|
|
(uintptr_t)old_entry->data;
|
|
old_entry->data = (void *)((uintptr_t)merged);
|
|
} else {
|
|
_mesa_hash_table_insert_pre_hashed(written->derefs, new_entry->hash,
|
|
new_entry->key, new_entry->data);
|
|
}
|
|
}
|
|
}
|
|
_mesa_hash_table_insert(state->vars_written_map, cf_node, new_written);
|
|
}
|
|
}
|
|
|
|
/* Creates a fresh dynarray */
|
|
static struct copies_dynarray *
|
|
get_copies_dynarray(struct copy_prop_var_state *state)
|
|
{
|
|
struct copies_dynarray *cp_arr =
|
|
ralloc(state->mem_ctx, struct copies_dynarray);
|
|
util_dynarray_init(&cp_arr->arr, state->mem_ctx);
|
|
return cp_arr;
|
|
}
|
|
|
|
/* Checks if the pointer leads to a cloned copy of the array for this hash
|
|
* table or if the pointer was inherited from when the hash table was cloned.
|
|
*/
|
|
static bool
|
|
copies_owns_ht_entry(struct copies *copies,
|
|
struct hash_entry *ht_entry)
|
|
{
|
|
assert(copies && ht_entry && ht_entry->data);
|
|
struct copies_dynarray *copies_array = ht_entry->data;
|
|
return copies_array->owner == copies;
|
|
}
|
|
|
|
static void
|
|
clone_copies_dynarray_from_src(struct copies_dynarray *dst,
|
|
struct copies_dynarray *src)
|
|
{
|
|
util_dynarray_append_dynarray(&dst->arr, &src->arr);
|
|
}
|
|
|
|
/* Gets copies array from the hash table entry or clones the source array if
|
|
* the hash entry contains NULL. The values are not cloned when the hash table
|
|
* is created because its expensive to clone everything and most value will
|
|
* never actually be accessed.
|
|
*/
|
|
static struct copies_dynarray *
|
|
get_copies_array_from_ht_entry(struct copy_prop_var_state *state,
|
|
struct copies *copies,
|
|
struct hash_entry *ht_entry)
|
|
{
|
|
struct copies_dynarray *copies_array;
|
|
if (copies_owns_ht_entry(copies, ht_entry)) {
|
|
/* The array already exists so just return it */
|
|
copies_array = (struct copies_dynarray *)ht_entry->data;
|
|
} else {
|
|
/* Clone the array and set the data value for future access */
|
|
copies_array = get_copies_dynarray(state);
|
|
copies_array->owner = copies;
|
|
clone_copies_dynarray_from_src(copies_array, ht_entry->data);
|
|
ht_entry->data = copies_array;
|
|
}
|
|
|
|
return copies_array;
|
|
}
|
|
|
|
static struct copies_dynarray *
|
|
copies_array_for_var(struct copy_prop_var_state *state,
|
|
struct copies *copies, nir_variable *var)
|
|
{
|
|
struct hash_entry *entry = _mesa_hash_table_search(copies->ht, var);
|
|
if (entry != NULL)
|
|
return get_copies_array_from_ht_entry(state, copies, entry);
|
|
|
|
struct copies_dynarray *copies_array = get_copies_dynarray(state);
|
|
copies_array->owner = copies;
|
|
_mesa_hash_table_insert(copies->ht, var, copies_array);
|
|
|
|
return copies_array;
|
|
}
|
|
|
|
static struct util_dynarray *
|
|
copies_array_for_deref(struct copy_prop_var_state *state,
|
|
struct copies *copies, nir_deref_and_path *deref)
|
|
{
|
|
nir_get_deref_path(state->mem_ctx, deref);
|
|
|
|
struct util_dynarray *copies_array;
|
|
if (deref->_path->path[0]->deref_type != nir_deref_type_var) {
|
|
copies_array = &copies->arr;
|
|
} else {
|
|
struct copies_dynarray *cpda =
|
|
copies_array_for_var(state, copies, deref->_path->path[0]->var);
|
|
copies_array = &cpda->arr;
|
|
}
|
|
|
|
return copies_array;
|
|
}
|
|
|
|
static struct copy_entry *
|
|
copy_entry_create(struct copy_prop_var_state *state,
|
|
struct copies *copies, nir_deref_and_path *deref)
|
|
{
|
|
struct util_dynarray *copies_array =
|
|
copies_array_for_deref(state, copies, deref);
|
|
|
|
struct copy_entry new_entry = {
|
|
.dst = *deref,
|
|
};
|
|
util_dynarray_append(copies_array, struct copy_entry, new_entry);
|
|
return util_dynarray_top_ptr(copies_array, struct copy_entry);
|
|
}
|
|
|
|
/* Remove copy entry by swapping it with the last element and reducing the
|
|
* size. If used inside an iteration on copies, it must be a reverse
|
|
* (backwards) iteration. It is safe to use in those cases because the swap
|
|
* will not affect the rest of the iteration.
|
|
*/
|
|
static void
|
|
copy_entry_remove(struct util_dynarray *copies,
|
|
struct copy_entry *entry,
|
|
struct copy_entry **relocated_entry)
|
|
{
|
|
const struct copy_entry *src =
|
|
util_dynarray_pop_ptr(copies, struct copy_entry);
|
|
|
|
/* Because we're removing elements from an array, pointers to those
|
|
* elements are not stable as we modify the array.
|
|
* If relocated_entry != NULL, it's points to an entry we saved off earlier
|
|
* and want to keep pointing to the right spot.
|
|
*/
|
|
if (relocated_entry && *relocated_entry == src)
|
|
*relocated_entry = entry;
|
|
|
|
if (src != entry)
|
|
*entry = *src;
|
|
}
|
|
|
|
static bool
|
|
is_array_deref_of_vector(const nir_deref_and_path *deref)
|
|
{
|
|
if (deref->instr->deref_type != nir_deref_type_array)
|
|
return false;
|
|
nir_deref_instr *parent = nir_deref_instr_parent(deref->instr);
|
|
return glsl_type_is_vector(parent->type);
|
|
}
|
|
|
|
static struct copy_entry *
|
|
lookup_entry_for_deref(struct copy_prop_var_state *state,
|
|
struct copies *copies,
|
|
nir_deref_and_path *deref,
|
|
nir_deref_compare_result allowed_comparisons,
|
|
bool *equal)
|
|
{
|
|
struct util_dynarray *copies_array =
|
|
copies_array_for_deref(state, copies, deref);
|
|
|
|
struct copy_entry *entry = NULL;
|
|
util_dynarray_foreach(copies_array, struct copy_entry, iter) {
|
|
nir_deref_compare_result result =
|
|
nir_compare_derefs_and_paths(state->mem_ctx, &iter->dst, deref);
|
|
if (result & allowed_comparisons) {
|
|
entry = iter;
|
|
if (result & nir_derefs_equal_bit) {
|
|
if (equal != NULL)
|
|
*equal = true;
|
|
break;
|
|
}
|
|
/* Keep looking in case we have an equal match later in the array. */
|
|
}
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
static void
|
|
lookup_entry_and_kill_aliases_copy_array(struct copy_prop_var_state *state,
|
|
struct util_dynarray *copies_array,
|
|
nir_deref_and_path *deref,
|
|
unsigned write_mask,
|
|
bool remove_entry,
|
|
struct copy_entry **entry,
|
|
bool *entry_removed)
|
|
{
|
|
util_dynarray_foreach_reverse(copies_array, struct copy_entry, iter) {
|
|
nir_deref_compare_result comp =
|
|
nir_compare_derefs_and_paths(state->mem_ctx, &iter->dst, deref);
|
|
|
|
if (comp & nir_derefs_equal_bit) {
|
|
/* Make sure it is unique. */
|
|
assert(!*entry && !*entry_removed);
|
|
if (remove_entry) {
|
|
copy_entry_remove(copies_array, iter, NULL);
|
|
*entry_removed = true;
|
|
} else {
|
|
*entry = iter;
|
|
}
|
|
} else if (comp & nir_derefs_may_alias_bit) {
|
|
copy_entry_remove(copies_array, iter, entry);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct copy_entry *
|
|
lookup_entry_and_kill_aliases(struct copy_prop_var_state *state,
|
|
struct copies *copies,
|
|
nir_deref_and_path *deref,
|
|
unsigned write_mask,
|
|
bool remove_entry)
|
|
{
|
|
/* TODO: Take into account the write_mask. */
|
|
|
|
bool UNUSED entry_removed = false;
|
|
struct copy_entry *entry = NULL;
|
|
|
|
nir_get_deref_path(state->mem_ctx, deref);
|
|
|
|
/* For any other variable types if the variables are different,
|
|
* they don't alias. So we only need to compare different vars and loop
|
|
* over the hash table for ssbos and shared vars.
|
|
*/
|
|
if (deref->_path->path[0]->deref_type != nir_deref_type_var ||
|
|
deref->_path->path[0]->var->data.mode == nir_var_mem_ssbo ||
|
|
deref->_path->path[0]->var->data.mode == nir_var_mem_shared) {
|
|
|
|
hash_table_foreach(copies->ht, ht_entry) {
|
|
nir_variable *var = (nir_variable *)ht_entry->key;
|
|
if (deref->_path->path[0]->deref_type == nir_deref_type_var &&
|
|
var->data.mode != deref->_path->path[0]->var->data.mode)
|
|
continue;
|
|
|
|
struct copies_dynarray *copies_array =
|
|
get_copies_array_from_ht_entry(state, copies, ht_entry);
|
|
|
|
lookup_entry_and_kill_aliases_copy_array(state, &copies_array->arr,
|
|
deref, write_mask,
|
|
remove_entry, &entry,
|
|
&entry_removed);
|
|
|
|
if (copies_array->arr.size == 0) {
|
|
_mesa_hash_table_remove(copies->ht, ht_entry);
|
|
}
|
|
}
|
|
|
|
lookup_entry_and_kill_aliases_copy_array(state, &copies->arr, deref,
|
|
write_mask, remove_entry,
|
|
&entry, &entry_removed);
|
|
} else {
|
|
struct copies_dynarray *cpda =
|
|
copies_array_for_var(state, copies, deref->_path->path[0]->var);
|
|
struct util_dynarray *copies_array = &cpda->arr;
|
|
|
|
lookup_entry_and_kill_aliases_copy_array(state, copies_array, deref,
|
|
write_mask, remove_entry,
|
|
&entry, &entry_removed);
|
|
|
|
if (copies_array->size == 0) {
|
|
_mesa_hash_table_remove_key(copies->ht, deref->_path->path[0]->var);
|
|
}
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
static void
|
|
kill_aliases(struct copy_prop_var_state *state,
|
|
struct copies *copies,
|
|
nir_deref_and_path *deref,
|
|
unsigned write_mask)
|
|
{
|
|
/* TODO: Take into account the write_mask. */
|
|
|
|
lookup_entry_and_kill_aliases(state, copies, deref, write_mask, true);
|
|
}
|
|
|
|
static struct copy_entry *
|
|
get_entry_and_kill_aliases(struct copy_prop_var_state *state,
|
|
struct copies *copies,
|
|
nir_deref_and_path *deref,
|
|
unsigned write_mask)
|
|
{
|
|
/* TODO: Take into account the write_mask. */
|
|
|
|
struct copy_entry *entry =
|
|
lookup_entry_and_kill_aliases(state, copies, deref, write_mask, false);
|
|
if (entry == NULL)
|
|
entry = copy_entry_create(state, copies, deref);
|
|
|
|
return entry;
|
|
}
|
|
|
|
static void
|
|
apply_barrier_for_modes_to_dynarr(struct util_dynarray *copies_array,
|
|
nir_variable_mode modes)
|
|
{
|
|
util_dynarray_foreach_reverse(copies_array, struct copy_entry, iter) {
|
|
if (nir_deref_mode_may_be(iter->dst.instr, modes) ||
|
|
(!iter->src.is_ssa && nir_deref_mode_may_be(iter->src.deref.instr, modes)))
|
|
copy_entry_remove(copies_array, iter, NULL);
|
|
}
|
|
}
|
|
|
|
static void
|
|
apply_barrier_for_modes(struct copy_prop_var_state *state,
|
|
struct copies *copies, nir_variable_mode modes)
|
|
{
|
|
hash_table_foreach(copies->ht, ht_entry) {
|
|
struct copies_dynarray *copies_array =
|
|
get_copies_array_from_ht_entry(state, copies, ht_entry);
|
|
|
|
apply_barrier_for_modes_to_dynarr(&copies_array->arr, modes);
|
|
}
|
|
|
|
apply_barrier_for_modes_to_dynarr(&copies->arr, modes);
|
|
}
|
|
|
|
static void
|
|
value_set_from_value(struct value *value, const struct value *from,
|
|
unsigned base_index, unsigned write_mask)
|
|
{
|
|
/* We can't have non-zero indexes with non-trivial write masks */
|
|
assert(base_index == 0 || write_mask == 1);
|
|
|
|
if (from->is_ssa) {
|
|
/* Clear value if it was being used as non-SSA. */
|
|
value->is_ssa = true;
|
|
/* Only overwrite the written components */
|
|
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
|
|
if (write_mask & (1 << i)) {
|
|
value->ssa.def[base_index + i] = from->ssa.def[i];
|
|
value->ssa.component[base_index + i] = from->ssa.component[i];
|
|
}
|
|
}
|
|
} else {
|
|
/* Non-ssa stores always write everything */
|
|
value->is_ssa = false;
|
|
value->deref = from->deref;
|
|
}
|
|
}
|
|
|
|
/* Try to load a single element of a vector from the copy_entry. If the data
|
|
* isn't available, just let the original intrinsic do the work.
|
|
*/
|
|
static bool
|
|
load_element_from_ssa_entry_value(struct copy_prop_var_state *state,
|
|
struct copy_entry *entry,
|
|
nir_builder *b, nir_intrinsic_instr *intrin,
|
|
struct value *value, unsigned index)
|
|
{
|
|
assert(index < glsl_get_vector_elements(entry->dst.instr->type));
|
|
|
|
/* We don't have the element available, so let the instruction do the work. */
|
|
if (!entry->src.ssa.def[index])
|
|
return false;
|
|
|
|
b->cursor = nir_instr_remove(&intrin->instr);
|
|
intrin->instr.block = NULL;
|
|
|
|
assert(entry->src.ssa.component[index] <
|
|
entry->src.ssa.def[index]->num_components);
|
|
nir_def *def = nir_channel(b, entry->src.ssa.def[index],
|
|
entry->src.ssa.component[index]);
|
|
|
|
*value = (struct value){
|
|
.is_ssa = true,
|
|
{
|
|
.ssa = {
|
|
.def = { def },
|
|
.component = { 0 },
|
|
},
|
|
}
|
|
};
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Do a "load" from an SSA-based entry return it in "value" as a value with a
|
|
* single SSA def. Because an entry could reference multiple different SSA
|
|
* defs, a vecN operation may be inserted to combine them into a single SSA
|
|
* def before handing it back to the caller. If the load instruction is no
|
|
* longer needed, it is removed and nir_instr::block is set to NULL. (It is
|
|
* possible, in some cases, for the load to be used in the vecN operation in
|
|
* which case it isn't deleted.)
|
|
*/
|
|
static bool
|
|
load_from_ssa_entry_value(struct copy_prop_var_state *state,
|
|
struct copy_entry *entry,
|
|
nir_builder *b, nir_intrinsic_instr *intrin,
|
|
nir_deref_and_path *src, struct value *value)
|
|
{
|
|
if (is_array_deref_of_vector(src)) {
|
|
if (nir_src_is_const(src->instr->arr.index)) {
|
|
unsigned index = nir_src_as_uint(src->instr->arr.index);
|
|
return load_element_from_ssa_entry_value(state, entry, b, intrin,
|
|
value, index);
|
|
}
|
|
|
|
/* An SSA copy_entry for the vector won't help indirect load. */
|
|
if (glsl_type_is_vector(entry->dst.instr->type)) {
|
|
assert(entry->dst.instr->type == nir_deref_instr_parent(src->instr)->type);
|
|
/* TODO: If all SSA entries are there, try an if-ladder. */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
*value = entry->src;
|
|
|
|
const struct glsl_type *type = entry->dst.instr->type;
|
|
unsigned num_components = glsl_get_vector_elements(type);
|
|
|
|
nir_component_mask_t available = 0;
|
|
bool all_same = true;
|
|
for (unsigned i = 0; i < num_components; i++) {
|
|
if (value->ssa.def[i])
|
|
available |= (1 << i);
|
|
|
|
if (value->ssa.def[i] != value->ssa.def[0])
|
|
all_same = false;
|
|
|
|
if (value->ssa.component[i] != i)
|
|
all_same = false;
|
|
}
|
|
|
|
if (all_same) {
|
|
/* Our work here is done */
|
|
b->cursor = nir_instr_remove(&intrin->instr);
|
|
intrin->instr.block = NULL;
|
|
return true;
|
|
}
|
|
|
|
if (available != (1 << num_components) - 1 &&
|
|
intrin->intrinsic == nir_intrinsic_load_deref &&
|
|
(available & nir_def_components_read(&intrin->def)) == 0) {
|
|
/* If none of the components read are available as SSA values, then we
|
|
* should just bail. Otherwise, we would end up replacing the uses of
|
|
* the load_deref a vecN() that just gathers up its components.
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
b->cursor = nir_after_instr(&intrin->instr);
|
|
|
|
nir_def *load_def =
|
|
intrin->intrinsic == nir_intrinsic_load_deref ? &intrin->def : NULL;
|
|
|
|
bool keep_intrin = false;
|
|
nir_scalar comps[NIR_MAX_VEC_COMPONENTS];
|
|
for (unsigned i = 0; i < num_components; i++) {
|
|
if (value->ssa.def[i]) {
|
|
comps[i] = nir_get_scalar(value->ssa.def[i], value->ssa.component[i]);
|
|
} else {
|
|
/* We don't have anything for this component in our
|
|
* list. Just re-use a channel from the load.
|
|
*/
|
|
if (load_def == NULL)
|
|
load_def = nir_load_deref(b, entry->dst.instr);
|
|
|
|
if (load_def->parent_instr == &intrin->instr)
|
|
keep_intrin = true;
|
|
|
|
comps[i] = nir_get_scalar(load_def, i);
|
|
}
|
|
}
|
|
|
|
nir_def *vec = nir_vec_scalars(b, comps, num_components);
|
|
value_set_ssa_components(value, vec, num_components);
|
|
|
|
if (!keep_intrin) {
|
|
/* Removing this instruction should not touch the cursor because we
|
|
* created the cursor after the intrinsic and have added at least one
|
|
* instruction (the vec) since then.
|
|
*/
|
|
assert(b->cursor.instr != &intrin->instr);
|
|
nir_instr_remove(&intrin->instr);
|
|
intrin->instr.block = NULL;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Specialize the wildcards in a deref chain
|
|
*
|
|
* This function returns a deref chain identical to \param deref except that
|
|
* some of its wildcards are replaced with indices from \param specific. The
|
|
* process is guided by \param guide which references the same type as \param
|
|
* specific but has the same wildcard array lengths as \param deref.
|
|
*/
|
|
static nir_deref_instr *
|
|
specialize_wildcards(nir_builder *b,
|
|
nir_deref_path *deref,
|
|
nir_deref_path *guide,
|
|
nir_deref_path *specific)
|
|
{
|
|
nir_deref_instr **deref_p = &deref->path[1];
|
|
nir_deref_instr **guide_p = &guide->path[1];
|
|
nir_deref_instr **spec_p = &specific->path[1];
|
|
nir_deref_instr *ret_tail = deref->path[0];
|
|
for (; *deref_p; deref_p++) {
|
|
if ((*deref_p)->deref_type == nir_deref_type_array_wildcard) {
|
|
/* This is where things get tricky. We have to search through
|
|
* the entry deref to find its corresponding wildcard and fill
|
|
* this slot in with the value from the src.
|
|
*/
|
|
while (*guide_p &&
|
|
(*guide_p)->deref_type != nir_deref_type_array_wildcard) {
|
|
guide_p++;
|
|
spec_p++;
|
|
}
|
|
assert(*guide_p && *spec_p);
|
|
|
|
ret_tail = nir_build_deref_follower(b, ret_tail, *spec_p);
|
|
|
|
guide_p++;
|
|
spec_p++;
|
|
} else {
|
|
ret_tail = nir_build_deref_follower(b, ret_tail, *deref_p);
|
|
}
|
|
}
|
|
|
|
return ret_tail;
|
|
}
|
|
|
|
/* Do a "load" from an deref-based entry return it in "value" as a value. The
|
|
* deref returned in "value" will always be a fresh copy so the caller can
|
|
* steal it and assign it to the instruction directly without copying it
|
|
* again.
|
|
*/
|
|
static bool
|
|
load_from_deref_entry_value(struct copy_prop_var_state *state,
|
|
struct copy_entry *entry,
|
|
nir_builder *b, nir_intrinsic_instr *intrin,
|
|
nir_deref_and_path *src, struct value *value)
|
|
{
|
|
*value = entry->src;
|
|
|
|
b->cursor = nir_instr_remove(&intrin->instr);
|
|
|
|
nir_deref_path *entry_dst_path = nir_get_deref_path(state->mem_ctx, &entry->dst);
|
|
nir_deref_path *src_path = nir_get_deref_path(state->mem_ctx, src);
|
|
|
|
bool need_to_specialize_wildcards = false;
|
|
nir_deref_instr **entry_p = &entry_dst_path->path[1];
|
|
nir_deref_instr **src_p = &src_path->path[1];
|
|
while (*entry_p && *src_p) {
|
|
nir_deref_instr *entry_tail = *entry_p++;
|
|
nir_deref_instr *src_tail = *src_p++;
|
|
|
|
if (src_tail->deref_type == nir_deref_type_array &&
|
|
entry_tail->deref_type == nir_deref_type_array_wildcard)
|
|
need_to_specialize_wildcards = true;
|
|
}
|
|
|
|
/* If the entry deref is longer than the source deref then it refers to a
|
|
* smaller type and we can't source from it.
|
|
*/
|
|
assert(*entry_p == NULL);
|
|
|
|
value->deref._path = NULL;
|
|
|
|
if (need_to_specialize_wildcards) {
|
|
/* The entry has some wildcards that are not in src. This means we need
|
|
* to construct a new deref based on the entry but using the wildcards
|
|
* from the source and guided by the entry dst. Oof.
|
|
*/
|
|
nir_deref_path *entry_src_path =
|
|
nir_get_deref_path(state->mem_ctx, &entry->src.deref);
|
|
value->deref.instr = specialize_wildcards(b, entry_src_path,
|
|
entry_dst_path, src_path);
|
|
}
|
|
|
|
/* If our source deref is longer than the entry deref, that's ok because
|
|
* it just means the entry deref needs to be extended a bit.
|
|
*/
|
|
while (*src_p) {
|
|
nir_deref_instr *src_tail = *src_p++;
|
|
value->deref.instr = nir_build_deref_follower(b, value->deref.instr, src_tail);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
try_load_from_entry(struct copy_prop_var_state *state, struct copy_entry *entry,
|
|
nir_builder *b, nir_intrinsic_instr *intrin,
|
|
nir_deref_and_path *src, struct value *value)
|
|
{
|
|
if (entry == NULL)
|
|
return false;
|
|
|
|
if (entry->src.is_ssa) {
|
|
return load_from_ssa_entry_value(state, entry, b, intrin, src, value);
|
|
} else {
|
|
return load_from_deref_entry_value(state, entry, b, intrin, src, value);
|
|
}
|
|
}
|
|
|
|
static void
|
|
invalidate_copies_for_cf_node(struct copy_prop_var_state *state,
|
|
struct copies *copies,
|
|
nir_cf_node *cf_node)
|
|
{
|
|
struct hash_entry *ht_entry = _mesa_hash_table_search(state->vars_written_map, cf_node);
|
|
assert(ht_entry);
|
|
|
|
struct vars_written *written = ht_entry->data;
|
|
if (written->modes) {
|
|
hash_table_foreach(copies->ht, ht_entry) {
|
|
struct copies_dynarray *copies_array =
|
|
get_copies_array_from_ht_entry(state, copies, ht_entry);
|
|
|
|
util_dynarray_foreach_reverse(&copies_array->arr, struct copy_entry, entry) {
|
|
if (nir_deref_mode_may_be(entry->dst.instr, written->modes))
|
|
copy_entry_remove(&copies_array->arr, entry, NULL);
|
|
}
|
|
|
|
if (copies_array->arr.size == 0) {
|
|
_mesa_hash_table_remove(copies->ht, ht_entry);
|
|
}
|
|
}
|
|
|
|
util_dynarray_foreach_reverse(&copies->arr, struct copy_entry, entry) {
|
|
if (nir_deref_mode_may_be(entry->dst.instr, written->modes))
|
|
copy_entry_remove(&copies->arr, entry, NULL);
|
|
}
|
|
}
|
|
|
|
hash_table_foreach(written->derefs, entry) {
|
|
nir_deref_instr *deref_written = (nir_deref_instr *)entry->key;
|
|
nir_deref_and_path deref = { deref_written, NULL };
|
|
kill_aliases(state, copies, &deref, (uintptr_t)entry->data);
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_value(struct value *value, unsigned num_components)
|
|
{
|
|
bool same_ssa = true;
|
|
for (unsigned i = 0; i < num_components; i++) {
|
|
if (value->ssa.component[i] != i ||
|
|
(i > 0 && value->ssa.def[i - 1] != value->ssa.def[i])) {
|
|
same_ssa = false;
|
|
break;
|
|
}
|
|
}
|
|
if (same_ssa) {
|
|
printf(" ssa_%d", value->ssa.def[0]->index);
|
|
} else {
|
|
for (int i = 0; i < num_components; i++) {
|
|
if (value->ssa.def[i])
|
|
printf(" ssa_%d[%u]", value->ssa.def[i]->index, value->ssa.component[i]);
|
|
else
|
|
printf(" _");
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_copy_entry(struct copy_entry *entry)
|
|
{
|
|
printf(" %s ", glsl_get_type_name(entry->dst.instr->type));
|
|
nir_print_deref(entry->dst.instr, stdout);
|
|
printf(":\t");
|
|
|
|
unsigned num_components = glsl_get_vector_elements(entry->dst.instr->type);
|
|
print_value(&entry->src, num_components);
|
|
printf("\n");
|
|
}
|
|
|
|
static void
|
|
dump_instr(nir_instr *instr)
|
|
{
|
|
printf(" ");
|
|
nir_print_instr(instr, stdout);
|
|
printf("\n");
|
|
}
|
|
|
|
static void
|
|
dump_copy_entries(struct copies *copies)
|
|
{
|
|
hash_table_foreach(copies->ht, ht_entry) {
|
|
struct util_dynarray *copies_array =
|
|
&((struct copies_dynarray *)ht_entry->data)->arr;
|
|
|
|
util_dynarray_foreach(copies_array, struct copy_entry, iter)
|
|
print_copy_entry(iter);
|
|
}
|
|
|
|
util_dynarray_foreach(&copies->arr, struct copy_entry, iter)
|
|
print_copy_entry(iter);
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
static void
|
|
copy_prop_vars_block(struct copy_prop_var_state *state,
|
|
nir_builder *b, nir_block *block,
|
|
struct copies *copies)
|
|
{
|
|
if (debug) {
|
|
printf("# block%d\n", block->index);
|
|
dump_copy_entries(copies);
|
|
}
|
|
|
|
nir_foreach_instr_safe(instr, block) {
|
|
if (debug && instr->type == nir_instr_type_deref)
|
|
dump_instr(instr);
|
|
|
|
if (instr->type == nir_instr_type_call) {
|
|
if (debug)
|
|
dump_instr(instr);
|
|
apply_barrier_for_modes(state, copies, nir_var_shader_out | nir_var_shader_temp | nir_var_function_temp | nir_var_mem_ssbo | nir_var_mem_shared | nir_var_mem_global);
|
|
if (debug)
|
|
dump_copy_entries(copies);
|
|
continue;
|
|
}
|
|
|
|
if (instr->type != nir_instr_type_intrinsic)
|
|
continue;
|
|
|
|
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
|
switch (intrin->intrinsic) {
|
|
case nir_intrinsic_barrier:
|
|
if (debug)
|
|
dump_instr(instr);
|
|
|
|
if (nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_ACQUIRE)
|
|
apply_barrier_for_modes(state, copies, nir_intrinsic_memory_modes(intrin));
|
|
break;
|
|
|
|
case nir_intrinsic_emit_vertex:
|
|
case nir_intrinsic_emit_vertex_with_counter:
|
|
if (debug)
|
|
dump_instr(instr);
|
|
|
|
apply_barrier_for_modes(state, copies, nir_var_shader_out);
|
|
break;
|
|
|
|
case nir_intrinsic_report_ray_intersection:
|
|
apply_barrier_for_modes(state, copies, nir_var_mem_ssbo | nir_var_mem_global | nir_var_shader_call_data | nir_var_ray_hit_attrib);
|
|
break;
|
|
|
|
case nir_intrinsic_ignore_ray_intersection:
|
|
case nir_intrinsic_terminate_ray:
|
|
apply_barrier_for_modes(state, copies, nir_var_mem_ssbo | nir_var_mem_global | nir_var_shader_call_data);
|
|
break;
|
|
|
|
case nir_intrinsic_load_deref: {
|
|
if (debug)
|
|
dump_instr(instr);
|
|
|
|
if (nir_intrinsic_access(intrin) & ACCESS_VOLATILE)
|
|
break;
|
|
|
|
nir_deref_and_path src = { nir_src_as_deref(intrin->src[0]), NULL };
|
|
|
|
/* If this is a load from a read-only mode, then all this pass would
|
|
* do is combine redundant loads and CSE should be more efficient for
|
|
* that.
|
|
*/
|
|
nir_variable_mode ignore = nir_var_read_only_modes & ~nir_var_vec_indexable_modes;
|
|
if (nir_deref_mode_must_be(src.instr, ignore))
|
|
break;
|
|
|
|
/* Direct array_derefs of vectors operate on the vectors (the parent
|
|
* deref). Indirects will be handled like other derefs.
|
|
*/
|
|
int vec_index = 0;
|
|
nir_deref_and_path vec_src = src;
|
|
if (is_array_deref_of_vector(&src) && nir_src_is_const(src.instr->arr.index)) {
|
|
vec_src.instr = nir_deref_instr_parent(src.instr);
|
|
unsigned vec_comps = glsl_get_vector_elements(vec_src.instr->type);
|
|
vec_index = nir_src_as_uint(src.instr->arr.index);
|
|
|
|
/* Loading from an invalid index yields an undef */
|
|
if (vec_index >= vec_comps) {
|
|
b->cursor = nir_instr_remove(instr);
|
|
nir_def *u = nir_undef(b, 1, intrin->def.bit_size);
|
|
nir_def_rewrite_uses(&intrin->def, u);
|
|
state->progress = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool src_entry_equal = false;
|
|
struct copy_entry *src_entry =
|
|
lookup_entry_for_deref(state, copies, &src,
|
|
nir_derefs_a_contains_b_bit, &src_entry_equal);
|
|
struct value value = { 0 };
|
|
if (try_load_from_entry(state, src_entry, b, intrin, &src, &value)) {
|
|
if (value.is_ssa) {
|
|
/* lookup_load has already ensured that we get a single SSA
|
|
* value that has all of the channels. We just have to do the
|
|
* rewrite operation. Note for array derefs of vectors, the
|
|
* channel 0 is used.
|
|
*/
|
|
if (intrin->instr.block) {
|
|
/* The lookup left our instruction in-place. This means it
|
|
* must have used it to vec up a bunch of different sources.
|
|
* We need to be careful when rewriting uses so we don't
|
|
* rewrite the vecN itself.
|
|
*/
|
|
nir_def_rewrite_uses_after(&intrin->def,
|
|
value.ssa.def[0],
|
|
value.ssa.def[0]->parent_instr);
|
|
} else {
|
|
nir_def_rewrite_uses(&intrin->def,
|
|
value.ssa.def[0]);
|
|
}
|
|
} else {
|
|
/* We're turning it into a load of a different variable */
|
|
intrin->src[0] = nir_src_for_ssa(&value.deref.instr->def);
|
|
|
|
/* Put it back in again. */
|
|
nir_builder_instr_insert(b, instr);
|
|
value_set_ssa_components(&value, &intrin->def,
|
|
intrin->num_components);
|
|
}
|
|
state->progress = true;
|
|
} else {
|
|
value_set_ssa_components(&value, &intrin->def,
|
|
intrin->num_components);
|
|
}
|
|
|
|
/* Now that we have a value, we're going to store it back so that we
|
|
* have the right value next time we come looking for it. In order
|
|
* to do this, we need an exact match, not just something that
|
|
* contains what we're looking for.
|
|
*
|
|
* We avoid doing another lookup if src.instr == vec_src.instr.
|
|
*/
|
|
struct copy_entry *entry = src_entry;
|
|
if (src.instr != vec_src.instr)
|
|
entry = lookup_entry_for_deref(state, copies, &vec_src,
|
|
nir_derefs_equal_bit, NULL);
|
|
else if (!src_entry_equal)
|
|
entry = NULL;
|
|
|
|
if (!entry)
|
|
entry = copy_entry_create(state, copies, &vec_src);
|
|
|
|
/* Update the entry with the value of the load. This way
|
|
* we can potentially remove subsequent loads.
|
|
*/
|
|
value_set_from_value(&entry->src, &value, vec_index,
|
|
(1 << intrin->num_components) - 1);
|
|
break;
|
|
}
|
|
|
|
case nir_intrinsic_store_deref: {
|
|
if (debug)
|
|
dump_instr(instr);
|
|
|
|
nir_deref_and_path dst = { nir_src_as_deref(intrin->src[0]), NULL };
|
|
assert(glsl_type_is_vector_or_scalar(dst.instr->type));
|
|
|
|
/* Direct array_derefs of vectors operate on the vectors (the parent
|
|
* deref). Indirects will be handled like other derefs.
|
|
*/
|
|
int vec_index = 0;
|
|
nir_deref_and_path vec_dst = dst;
|
|
if (is_array_deref_of_vector(&dst) && nir_src_is_const(dst.instr->arr.index)) {
|
|
vec_dst.instr = nir_deref_instr_parent(dst.instr);
|
|
unsigned vec_comps = glsl_get_vector_elements(vec_dst.instr->type);
|
|
|
|
vec_index = nir_src_as_uint(dst.instr->arr.index);
|
|
|
|
/* Storing to an invalid index is a no-op. */
|
|
if (vec_index >= vec_comps) {
|
|
nir_instr_remove(instr);
|
|
state->progress = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (nir_intrinsic_access(intrin) & ACCESS_VOLATILE) {
|
|
unsigned wrmask = nir_intrinsic_write_mask(intrin);
|
|
kill_aliases(state, copies, &dst, wrmask);
|
|
break;
|
|
}
|
|
|
|
struct copy_entry *entry =
|
|
lookup_entry_for_deref(state, copies, &dst, nir_derefs_equal_bit, NULL);
|
|
if (entry && value_equals_store_src(&entry->src, intrin)) {
|
|
/* If we are storing the value from a load of the same var the
|
|
* store is redundant so remove it.
|
|
*/
|
|
nir_instr_remove(instr);
|
|
state->progress = true;
|
|
} else {
|
|
struct value value = { 0 };
|
|
value_set_ssa_components(&value, intrin->src[1].ssa,
|
|
intrin->num_components);
|
|
unsigned wrmask = nir_intrinsic_write_mask(intrin);
|
|
struct copy_entry *entry =
|
|
get_entry_and_kill_aliases(state, copies, &vec_dst, wrmask);
|
|
value_set_from_value(&entry->src, &value, vec_index, wrmask);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case nir_intrinsic_copy_deref: {
|
|
if (debug)
|
|
dump_instr(instr);
|
|
|
|
nir_deref_and_path dst = { nir_src_as_deref(intrin->src[0]), NULL };
|
|
nir_deref_and_path src = { nir_src_as_deref(intrin->src[1]), NULL };
|
|
|
|
/* The copy_deref intrinsic doesn't keep track of num_components, so
|
|
* get it ourselves.
|
|
*/
|
|
unsigned num_components = glsl_get_vector_elements(dst.instr->type);
|
|
unsigned full_mask = (1 << num_components) - 1;
|
|
|
|
if ((nir_intrinsic_src_access(intrin) & ACCESS_VOLATILE) ||
|
|
(nir_intrinsic_dst_access(intrin) & ACCESS_VOLATILE)) {
|
|
kill_aliases(state, copies, &dst, full_mask);
|
|
break;
|
|
}
|
|
|
|
nir_deref_compare_result comp =
|
|
nir_compare_derefs_and_paths(state->mem_ctx, &src, &dst);
|
|
if (comp & nir_derefs_equal_bit) {
|
|
/* This is a no-op self-copy. Get rid of it */
|
|
nir_instr_remove(instr);
|
|
state->progress = true;
|
|
continue;
|
|
}
|
|
|
|
/* Copy of direct array derefs of vectors are not handled. Just
|
|
* invalidate what's written and bail.
|
|
*/
|
|
if ((is_array_deref_of_vector(&src) && nir_src_is_const(src.instr->arr.index)) ||
|
|
(is_array_deref_of_vector(&dst) && nir_src_is_const(dst.instr->arr.index))) {
|
|
kill_aliases(state, copies, &dst, full_mask);
|
|
break;
|
|
}
|
|
|
|
struct copy_entry *src_entry =
|
|
lookup_entry_for_deref(state, copies, &src, nir_derefs_a_contains_b_bit, NULL);
|
|
struct value value;
|
|
if (try_load_from_entry(state, src_entry, b, intrin, &src, &value)) {
|
|
/* If load works, intrin (the copy_deref) is removed. */
|
|
if (value.is_ssa) {
|
|
nir_store_deref(b, dst.instr, value.ssa.def[0], full_mask);
|
|
} else {
|
|
/* If this would be a no-op self-copy, don't bother. */
|
|
comp = nir_compare_derefs_and_paths(state->mem_ctx, &value.deref, &dst);
|
|
if (comp & nir_derefs_equal_bit)
|
|
continue;
|
|
|
|
/* Just turn it into a copy of a different deref */
|
|
intrin->src[1] = nir_src_for_ssa(&value.deref.instr->def);
|
|
|
|
/* Put it back in again. */
|
|
nir_builder_instr_insert(b, instr);
|
|
}
|
|
|
|
state->progress = true;
|
|
} else {
|
|
value = (struct value){
|
|
.is_ssa = false,
|
|
{ .deref = src },
|
|
};
|
|
}
|
|
|
|
nir_variable *src_var = nir_deref_instr_get_variable(src.instr);
|
|
if (src_var && src_var->data.cannot_coalesce) {
|
|
/* The source cannot be coaleseced, which means we can't propagate
|
|
* this copy.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
struct copy_entry *dst_entry =
|
|
get_entry_and_kill_aliases(state, copies, &dst, full_mask);
|
|
value_set_from_value(&dst_entry->src, &value, 0, full_mask);
|
|
break;
|
|
}
|
|
|
|
case nir_intrinsic_trace_ray:
|
|
case nir_intrinsic_execute_callable:
|
|
case nir_intrinsic_rt_trace_ray:
|
|
case nir_intrinsic_rt_execute_callable: {
|
|
if (debug)
|
|
dump_instr(instr);
|
|
|
|
nir_deref_and_path payload = {
|
|
nir_src_as_deref(*nir_get_shader_call_payload_src(intrin)), NULL
|
|
};
|
|
nir_component_mask_t full_mask = (1 << glsl_get_vector_elements(payload.instr->type)) - 1;
|
|
kill_aliases(state, copies, &payload, full_mask);
|
|
break;
|
|
}
|
|
|
|
case nir_intrinsic_memcpy_deref:
|
|
case nir_intrinsic_deref_atomic:
|
|
case nir_intrinsic_deref_atomic_swap:
|
|
if (debug)
|
|
dump_instr(instr);
|
|
|
|
nir_deref_and_path dst = { nir_src_as_deref(intrin->src[0]), NULL };
|
|
unsigned num_components = glsl_get_vector_elements(dst.instr->type);
|
|
unsigned full_mask = (1 << num_components) - 1;
|
|
kill_aliases(state, copies, &dst, full_mask);
|
|
break;
|
|
|
|
case nir_intrinsic_store_deref_block_intel: {
|
|
if (debug)
|
|
dump_instr(instr);
|
|
|
|
/* Invalidate the whole variable (or cast) and anything that alias
|
|
* with it.
|
|
*/
|
|
nir_deref_and_path dst = { nir_src_as_deref(intrin->src[0]), NULL };
|
|
while (nir_deref_instr_parent(dst.instr))
|
|
dst.instr = nir_deref_instr_parent(dst.instr);
|
|
assert(dst.instr->deref_type == nir_deref_type_var ||
|
|
dst.instr->deref_type == nir_deref_type_cast);
|
|
|
|
unsigned num_components = glsl_get_vector_elements(dst.instr->type);
|
|
unsigned full_mask = (1 << num_components) - 1;
|
|
kill_aliases(state, copies, &dst, full_mask);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
continue; /* To skip the debug below. */
|
|
}
|
|
|
|
if (debug)
|
|
dump_copy_entries(copies);
|
|
}
|
|
}
|
|
|
|
static void
|
|
clone_copies(struct copy_prop_var_state *state, struct copies *clones,
|
|
struct copies *copies)
|
|
{
|
|
/* Simply clone the entire hash table. This is much faster than trying to
|
|
* rebuild it and is needed to avoid slow compilation of very large shaders.
|
|
* If needed we will clone the data later if it is ever looked up.
|
|
*/
|
|
assert(clones->ht == NULL);
|
|
clones->ht = _mesa_hash_table_clone(copies->ht, state->mem_ctx);
|
|
|
|
util_dynarray_clone(&clones->arr, state->mem_ctx, &copies->arr);
|
|
}
|
|
|
|
/* Returns an existing struct for reuse or creates a new on if they are
|
|
* all in use. This greatly reduces the time spent allocating memory if we
|
|
* were to just creating a fresh one each time.
|
|
*/
|
|
static struct copies *
|
|
get_copies_structure(struct copy_prop_var_state *state)
|
|
{
|
|
struct copies *copies;
|
|
if (list_is_empty(&state->unused_copy_structs_list)) {
|
|
copies = ralloc(state->mem_ctx, struct copies);
|
|
copies->ht = NULL;
|
|
util_dynarray_init(&copies->arr, state->mem_ctx);
|
|
} else {
|
|
copies = list_entry(state->unused_copy_structs_list.next,
|
|
struct copies, node);
|
|
list_del(&copies->node);
|
|
}
|
|
|
|
return copies;
|
|
}
|
|
|
|
static void
|
|
clear_copies_structure(struct copy_prop_var_state *state,
|
|
struct copies *copies)
|
|
{
|
|
ralloc_free(copies->ht);
|
|
copies->ht = NULL;
|
|
|
|
list_add(&copies->node, &state->unused_copy_structs_list);
|
|
}
|
|
|
|
static void
|
|
copy_prop_vars_cf_node(struct copy_prop_var_state *state,
|
|
struct copies *copies, nir_cf_node *cf_node)
|
|
{
|
|
switch (cf_node->type) {
|
|
case nir_cf_node_function: {
|
|
nir_function_impl *impl = nir_cf_node_as_function(cf_node);
|
|
|
|
struct copies *impl_copies = get_copies_structure(state);
|
|
impl_copies->ht = _mesa_hash_table_create(state->mem_ctx,
|
|
_mesa_hash_pointer,
|
|
_mesa_key_pointer_equal);
|
|
|
|
foreach_list_typed_safe(nir_cf_node, cf_node, node, &impl->body)
|
|
copy_prop_vars_cf_node(state, impl_copies, cf_node);
|
|
|
|
clear_copies_structure(state, impl_copies);
|
|
|
|
break;
|
|
}
|
|
|
|
case nir_cf_node_block: {
|
|
nir_block *block = nir_cf_node_as_block(cf_node);
|
|
nir_builder b = nir_builder_create(state->impl);
|
|
copy_prop_vars_block(state, &b, block, copies);
|
|
break;
|
|
}
|
|
|
|
case nir_cf_node_if: {
|
|
nir_if *if_stmt = nir_cf_node_as_if(cf_node);
|
|
|
|
/* Create new hash tables for tracking vars and fill it with clones of
|
|
* the copy arrays for each variable we are tracking.
|
|
*
|
|
* We clone the copies for each branch of the if statement. The idea is
|
|
* that they both see the same state of available copies, but do not
|
|
* interfere to each other.
|
|
*/
|
|
if (!exec_list_is_empty(&if_stmt->then_list)) {
|
|
struct copies *then_copies = get_copies_structure(state);
|
|
clone_copies(state, then_copies, copies);
|
|
|
|
foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->then_list)
|
|
copy_prop_vars_cf_node(state, then_copies, cf_node);
|
|
|
|
clear_copies_structure(state, then_copies);
|
|
}
|
|
|
|
if (!exec_list_is_empty(&if_stmt->else_list)) {
|
|
struct copies *else_copies = get_copies_structure(state);
|
|
clone_copies(state, else_copies, copies);
|
|
|
|
foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->else_list)
|
|
copy_prop_vars_cf_node(state, else_copies, cf_node);
|
|
|
|
clear_copies_structure(state, else_copies);
|
|
}
|
|
|
|
/* Both branches copies can be ignored, since the effect of running both
|
|
* branches was captured in the first pass that collects vars_written.
|
|
*/
|
|
|
|
invalidate_copies_for_cf_node(state, copies, cf_node);
|
|
|
|
break;
|
|
}
|
|
|
|
case nir_cf_node_loop: {
|
|
nir_loop *loop = nir_cf_node_as_loop(cf_node);
|
|
assert(!nir_loop_has_continue_construct(loop));
|
|
|
|
/* Invalidate before cloning the copies for the loop, since the loop
|
|
* body can be executed more than once.
|
|
*/
|
|
|
|
invalidate_copies_for_cf_node(state, copies, cf_node);
|
|
|
|
struct copies *loop_copies = get_copies_structure(state);
|
|
clone_copies(state, loop_copies, copies);
|
|
|
|
foreach_list_typed_safe(nir_cf_node, cf_node, node, &loop->body)
|
|
copy_prop_vars_cf_node(state, loop_copies, cf_node);
|
|
|
|
clear_copies_structure(state, loop_copies);
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
unreachable("Invalid CF node type");
|
|
}
|
|
}
|
|
|
|
static bool
|
|
nir_copy_prop_vars_impl(nir_function_impl *impl)
|
|
{
|
|
void *mem_ctx = ralloc_context(NULL);
|
|
|
|
if (debug) {
|
|
nir_metadata_require(impl, nir_metadata_block_index);
|
|
printf("## nir_copy_prop_vars_impl for %s\n", impl->function->name);
|
|
}
|
|
|
|
struct copy_prop_var_state state = {
|
|
.impl = impl,
|
|
.mem_ctx = mem_ctx,
|
|
.lin_ctx = linear_context(mem_ctx),
|
|
|
|
.vars_written_map = _mesa_pointer_hash_table_create(mem_ctx),
|
|
};
|
|
list_inithead(&state.unused_copy_structs_list);
|
|
|
|
gather_vars_written(&state, NULL, &impl->cf_node);
|
|
|
|
copy_prop_vars_cf_node(&state, NULL, &impl->cf_node);
|
|
|
|
if (state.progress) {
|
|
nir_metadata_preserve(impl, nir_metadata_block_index |
|
|
nir_metadata_dominance);
|
|
} else {
|
|
nir_metadata_preserve(impl, nir_metadata_all);
|
|
}
|
|
|
|
ralloc_free(mem_ctx);
|
|
return state.progress;
|
|
}
|
|
|
|
bool
|
|
nir_opt_copy_prop_vars(nir_shader *shader)
|
|
{
|
|
bool progress = false;
|
|
|
|
nir_foreach_function_impl(impl, shader) {
|
|
progress |= nir_copy_prop_vars_impl(impl);
|
|
}
|
|
|
|
return progress;
|
|
}
|