mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-24 19:40:10 +01:00
to use 32-bit integer. Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/38587>
10791 lines
399 KiB
C
10791 lines
399 KiB
C
/*
|
||
* Copyright © 2017 Intel Corporation
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
* copy of this software and associated documentation files (the "Software"),
|
||
* to deal in the Software without restriction, including without limitation
|
||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
* and/or sell copies of the Software, and to permit persons to whom the
|
||
* Software is furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice shall be included
|
||
* in all copies or substantial portions of the Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||
* DEALINGS IN THE SOFTWARE.
|
||
*/
|
||
|
||
/**
|
||
* @file iris_state.c
|
||
*
|
||
* ============================= GENXML CODE =============================
|
||
* [This file is compiled once per generation.]
|
||
* =======================================================================
|
||
*
|
||
* This is the main state upload code.
|
||
*
|
||
* Gallium uses Constant State Objects, or CSOs, for most state. Large,
|
||
* complex, or highly reusable state can be created once, and bound and
|
||
* rebound multiple times. This is modeled with the pipe->create_*_state()
|
||
* and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
|
||
* streamed out on the fly, via pipe->set_*_state() hooks.
|
||
*
|
||
* OpenGL involves frequently mutating context state, which is mirrored in
|
||
* core Mesa by highly mutable data structures. However, most applications
|
||
* typically draw the same things over and over - from frame to frame, most
|
||
* of the same objects are still visible and need to be redrawn. So, rather
|
||
* than inventing new state all the time, applications usually mutate to swap
|
||
* between known states that we've seen before.
|
||
*
|
||
* Gallium isolates us from this mutation by tracking API state, and
|
||
* distilling it into a set of Constant State Objects, or CSOs. Large,
|
||
* complex, or typically reusable state can be created once, then reused
|
||
* multiple times. Drivers can create and store their own associated data.
|
||
* This create/bind model corresponds to the pipe->create_*_state() and
|
||
* pipe->bind_*_state() driver hooks.
|
||
*
|
||
* Some state is cheap to create, or expected to be highly dynamic. Rather
|
||
* than creating and caching piles of CSOs for these, Gallium simply streams
|
||
* them out, via the pipe->set_*_state() driver hooks.
|
||
*
|
||
* To reduce draw time overhead, we try to compute as much state at create
|
||
* time as possible. Wherever possible, we translate the Gallium pipe state
|
||
* to 3DSTATE commands, and store those commands in the CSO. At draw time,
|
||
* we can simply memcpy them into a batch buffer.
|
||
*
|
||
* No hardware matches the abstraction perfectly, so some commands require
|
||
* information from multiple CSOs. In this case, we can store two copies
|
||
* of the packet (one in each CSO), and simply | together their DWords at
|
||
* draw time. Sometimes the second set is trivial (one or two fields), so
|
||
* we simply pack it at draw time.
|
||
*
|
||
* There are two main components in the file below. First, the CSO hooks
|
||
* create/bind/track state. The second are the draw-time upload functions,
|
||
* iris_upload_render_state() and iris_upload_compute_state(), which read
|
||
* the context state and emit the commands into the actual batch.
|
||
*/
|
||
|
||
#include <stdio.h>
|
||
#include <errno.h>
|
||
|
||
#ifdef HAVE_VALGRIND
|
||
#include <valgrind.h>
|
||
#include <memcheck.h>
|
||
#define VG(x) x
|
||
#else
|
||
#define VG(x)
|
||
#endif
|
||
|
||
#include "pipe/p_defines.h"
|
||
#include "pipe/p_state.h"
|
||
#include "pipe/p_context.h"
|
||
#include "pipe/p_screen.h"
|
||
#include "util/u_dual_blend.h"
|
||
#include "util/u_inlines.h"
|
||
#include "util/format/u_format.h"
|
||
#include "util/u_framebuffer.h"
|
||
#include "util/u_transfer.h"
|
||
#include "util/u_upload_mgr.h"
|
||
#include "util/u_viewport.h"
|
||
#include "util/u_memory.h"
|
||
#include "util/u_trace_gallium.h"
|
||
#include "nir.h"
|
||
#include "intel/common/intel_aux_map.h"
|
||
#include "intel/common/intel_compute_slm.h"
|
||
#include "intel/common/intel_l3_config.h"
|
||
#include "intel/common/intel_sample_positions.h"
|
||
#include "intel/ds/intel_tracepoints.h"
|
||
#include "iris_batch.h"
|
||
#include "iris_context.h"
|
||
#include "iris_defines.h"
|
||
#include "iris_pipe.h"
|
||
#include "iris_resource.h"
|
||
#include "iris_utrace.h"
|
||
|
||
#include "iris_genx_macros.h"
|
||
|
||
#if GFX_VER >= 9
|
||
#include "intel/compiler/brw/brw_compiler.h"
|
||
#include "intel/common/intel_genX_state_brw.h"
|
||
#else
|
||
#include "intel/compiler/elk/elk_compiler.h"
|
||
#include "intel/common/intel_genX_state_elk.h"
|
||
#endif
|
||
|
||
#include "intel/common/intel_common.h"
|
||
#include "intel/common/intel_guardband.h"
|
||
#include "intel/common/intel_pixel_hash.h"
|
||
#include "intel/common/intel_tiled_render.h"
|
||
|
||
/**
|
||
* Statically assert that PIPE_* enums match the hardware packets.
|
||
* (As long as they match, we don't need to translate them.)
|
||
*/
|
||
UNUSED static void pipe_asserts()
|
||
{
|
||
#define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
|
||
|
||
/* pipe_logicop happens to match the hardware. */
|
||
PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
|
||
PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
|
||
PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
|
||
PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
|
||
PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
|
||
PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
|
||
PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
|
||
PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
|
||
PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
|
||
PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
|
||
PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
|
||
PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
|
||
PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
|
||
PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
|
||
PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
|
||
PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
|
||
|
||
/* pipe_blend_func happens to match the hardware. */
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
|
||
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
|
||
|
||
/* pipe_blend_func happens to match the hardware. */
|
||
PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
|
||
PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
|
||
PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
|
||
PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
|
||
PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
|
||
|
||
/* pipe_stencil_op happens to match the hardware. */
|
||
PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
|
||
PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
|
||
PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
|
||
PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
|
||
PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
|
||
PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
|
||
PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
|
||
PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
|
||
|
||
/* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
|
||
PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
|
||
PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
|
||
#undef PIPE_ASSERT
|
||
}
|
||
|
||
static unsigned
|
||
translate_prim_type(enum mesa_prim prim, uint8_t verts_per_patch)
|
||
{
|
||
static const unsigned map[] = {
|
||
[MESA_PRIM_POINTS] = _3DPRIM_POINTLIST,
|
||
[MESA_PRIM_LINES] = _3DPRIM_LINELIST,
|
||
[MESA_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
|
||
[MESA_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
|
||
[MESA_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
|
||
[MESA_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
|
||
[MESA_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
|
||
[MESA_PRIM_QUADS] = _3DPRIM_QUADLIST,
|
||
[MESA_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
|
||
[MESA_PRIM_POLYGON] = _3DPRIM_POLYGON,
|
||
[MESA_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
|
||
[MESA_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
|
||
[MESA_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
|
||
[MESA_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
|
||
[MESA_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
|
||
};
|
||
|
||
return map[prim] + (prim == MESA_PRIM_PATCHES ? verts_per_patch : 0);
|
||
}
|
||
|
||
static unsigned
|
||
translate_compare_func(enum pipe_compare_func pipe_func)
|
||
{
|
||
static const unsigned map[] = {
|
||
[PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
|
||
[PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
|
||
[PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
|
||
[PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
|
||
[PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
|
||
[PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
|
||
[PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
|
||
[PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
|
||
};
|
||
return map[pipe_func];
|
||
}
|
||
|
||
static unsigned
|
||
translate_shadow_func(enum pipe_compare_func pipe_func)
|
||
{
|
||
/* Gallium specifies the result of shadow comparisons as:
|
||
*
|
||
* 1 if ref <op> texel,
|
||
* 0 otherwise.
|
||
*
|
||
* The hardware does:
|
||
*
|
||
* 0 if texel <op> ref,
|
||
* 1 otherwise.
|
||
*
|
||
* So we need to flip the operator and also negate.
|
||
*/
|
||
static const unsigned map[] = {
|
||
[PIPE_FUNC_NEVER] = PREFILTEROP_ALWAYS,
|
||
[PIPE_FUNC_LESS] = PREFILTEROP_LEQUAL,
|
||
[PIPE_FUNC_EQUAL] = PREFILTEROP_NOTEQUAL,
|
||
[PIPE_FUNC_LEQUAL] = PREFILTEROP_LESS,
|
||
[PIPE_FUNC_GREATER] = PREFILTEROP_GEQUAL,
|
||
[PIPE_FUNC_NOTEQUAL] = PREFILTEROP_EQUAL,
|
||
[PIPE_FUNC_GEQUAL] = PREFILTEROP_GREATER,
|
||
[PIPE_FUNC_ALWAYS] = PREFILTEROP_NEVER,
|
||
};
|
||
return map[pipe_func];
|
||
}
|
||
|
||
static unsigned
|
||
translate_cull_mode(unsigned pipe_face)
|
||
{
|
||
static const unsigned map[4] = {
|
||
[PIPE_FACE_NONE] = CULLMODE_NONE,
|
||
[PIPE_FACE_FRONT] = CULLMODE_FRONT,
|
||
[PIPE_FACE_BACK] = CULLMODE_BACK,
|
||
[PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
|
||
};
|
||
return map[pipe_face];
|
||
}
|
||
|
||
static unsigned
|
||
translate_fill_mode(unsigned pipe_polymode)
|
||
{
|
||
static const unsigned map[4] = {
|
||
[PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
|
||
[PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
|
||
[PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
|
||
[PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
|
||
};
|
||
return map[pipe_polymode];
|
||
}
|
||
|
||
static unsigned
|
||
translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
|
||
{
|
||
static const unsigned map[] = {
|
||
[PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
|
||
[PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
|
||
[PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
|
||
};
|
||
return map[pipe_mip];
|
||
}
|
||
|
||
static uint32_t
|
||
translate_wrap(unsigned pipe_wrap)
|
||
{
|
||
static const unsigned map[] = {
|
||
[PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
|
||
[PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
|
||
[PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
|
||
[PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
|
||
[PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
|
||
[PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
|
||
|
||
/* These are unsupported. */
|
||
[PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
|
||
[PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
|
||
};
|
||
return map[pipe_wrap];
|
||
}
|
||
|
||
#if GFX_VER > 8
|
||
static uint32_t
|
||
translate_tex_filter_mode(unsigned mode)
|
||
{
|
||
static const unsigned map[] = {
|
||
[PIPE_TEX_REDUCTION_WEIGHTED_AVERAGE] = STD_FILTER,
|
||
[PIPE_TEX_REDUCTION_MIN] = MINIMUM,
|
||
[PIPE_TEX_REDUCTION_MAX] = MAXIMUM,
|
||
};
|
||
return map[mode];
|
||
}
|
||
#endif
|
||
|
||
/**
|
||
* Allocate space for some indirect state.
|
||
*
|
||
* Return a pointer to the map (to fill it out) and a state ref (for
|
||
* referring to the state in GPU commands).
|
||
*/
|
||
static void *
|
||
upload_state(struct u_upload_mgr *uploader,
|
||
struct iris_state_ref *ref,
|
||
unsigned size,
|
||
unsigned alignment)
|
||
{
|
||
void *p = NULL;
|
||
u_upload_alloc_ref(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
|
||
return p;
|
||
}
|
||
|
||
/**
|
||
* Stream out temporary/short-lived state.
|
||
*
|
||
* This allocates space, pins the BO, and includes the BO address in the
|
||
* returned offset (which works because all state lives in 32-bit memory
|
||
* zones).
|
||
*/
|
||
static uint32_t *
|
||
stream_state(struct iris_batch *batch,
|
||
struct u_upload_mgr *uploader,
|
||
struct pipe_resource **out_res,
|
||
unsigned size,
|
||
unsigned alignment,
|
||
uint32_t *out_offset)
|
||
{
|
||
void *ptr = NULL;
|
||
|
||
u_upload_alloc_ref(uploader, 0, size, alignment, out_offset, out_res, &ptr);
|
||
|
||
struct iris_bo *bo = iris_resource_bo(*out_res);
|
||
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
|
||
|
||
iris_record_state_size(batch->state_sizes,
|
||
bo->address + *out_offset, size);
|
||
|
||
*out_offset += iris_bo_offset_from_base_address(bo);
|
||
|
||
return ptr;
|
||
}
|
||
|
||
/**
|
||
* stream_state() + memcpy.
|
||
*/
|
||
static uint32_t
|
||
emit_state(struct iris_batch *batch,
|
||
struct u_upload_mgr *uploader,
|
||
struct pipe_resource **out_res,
|
||
const void *data,
|
||
unsigned size,
|
||
unsigned alignment)
|
||
{
|
||
unsigned offset = 0;
|
||
uint32_t *map =
|
||
stream_state(batch, uploader, out_res, size, alignment, &offset);
|
||
|
||
if (map)
|
||
memcpy(map, data, size);
|
||
|
||
return offset;
|
||
}
|
||
|
||
/**
|
||
* Did field 'x' change between 'old_cso' and 'new_cso'?
|
||
*
|
||
* (If so, we may want to set some dirty flags.)
|
||
*/
|
||
#define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
|
||
#define cso_changed_memcmp(x) \
|
||
(!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
|
||
#define cso_changed_memcmp_elts(x, n) \
|
||
(!old_cso || memcmp(old_cso->x, new_cso->x, n * sizeof(old_cso->x[0])) != 0)
|
||
|
||
static void
|
||
flush_before_state_base_change(struct iris_batch *batch)
|
||
{
|
||
/* Wa_14014427904 - We need additional invalidate/flush when
|
||
* emitting NP state commands with ATS-M in compute mode.
|
||
*/
|
||
bool atsm_compute = intel_device_info_is_atsm(batch->screen->devinfo) &&
|
||
batch->name == IRIS_BATCH_COMPUTE;
|
||
uint32_t np_state_wa_bits =
|
||
PIPE_CONTROL_CS_STALL |
|
||
PIPE_CONTROL_STATE_CACHE_INVALIDATE |
|
||
PIPE_CONTROL_CONST_CACHE_INVALIDATE |
|
||
PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
|
||
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
|
||
PIPE_CONTROL_INSTRUCTION_INVALIDATE |
|
||
PIPE_CONTROL_FLUSH_HDC;
|
||
|
||
/* Flush before emitting STATE_BASE_ADDRESS.
|
||
*
|
||
* This isn't documented anywhere in the PRM. However, it seems to be
|
||
* necessary prior to changing the surface state base address. We've
|
||
* seen issues in Vulkan where we get GPU hangs when using multi-level
|
||
* command buffers which clear depth, reset state base address, and then
|
||
* go render stuff.
|
||
*
|
||
* Normally, in GL, we would trust the kernel to do sufficient stalls
|
||
* and flushes prior to executing our batch. However, it doesn't seem
|
||
* as if the kernel's flushing is always sufficient and we don't want to
|
||
* rely on it.
|
||
*
|
||
* We make this an end-of-pipe sync instead of a normal flush because we
|
||
* do not know the current status of the GPU. On Haswell at least,
|
||
* having a fast-clear operation in flight at the same time as a normal
|
||
* rendering operation can cause hangs. Since the kernel's flushing is
|
||
* insufficient, we need to ensure that any rendering operations from
|
||
* other processes are definitely complete before we try to do our own
|
||
* rendering. It's a bit of a big hammer but it appears to work.
|
||
*
|
||
* Render target cache flush before SBA is required by Wa_18039438632.
|
||
*/
|
||
iris_emit_end_of_pipe_sync(batch,
|
||
"change STATE_BASE_ADDRESS (flushes)",
|
||
atsm_compute ? np_state_wa_bits : 0 |
|
||
PIPE_CONTROL_RENDER_TARGET_FLUSH |
|
||
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
|
||
PIPE_CONTROL_DATA_CACHE_FLUSH);
|
||
}
|
||
|
||
static void
|
||
flush_after_state_base_change(struct iris_batch *batch)
|
||
{
|
||
const struct intel_device_info *devinfo = batch->screen->devinfo;
|
||
/* After re-setting the surface state base address, we have to do some
|
||
* cache flusing so that the sampler engine will pick up the new
|
||
* SURFACE_STATE objects and binding tables. From the Broadwell PRM,
|
||
* Shared Function > 3D Sampler > State > State Caching (page 96):
|
||
*
|
||
* Coherency with system memory in the state cache, like the texture
|
||
* cache is handled partially by software. It is expected that the
|
||
* command stream or shader will issue Cache Flush operation or
|
||
* Cache_Flush sampler message to ensure that the L1 cache remains
|
||
* coherent with system memory.
|
||
*
|
||
* [...]
|
||
*
|
||
* Whenever the value of the Dynamic_State_Base_Addr,
|
||
* Surface_State_Base_Addr are altered, the L1 state cache must be
|
||
* invalidated to ensure the new surface or sampler state is fetched
|
||
* from system memory.
|
||
*
|
||
* The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
|
||
* which, according the PIPE_CONTROL instruction documentation in the
|
||
* Broadwell PRM:
|
||
*
|
||
* Setting this bit is independent of any other bit in this packet.
|
||
* This bit controls the invalidation of the L1 and L2 state caches
|
||
* at the top of the pipe i.e. at the parsing time.
|
||
*
|
||
* Unfortunately, experimentation seems to indicate that state cache
|
||
* invalidation through a PIPE_CONTROL does nothing whatsoever in
|
||
* regards to surface state and binding tables. In stead, it seems that
|
||
* invalidating the texture cache is what is actually needed.
|
||
*
|
||
* XXX: As far as we have been able to determine through
|
||
* experimentation, shows that flush the texture cache appears to be
|
||
* sufficient. The theory here is that all of the sampling/rendering
|
||
* units cache the binding table in the texture cache. However, we have
|
||
* yet to be able to actually confirm this.
|
||
*
|
||
* Wa_16013000631:
|
||
*
|
||
* "DG2 128/256/512-A/B: S/W must program STATE_BASE_ADDRESS command twice
|
||
* or program pipe control with Instruction cache invalidate post
|
||
* STATE_BASE_ADDRESS command"
|
||
*/
|
||
iris_emit_end_of_pipe_sync(batch,
|
||
"change STATE_BASE_ADDRESS (invalidates)",
|
||
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
|
||
PIPE_CONTROL_CONST_CACHE_INVALIDATE |
|
||
PIPE_CONTROL_STATE_CACHE_INVALIDATE |
|
||
(intel_needs_workaround(devinfo, 16013000631) ?
|
||
PIPE_CONTROL_INSTRUCTION_INVALIDATE : 0));
|
||
}
|
||
|
||
static void
|
||
iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
|
||
uint32_t src)
|
||
{
|
||
struct mi_builder b;
|
||
mi_builder_init(&b, batch->screen->devinfo, batch);
|
||
mi_store(&b, mi_reg32(dst), mi_reg32(src));
|
||
}
|
||
|
||
static void
|
||
iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
|
||
uint32_t src)
|
||
{
|
||
struct mi_builder b;
|
||
mi_builder_init(&b, batch->screen->devinfo, batch);
|
||
mi_store(&b, mi_reg64(dst), mi_reg64(src));
|
||
}
|
||
|
||
static void
|
||
iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
|
||
uint32_t val)
|
||
{
|
||
struct mi_builder b;
|
||
mi_builder_init(&b, batch->screen->devinfo, batch);
|
||
mi_store(&b, mi_reg32(reg), mi_imm(val));
|
||
}
|
||
|
||
static void
|
||
iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
|
||
uint64_t val)
|
||
{
|
||
struct mi_builder b;
|
||
mi_builder_init(&b, batch->screen->devinfo, batch);
|
||
mi_store(&b, mi_reg64(reg), mi_imm(val));
|
||
}
|
||
|
||
/**
|
||
* Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
|
||
*/
|
||
static void
|
||
iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
|
||
struct iris_bo *bo, uint32_t offset)
|
||
{
|
||
iris_batch_sync_region_start(batch);
|
||
struct mi_builder b;
|
||
mi_builder_init(&b, batch->screen->devinfo, batch);
|
||
struct mi_value src = mi_mem32(ro_bo(bo, offset));
|
||
mi_store(&b, mi_reg32(reg), src);
|
||
iris_batch_sync_region_end(batch);
|
||
}
|
||
|
||
/**
|
||
* Load a 64-bit value from a buffer into a MMIO register via
|
||
* two MI_LOAD_REGISTER_MEM commands.
|
||
*/
|
||
static void
|
||
iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
|
||
struct iris_bo *bo, uint32_t offset)
|
||
{
|
||
iris_batch_sync_region_start(batch);
|
||
struct mi_builder b;
|
||
mi_builder_init(&b, batch->screen->devinfo, batch);
|
||
struct mi_value src = mi_mem64(ro_bo(bo, offset));
|
||
mi_store(&b, mi_reg64(reg), src);
|
||
iris_batch_sync_region_end(batch);
|
||
}
|
||
|
||
static void
|
||
iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
|
||
struct iris_bo *bo, uint32_t offset,
|
||
bool predicated)
|
||
{
|
||
iris_batch_sync_region_start(batch);
|
||
struct mi_builder b;
|
||
mi_builder_init(&b, batch->screen->devinfo, batch);
|
||
struct mi_value dst = mi_mem32(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
|
||
struct mi_value src = mi_reg32(reg);
|
||
if (predicated)
|
||
mi_store_if(&b, dst, src);
|
||
else
|
||
mi_store(&b, dst, src);
|
||
iris_batch_sync_region_end(batch);
|
||
}
|
||
|
||
static void
|
||
iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
|
||
struct iris_bo *bo, uint32_t offset,
|
||
bool predicated)
|
||
{
|
||
iris_batch_sync_region_start(batch);
|
||
struct mi_builder b;
|
||
mi_builder_init(&b, batch->screen->devinfo, batch);
|
||
struct mi_value dst = mi_mem64(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
|
||
struct mi_value src = mi_reg64(reg);
|
||
if (predicated)
|
||
mi_store_if(&b, dst, src);
|
||
else
|
||
mi_store(&b, dst, src);
|
||
iris_batch_sync_region_end(batch);
|
||
}
|
||
|
||
static void
|
||
iris_store_data_imm32(struct iris_batch *batch,
|
||
struct iris_bo *bo, uint32_t offset,
|
||
uint32_t imm)
|
||
{
|
||
iris_batch_sync_region_start(batch);
|
||
struct mi_builder b;
|
||
mi_builder_init(&b, batch->screen->devinfo, batch);
|
||
struct mi_value dst = mi_mem32(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
|
||
struct mi_value src = mi_imm(imm);
|
||
mi_store(&b, dst, src);
|
||
iris_batch_sync_region_end(batch);
|
||
}
|
||
|
||
static void
|
||
iris_store_data_imm64(struct iris_batch *batch,
|
||
struct iris_bo *bo, uint32_t offset,
|
||
uint64_t imm)
|
||
{
|
||
iris_batch_sync_region_start(batch);
|
||
struct mi_builder b;
|
||
mi_builder_init(&b, batch->screen->devinfo, batch);
|
||
struct mi_value dst = mi_mem64(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
|
||
struct mi_value src = mi_imm(imm);
|
||
mi_store(&b, dst, src);
|
||
iris_batch_sync_region_end(batch);
|
||
}
|
||
|
||
static void
|
||
iris_copy_mem_mem(struct iris_batch *batch,
|
||
struct iris_bo *dst_bo, uint32_t dst_offset,
|
||
struct iris_bo *src_bo, uint32_t src_offset,
|
||
unsigned bytes)
|
||
{
|
||
/* MI_COPY_MEM_MEM operates on DWords. */
|
||
assert(bytes % 4 == 0);
|
||
assert(dst_offset % 4 == 0);
|
||
assert(src_offset % 4 == 0);
|
||
iris_batch_sync_region_start(batch);
|
||
|
||
for (unsigned i = 0; i < bytes; i += 4) {
|
||
iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
|
||
cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i,
|
||
IRIS_DOMAIN_OTHER_WRITE);
|
||
cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
|
||
}
|
||
}
|
||
|
||
iris_batch_sync_region_end(batch);
|
||
}
|
||
|
||
static void
|
||
iris_rewrite_compute_walker_pc(struct iris_batch *batch,
|
||
uint32_t *walker,
|
||
struct iris_bo *bo,
|
||
uint32_t offset)
|
||
{
|
||
#if GFX_VERx10 >= 125
|
||
struct iris_screen *screen = batch->screen;
|
||
struct iris_address addr = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
|
||
|
||
uint32_t dwords[GENX(COMPUTE_WALKER_length)];
|
||
|
||
_iris_pack_command(batch, GENX(COMPUTE_WALKER), dwords, cw) {
|
||
cw.body.PostSync.Operation = WriteTimestamp;
|
||
cw.body.PostSync.DestinationAddress = addr;
|
||
cw.body.PostSync.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
|
||
}
|
||
|
||
for (uint32_t i = 0; i < GENX(COMPUTE_WALKER_length); i++)
|
||
walker[i] |= dwords[i];
|
||
|
||
/*
|
||
* TDOD: Add INTEL_NEEDS_WA_14025112257 check once HSD is propogated for all
|
||
* other impacted platforms.
|
||
*/
|
||
if (screen->devinfo->ver >= 20 && batch->name == IRIS_BATCH_COMPUTE) {
|
||
iris_emit_pipe_control_flush(batch, "WA_14025112257",
|
||
PIPE_CONTROL_STATE_CACHE_INVALIDATE);
|
||
}
|
||
#else
|
||
UNREACHABLE("Unsupported");
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
|
||
{
|
||
/* Bspec 55860: Xe2+ no longer requires PIPELINE_SELECT */
|
||
#if GFX_VER < 20
|
||
|
||
#if GFX_VER >= 8 && GFX_VER < 10
|
||
/* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
|
||
*
|
||
* Software must clear the COLOR_CALC_STATE Valid field in
|
||
* 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
|
||
* with Pipeline Select set to GPGPU.
|
||
*
|
||
* The internal hardware docs recommend the same workaround for Gfx9
|
||
* hardware too.
|
||
*/
|
||
if (pipeline == GPGPU)
|
||
iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
|
||
#endif
|
||
|
||
#if GFX_VER >= 12
|
||
/* From Tigerlake PRM, Volume 2a, PIPELINE_SELECT:
|
||
*
|
||
* "Software must ensure Render Cache, Depth Cache and HDC Pipeline flush
|
||
* are flushed through a stalling PIPE_CONTROL command prior to
|
||
* programming of PIPELINE_SELECT command transitioning Pipeline Select
|
||
* from 3D to GPGPU/Media.
|
||
* Software must ensure HDC Pipeline flush and Generic Media State Clear
|
||
* is issued through a stalling PIPE_CONTROL command prior to programming
|
||
* of PIPELINE_SELECT command transitioning Pipeline Select from
|
||
* GPGPU/Media to 3D."
|
||
*
|
||
* Note: Issuing PIPE_CONTROL_MEDIA_STATE_CLEAR causes GPU hangs, probably
|
||
* because PIPE was not in MEDIA mode?!
|
||
*/
|
||
enum pipe_control_flags flags = PIPE_CONTROL_CS_STALL |
|
||
PIPE_CONTROL_FLUSH_HDC;
|
||
|
||
if (pipeline == GPGPU && batch->name == IRIS_BATCH_RENDER) {
|
||
flags |= PIPE_CONTROL_RENDER_TARGET_FLUSH |
|
||
PIPE_CONTROL_DEPTH_CACHE_FLUSH;
|
||
} else {
|
||
flags |= PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH;
|
||
}
|
||
/* Wa_16013063087 - State Cache Invalidate must be issued prior to
|
||
* PIPELINE_SELECT when switching from 3D to Compute.
|
||
*
|
||
* SW must do this by programming of PIPECONTROL with “CS Stall” followed
|
||
* by a PIPECONTROL with State Cache Invalidate bit set.
|
||
*/
|
||
if (pipeline == GPGPU &&
|
||
intel_needs_workaround(batch->screen->devinfo, 16013063087))
|
||
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
|
||
|
||
iris_emit_pipe_control_flush(batch, "PIPELINE_SELECT flush", flags);
|
||
#else
|
||
/* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
|
||
* PIPELINE_SELECT [DevBWR+]":
|
||
*
|
||
* "Project: DEVSNB+
|
||
*
|
||
* Software must ensure all the write caches are flushed through a
|
||
* stalling PIPE_CONTROL command followed by another PIPE_CONTROL
|
||
* command to invalidate read only caches prior to programming
|
||
* MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
|
||
*/
|
||
iris_emit_pipe_control_flush(batch,
|
||
"workaround: PIPELINE_SELECT flushes (1/2)",
|
||
PIPE_CONTROL_RENDER_TARGET_FLUSH |
|
||
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
|
||
PIPE_CONTROL_DATA_CACHE_FLUSH |
|
||
PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
|
||
PIPE_CONTROL_CS_STALL);
|
||
|
||
iris_emit_pipe_control_flush(batch,
|
||
"workaround: PIPELINE_SELECT flushes (2/2)",
|
||
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
|
||
PIPE_CONTROL_CONST_CACHE_INVALIDATE |
|
||
PIPE_CONTROL_STATE_CACHE_INVALIDATE |
|
||
PIPE_CONTROL_INSTRUCTION_INVALIDATE);
|
||
#endif
|
||
|
||
iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
|
||
#if GFX_VER >= 9
|
||
sel.MaskBits = GFX_VER == 12 ? 0x13 : 0x3;
|
||
#if GFX_VER == 12
|
||
sel.MediaSamplerDOPClockGateEnable = true;
|
||
#endif /* if GFX_VER == 12 */
|
||
#endif /* if GFX_VER >= 9 */
|
||
sel.PipelineSelection = pipeline;
|
||
}
|
||
#endif /* if GFX_VER < 20 */
|
||
}
|
||
|
||
UNUSED static void
|
||
init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
|
||
{
|
||
#if GFX_VER == 9
|
||
/* Project: DevGLK
|
||
*
|
||
* "This chicken bit works around a hardware issue with barrier
|
||
* logic encountered when switching between GPGPU and 3D pipelines.
|
||
* To workaround the issue, this mode bit should be set after a
|
||
* pipeline is selected."
|
||
*/
|
||
iris_emit_reg(batch, GENX(SLICE_COMMON_ECO_CHICKEN1), reg) {
|
||
reg.GLKBarrierMode = value;
|
||
reg.GLKBarrierModeMask = 1;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
init_state_base_address(struct iris_batch *batch)
|
||
{
|
||
struct isl_device *isl_dev = &batch->screen->isl_dev;
|
||
uint32_t mocs = isl_mocs(isl_dev, 0, false);
|
||
flush_before_state_base_change(batch);
|
||
|
||
/* We program most base addresses once at context initialization time.
|
||
* Each base address points at a 4GB memory zone, and never needs to
|
||
* change. See iris_bufmgr.h for a description of the memory zones.
|
||
*
|
||
* The one exception is Surface State Base Address, which needs to be
|
||
* updated occasionally. See iris_binder.c for the details there.
|
||
*/
|
||
iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
|
||
sba.GeneralStateMOCS = mocs;
|
||
sba.StatelessDataPortAccessMOCS = mocs;
|
||
sba.DynamicStateMOCS = mocs;
|
||
sba.IndirectObjectMOCS = mocs;
|
||
sba.InstructionMOCS = mocs;
|
||
sba.SurfaceStateMOCS = mocs;
|
||
#if GFX_VER >= 9
|
||
sba.BindlessSurfaceStateMOCS = mocs;
|
||
#endif
|
||
|
||
sba.GeneralStateBaseAddressModifyEnable = true;
|
||
sba.DynamicStateBaseAddressModifyEnable = true;
|
||
sba.IndirectObjectBaseAddressModifyEnable = true;
|
||
sba.InstructionBaseAddressModifyEnable = true;
|
||
sba.GeneralStateBufferSizeModifyEnable = true;
|
||
sba.DynamicStateBufferSizeModifyEnable = true;
|
||
sba.SurfaceStateBaseAddressModifyEnable = true;
|
||
#if GFX_VER >= 11
|
||
sba.BindlessSamplerStateMOCS = mocs;
|
||
#endif
|
||
sba.IndirectObjectBufferSizeModifyEnable = true;
|
||
sba.InstructionBuffersizeModifyEnable = true;
|
||
|
||
sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
|
||
sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
|
||
sba.SurfaceStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_BINDER_START);
|
||
|
||
sba.GeneralStateBufferSize = 0xfffff;
|
||
sba.IndirectObjectBufferSize = 0xfffff;
|
||
sba.InstructionBufferSize = 0xfffff;
|
||
sba.DynamicStateBufferSize = 0xfffff;
|
||
#if GFX_VERx10 >= 125
|
||
sba.L1CacheControl = L1CC_WB;
|
||
#endif
|
||
}
|
||
|
||
flush_after_state_base_change(batch);
|
||
}
|
||
|
||
static void
|
||
iris_emit_l3_config(struct iris_batch *batch,
|
||
const struct intel_l3_config *cfg)
|
||
{
|
||
#if GFX_VER < 20
|
||
assert(cfg || GFX_VER >= 12);
|
||
|
||
#if GFX_VER >= 12
|
||
#define L3_ALLOCATION_REG GENX(L3ALLOC)
|
||
#define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
|
||
#else
|
||
#define L3_ALLOCATION_REG GENX(L3CNTLREG)
|
||
#define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
|
||
#endif
|
||
|
||
iris_emit_reg(batch, L3_ALLOCATION_REG, reg) {
|
||
#if GFX_VER < 11
|
||
reg.SLMEnable = cfg->n[INTEL_L3P_SLM] > 0;
|
||
#endif
|
||
#if GFX_VER == 11
|
||
/* Wa_1406697149: Bit 9 "Error Detection Behavior Control" must be set
|
||
* in L3CNTLREG register. The default setting of the bit is not the
|
||
* desirable behavior.
|
||
*/
|
||
reg.ErrorDetectionBehaviorControl = true;
|
||
reg.UseFullWays = true;
|
||
#endif
|
||
if (GFX_VER < 12 || (cfg && cfg->n[INTEL_L3P_ALL] <= 126)) {
|
||
reg.URBAllocation = cfg->n[INTEL_L3P_URB];
|
||
reg.ROAllocation = cfg->n[INTEL_L3P_RO];
|
||
reg.DCAllocation = cfg->n[INTEL_L3P_DC];
|
||
reg.AllAllocation = cfg->n[INTEL_L3P_ALL];
|
||
} else {
|
||
assert(!cfg || !(cfg->n[INTEL_L3P_SLM] || cfg->n[INTEL_L3P_URB] ||
|
||
cfg->n[INTEL_L3P_DC] || cfg->n[INTEL_L3P_RO] ||
|
||
cfg->n[INTEL_L3P_IS] || cfg->n[INTEL_L3P_C] ||
|
||
cfg->n[INTEL_L3P_T] || cfg->n[INTEL_L3P_TC]));
|
||
#if GFX_VER >= 12
|
||
reg.L3FullWayAllocationEnable = true;
|
||
#endif
|
||
}
|
||
}
|
||
#endif /* GFX_VER < 20 */
|
||
}
|
||
|
||
void
|
||
genX(emit_urb_config)(struct iris_batch *batch,
|
||
bool has_tess_eval,
|
||
bool has_geometry)
|
||
{
|
||
struct iris_screen *screen = batch->screen;
|
||
struct iris_context *ice = batch->ice;
|
||
|
||
intel_get_urb_config(screen->devinfo,
|
||
screen->l3_config_3d,
|
||
has_tess_eval,
|
||
has_geometry,
|
||
&ice->shaders.urb.cfg,
|
||
&ice->shaders.urb.constrained);
|
||
|
||
genX(urb_workaround)(batch, &ice->shaders.urb.cfg);
|
||
|
||
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
|
||
#if GFX_VER >= 12
|
||
iris_emit_cmd(batch, GENX(3DSTATE_URB_ALLOC_VS), urb) {
|
||
urb._3DCommandSubOpcode += i;
|
||
urb.VSURBEntryAllocationSize = ice->shaders.urb.cfg.size[i] - 1;
|
||
urb.VSURBStartingAddressSlice0 = ice->shaders.urb.cfg.start[i];
|
||
urb.VSURBStartingAddressSliceN = ice->shaders.urb.cfg.start[i];
|
||
urb.VSNumberofURBEntriesSlice0 = ice->shaders.urb.cfg.entries[i];
|
||
urb.VSNumberofURBEntriesSliceN = ice->shaders.urb.cfg.entries[i];
|
||
}
|
||
#else
|
||
iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
|
||
urb._3DCommandSubOpcode += i;
|
||
urb.VSURBStartingAddress = ice->shaders.urb.cfg.start[i];
|
||
urb.VSURBEntryAllocationSize = ice->shaders.urb.cfg.size[i] - 1;
|
||
urb.VSNumberofURBEntries = ice->shaders.urb.cfg.entries[i];
|
||
}
|
||
#endif
|
||
}
|
||
}
|
||
|
||
#if GFX_VER == 9
|
||
static void
|
||
iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
|
||
{
|
||
/* A fixed function pipe flush is required before modifying this field */
|
||
iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
|
||
: "disable preemption",
|
||
PIPE_CONTROL_RENDER_TARGET_FLUSH);
|
||
|
||
/* enable object level preemption */
|
||
iris_emit_reg(batch, GENX(CS_CHICKEN1), reg) {
|
||
reg.ReplayMode = enable;
|
||
reg.ReplayModeMask = true;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
static void
|
||
upload_pixel_hashing_tables(struct iris_batch *batch)
|
||
{
|
||
UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
|
||
UNUSED struct iris_context *ice = batch->ice;
|
||
assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
|
||
|
||
#if GFX_VER == 11
|
||
/* Gfx11 hardware has two pixel pipes at most. */
|
||
for (unsigned i = 2; i < ARRAY_SIZE(devinfo->ppipe_subslices); i++)
|
||
assert(devinfo->ppipe_subslices[i] == 0);
|
||
|
||
if (devinfo->ppipe_subslices[0] == devinfo->ppipe_subslices[1])
|
||
return;
|
||
|
||
unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
|
||
uint32_t hash_address;
|
||
struct pipe_resource *tmp = NULL;
|
||
uint32_t *map =
|
||
stream_state(batch, ice->state.dynamic_uploader, &tmp,
|
||
size, 64, &hash_address);
|
||
pipe_resource_reference(&tmp, NULL);
|
||
|
||
const bool flip = devinfo->ppipe_subslices[0] < devinfo->ppipe_subslices[1];
|
||
struct GENX(SLICE_HASH_TABLE) table;
|
||
intel_compute_pixel_hash_table_3way(16, 16, 3, 3, flip, table.Entry[0]);
|
||
|
||
GENX(SLICE_HASH_TABLE_pack)(NULL, map, &table);
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
|
||
ptr.SliceHashStatePointerValid = true;
|
||
ptr.SliceHashTableStatePointer = hash_address;
|
||
}
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
|
||
mode.SliceHashingTableEnable = true;
|
||
}
|
||
|
||
#elif GFX_VERx10 == 120
|
||
/* For each n calculate ppipes_of[n], equal to the number of pixel pipes
|
||
* present with n active dual subslices.
|
||
*/
|
||
unsigned ppipes_of[3] = {};
|
||
|
||
for (unsigned n = 0; n < ARRAY_SIZE(ppipes_of); n++) {
|
||
for (unsigned p = 0; p < 3; p++)
|
||
ppipes_of[n] += (devinfo->ppipe_subslices[p] == n);
|
||
}
|
||
|
||
/* Gfx12 has three pixel pipes. */
|
||
for (unsigned p = 3; p < ARRAY_SIZE(devinfo->ppipe_subslices); p++)
|
||
assert(devinfo->ppipe_subslices[p] == 0);
|
||
|
||
if (ppipes_of[2] == 3 || ppipes_of[0] == 2) {
|
||
/* All three pixel pipes have the maximum number of active dual
|
||
* subslices, or there is only one active pixel pipe: Nothing to do.
|
||
*/
|
||
return;
|
||
}
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_SUBSLICE_HASH_TABLE), p) {
|
||
p.SliceHashControl[0] = TABLE_0;
|
||
|
||
if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
|
||
intel_compute_pixel_hash_table_3way(8, 16, 2, 2, 0, p.TwoWayTableEntry[0]);
|
||
else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
|
||
intel_compute_pixel_hash_table_3way(8, 16, 3, 3, 0, p.TwoWayTableEntry[0]);
|
||
|
||
if (ppipes_of[2] == 2 && ppipes_of[1] == 1)
|
||
intel_compute_pixel_hash_table_3way(8, 16, 5, 4, 0, p.ThreeWayTableEntry[0]);
|
||
else if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
|
||
intel_compute_pixel_hash_table_3way(8, 16, 2, 2, 0, p.ThreeWayTableEntry[0]);
|
||
else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
|
||
intel_compute_pixel_hash_table_3way(8, 16, 3, 3, 0, p.ThreeWayTableEntry[0]);
|
||
else
|
||
UNREACHABLE("Illegal fusing.");
|
||
}
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), p) {
|
||
p.SubsliceHashingTableEnable = true;
|
||
p.SubsliceHashingTableEnableMask = true;
|
||
}
|
||
|
||
#elif GFX_VERx10 == 125
|
||
struct pipe_screen *pscreen = &batch->screen->base;
|
||
const unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
|
||
const struct pipe_resource tmpl = {
|
||
.target = PIPE_BUFFER,
|
||
.format = PIPE_FORMAT_R8_UNORM,
|
||
.bind = PIPE_BIND_CUSTOM,
|
||
.usage = PIPE_USAGE_IMMUTABLE,
|
||
.flags = IRIS_RESOURCE_FLAG_DYNAMIC_MEMZONE,
|
||
.width0 = size,
|
||
.height0 = 1,
|
||
.depth0 = 1,
|
||
.array_size = 1
|
||
};
|
||
|
||
pipe_resource_reference(&ice->state.pixel_hashing_tables, NULL);
|
||
ice->state.pixel_hashing_tables = pscreen->resource_create(pscreen, &tmpl);
|
||
|
||
struct iris_resource *res = (struct iris_resource *)ice->state.pixel_hashing_tables;
|
||
struct pipe_transfer *transfer = NULL;
|
||
uint32_t *map = pipe_buffer_map_range(&ice->ctx, ice->state.pixel_hashing_tables,
|
||
0, size, PIPE_MAP_WRITE,
|
||
&transfer);
|
||
|
||
/* Calculate the set of present pixel pipes, and another set of
|
||
* present pixel pipes with 2 dual subslices enabled, the latter
|
||
* will appear on the hashing table with twice the frequency of
|
||
* pixel pipes with a single dual subslice present.
|
||
*/
|
||
uint32_t ppipe_mask1 = 0, ppipe_mask2 = 0;
|
||
for (unsigned p = 0; p < ARRAY_SIZE(devinfo->ppipe_subslices); p++) {
|
||
if (devinfo->ppipe_subslices[p])
|
||
ppipe_mask1 |= (1u << p);
|
||
if (devinfo->ppipe_subslices[p] > 1)
|
||
ppipe_mask2 |= (1u << p);
|
||
}
|
||
assert(ppipe_mask1);
|
||
|
||
struct GENX(SLICE_HASH_TABLE) table;
|
||
|
||
/* Note that the hardware expects an array with 7 tables, each
|
||
* table is intended to specify the pixel pipe hashing behavior for
|
||
* every possible slice count between 2 and 8, however that doesn't
|
||
* actually work, among other reasons due to hardware bugs that
|
||
* will cause the GPU to erroneously access the table at the wrong
|
||
* index in some cases, so in practice all 7 tables need to be
|
||
* initialized to the same value.
|
||
*/
|
||
for (unsigned i = 0; i < 7; i++)
|
||
intel_compute_pixel_hash_table_nway(16, 16, ppipe_mask1, ppipe_mask2,
|
||
table.Entry[i][0]);
|
||
|
||
GENX(SLICE_HASH_TABLE_pack)(NULL, map, &table);
|
||
|
||
pipe_buffer_unmap(&ice->ctx, transfer);
|
||
|
||
iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_NONE);
|
||
iris_record_state_size(batch->state_sizes, res->bo->address + res->offset, size);
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
|
||
ptr.SliceHashStatePointerValid = true;
|
||
ptr.SliceHashTableStatePointer = iris_bo_offset_from_base_address(res->bo) +
|
||
res->offset;
|
||
}
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
|
||
mode.SliceHashingTableEnable = true;
|
||
mode.SliceHashingTableEnableMask = true;
|
||
mode.CrossSliceHashingMode = (util_bitcount(ppipe_mask1) > 1 ?
|
||
hashing32x32 : NormalMode);
|
||
mode.CrossSliceHashingModeMask = -1;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
iris_alloc_push_constants(struct iris_batch *batch)
|
||
{
|
||
const struct intel_device_info *devinfo = batch->screen->devinfo;
|
||
|
||
/* For now, we set a static partitioning of the push constant area,
|
||
* assuming that all stages could be in use.
|
||
*
|
||
* TODO: Try lazily allocating the HS/DS/GS sections as needed, and
|
||
* see if that improves performance by offering more space to
|
||
* the VS/FS when those aren't in use. Also, try dynamically
|
||
* enabling/disabling it like i965 does. This would be more
|
||
* stalls and may not actually help; we don't know yet.
|
||
*/
|
||
|
||
/* Divide as equally as possible with any remainder given to FRAGMENT. */
|
||
const unsigned push_constant_kb = devinfo->max_constant_urb_size_kb;
|
||
const unsigned stage_size = push_constant_kb / 5;
|
||
const unsigned frag_size = push_constant_kb - 4 * stage_size;
|
||
|
||
for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
|
||
iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
|
||
alloc._3DCommandSubOpcode = 18 + i;
|
||
alloc.ConstantBufferOffset = stage_size * i;
|
||
alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? frag_size : stage_size;
|
||
}
|
||
}
|
||
|
||
#if GFX_VERx10 == 125
|
||
/* DG2: Wa_22011440098
|
||
* MTL: Wa_18022330953
|
||
*
|
||
* In 3D mode, after programming push constant alloc command immediately
|
||
* program push constant command(ZERO length) without any commit between
|
||
* them.
|
||
*/
|
||
iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), c) {
|
||
/* Update empty push constants for all stages (bitmask = 11111b) */
|
||
c.ShaderUpdateEnable = 0x1f;
|
||
c.MOCS = iris_mocs(NULL, &batch->screen->isl_dev, 0);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
#if GFX_VER >= 12
|
||
static void
|
||
init_aux_map_state(struct iris_batch *batch);
|
||
#endif
|
||
|
||
/* This updates a register. Caller should stall the pipeline as needed. */
|
||
static void
|
||
iris_disable_rhwo_optimization(struct iris_batch *batch, bool disable)
|
||
{
|
||
assert(batch->screen->devinfo->verx10 == 120);
|
||
#if GFX_VERx10 == 120
|
||
iris_emit_reg(batch, GENX(COMMON_SLICE_CHICKEN1), c1) {
|
||
c1.RCCRHWOOptimizationDisable = disable;
|
||
c1.RCCRHWOOptimizationDisableMask = true;
|
||
};
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
state_system_mem_fence_address_emit(struct iris_batch *batch)
|
||
{
|
||
#if GFX_VERx10 >= 200
|
||
struct iris_screen *screen = batch->screen;
|
||
struct iris_address addr = { .bo = iris_bufmgr_get_mem_fence_bo(screen->bufmgr) };
|
||
iris_emit_cmd(batch, GENX(STATE_SYSTEM_MEM_FENCE_ADDRESS), mem_fence_addr) {
|
||
mem_fence_addr.SystemMemoryFenceAddress = addr;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/**
|
||
* Upload initial GPU state for any kind of context.
|
||
*
|
||
* These need to happen for both render and compute.
|
||
*/
|
||
static void
|
||
iris_init_common_context(struct iris_batch *batch)
|
||
{
|
||
#if GFX_VER == 11
|
||
iris_emit_reg(batch, GENX(SAMPLER_MODE), reg) {
|
||
reg.HeaderlessMessageforPreemptableContexts = 1;
|
||
reg.HeaderlessMessageforPreemptableContextsMask = 1;
|
||
}
|
||
|
||
/* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
|
||
iris_emit_reg(batch, GENX(HALF_SLICE_CHICKEN7), reg) {
|
||
reg.EnabledTexelOffsetPrecisionFix = 1;
|
||
reg.EnabledTexelOffsetPrecisionFixMask = 1;
|
||
}
|
||
#endif
|
||
|
||
/* Select 256B-aligned binding table mode on Icelake through Tigerlake,
|
||
* which gives us larger binding table pointers, at the cost of higher
|
||
* alignment requirements (bits 18:8 are valid instead of 15:5). When
|
||
* using this mode, we have to shift binding table pointers by 3 bits,
|
||
* as they're still stored in the same bit-location in the field.
|
||
*/
|
||
#if GFX_VER >= 11 && GFX_VERx10 < 125
|
||
iris_emit_reg(batch, GENX(GT_MODE), reg) {
|
||
reg.BindingTableAlignment = BTP_18_8;
|
||
reg.BindingTableAlignmentMask = true;
|
||
}
|
||
#endif
|
||
|
||
#if GFX_VERx10 == 125
|
||
/* Even though L3 partial write merging is supposed to be enabled
|
||
* by default on Gfx12.5 according to the hardware spec, i915
|
||
* appears to accidentally clear the enables during context
|
||
* initialization, so make sure to enable them here since partial
|
||
* write merging has a large impact on rendering performance.
|
||
*/
|
||
iris_emit_reg(batch, GENX(L3SQCREG5), reg) {
|
||
reg.L3CachePartialWriteMergeTimerInitialValue = 0x7f;
|
||
reg.CompressiblePartialWriteMergeEnable = true;
|
||
reg.CoherentPartialWriteMergeEnable = true;
|
||
reg.CrossTilePartialWriteMergeEnable = true;
|
||
}
|
||
#endif
|
||
|
||
state_system_mem_fence_address_emit(batch);
|
||
}
|
||
|
||
static void
|
||
toggle_protected(struct iris_batch *batch)
|
||
{
|
||
struct iris_context *ice;
|
||
|
||
if (batch->name == IRIS_BATCH_RENDER)
|
||
ice =container_of(batch, struct iris_context, batches[IRIS_BATCH_RENDER]);
|
||
else if (batch->name == IRIS_BATCH_COMPUTE)
|
||
ice = container_of(batch, struct iris_context, batches[IRIS_BATCH_COMPUTE]);
|
||
else
|
||
UNREACHABLE("unhandled batch");
|
||
|
||
if (!ice->protected)
|
||
return;
|
||
|
||
#if GFX_VER >= 12
|
||
iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
|
||
pc.CommandStreamerStallEnable = true;
|
||
pc.RenderTargetCacheFlushEnable = true;
|
||
pc.ProtectedMemoryDisable = true;
|
||
}
|
||
iris_emit_cmd(batch, GENX(MI_SET_APPID), appid) {
|
||
/* Default value for single session. */
|
||
appid.ProtectedMemoryApplicationID = 0xf;
|
||
appid.ProtectedMemoryApplicationIDType = DISPLAY_APP;
|
||
}
|
||
iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
|
||
pc.CommandStreamerStallEnable = true;
|
||
pc.RenderTargetCacheFlushEnable = true;
|
||
pc.ProtectedMemoryEnable = true;
|
||
}
|
||
#else
|
||
UNREACHABLE("Not supported");
|
||
#endif
|
||
}
|
||
|
||
#if GFX_VER >= 20
|
||
#define _3DSTATE_DRAWING_RECTANGLE GENX(3DSTATE_DRAWING_RECTANGLE_FAST)
|
||
#else
|
||
#define _3DSTATE_DRAWING_RECTANGLE GENX(3DSTATE_DRAWING_RECTANGLE)
|
||
#endif
|
||
|
||
/**
|
||
* Upload the initial GPU state for a render context.
|
||
*
|
||
* This sets some invariant state that needs to be programmed a particular
|
||
* way, but we never actually change.
|
||
*/
|
||
static void
|
||
iris_init_render_context(struct iris_batch *batch)
|
||
{
|
||
UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
|
||
|
||
iris_batch_sync_region_start(batch);
|
||
|
||
emit_pipeline_select(batch, _3D);
|
||
|
||
toggle_protected(batch);
|
||
|
||
iris_emit_l3_config(batch, batch->screen->l3_config_3d);
|
||
|
||
init_state_base_address(batch);
|
||
|
||
iris_init_common_context(batch);
|
||
|
||
#if GFX_VER >= 9
|
||
iris_emit_reg(batch, GENX(CS_DEBUG_MODE2), reg) {
|
||
reg.CONSTANT_BUFFERAddressOffsetDisable = true;
|
||
reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
|
||
}
|
||
#else
|
||
iris_emit_reg(batch, GENX(INSTPM), reg) {
|
||
reg.CONSTANT_BUFFERAddressOffsetDisable = true;
|
||
reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
|
||
}
|
||
#endif
|
||
|
||
#if GFX_VER == 9
|
||
iris_emit_reg(batch, GENX(CACHE_MODE_1), reg) {
|
||
reg.FloatBlendOptimizationEnable = true;
|
||
reg.FloatBlendOptimizationEnableMask = true;
|
||
reg.MSCRAWHazardAvoidanceBit = true;
|
||
reg.MSCRAWHazardAvoidanceBitMask = true;
|
||
reg.PartialResolveDisableInVC = true;
|
||
reg.PartialResolveDisableInVCMask = true;
|
||
}
|
||
|
||
if (devinfo->platform == INTEL_PLATFORM_GLK)
|
||
init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
|
||
#endif
|
||
|
||
#if GFX_VER == 11
|
||
iris_emit_reg(batch, GENX(TCCNTLREG), reg) {
|
||
reg.L3DataPartialWriteMergingEnable = true;
|
||
reg.ColorZPartialWriteMergingEnable = true;
|
||
reg.URBPartialWriteMergingEnable = true;
|
||
reg.TCDisable = true;
|
||
}
|
||
|
||
/* Hardware specification recommends disabling repacking for the
|
||
* compatibility with decompression mechanism in display controller.
|
||
*/
|
||
if (devinfo->disable_ccs_repack) {
|
||
iris_emit_reg(batch, GENX(CACHE_MODE_0), reg) {
|
||
reg.DisableRepackingforCompression = true;
|
||
reg.DisableRepackingforCompressionMask = true;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
#if GFX_VER == 12
|
||
iris_emit_reg(batch, GENX(FF_MODE2), reg) {
|
||
/* On Alchemist, the FF_MODE2 docs for the GS timer say:
|
||
*
|
||
* "The timer value must be set to 224."
|
||
*
|
||
* and Wa_16011163337 indicates this is the case for all Gfx12 parts,
|
||
* and that this is necessary to avoid hanging the HS/DS units. It
|
||
* also clarifies that 224 is literally 0xE0 in the bits, not 7*32=224.
|
||
*
|
||
* The HS timer docs also have the same quote for Alchemist. I am
|
||
* unaware of a reason it needs to be set to 224 on Tigerlake, but
|
||
* we do so for consistency if nothing else.
|
||
*
|
||
* For the TDS timer value, the docs say:
|
||
*
|
||
* "For best performance, a value of 4 should be programmed."
|
||
*
|
||
* i915 also sets it this way on Tigerlake due to workarounds.
|
||
*
|
||
* The default VS timer appears to be 0, so we leave it at that.
|
||
*/
|
||
reg.GSTimerValue = 224;
|
||
reg.HSTimerValue = 224;
|
||
reg.TDSTimerValue = 4;
|
||
reg.VSTimerValue = 0;
|
||
}
|
||
#endif
|
||
|
||
#if INTEL_NEEDS_WA_1508744258
|
||
/* The suggested workaround is:
|
||
*
|
||
* Disable RHWO by setting 0x7010[14] by default except during resolve
|
||
* pass.
|
||
*
|
||
* We implement global disabling of the optimization here and we toggle it
|
||
* in iris_resolve_color.
|
||
*
|
||
* iris_init_compute_context is unmodified because we don't expect to
|
||
* access the RCC in the compute context. iris_mcs_partial_resolve is
|
||
* unmodified because that pass doesn't use a HW bit to perform the
|
||
* resolve (related HSDs specifically call out the RenderTargetResolveType
|
||
* field in the 3DSTATE_PS instruction).
|
||
*/
|
||
iris_disable_rhwo_optimization(batch, true);
|
||
#endif
|
||
|
||
#if GFX_VERx10 == 120
|
||
/* Wa_1806527549 says to disable the following HiZ optimization when the
|
||
* depth buffer is D16_UNORM. We've found the WA to help with more depth
|
||
* buffer configurations however, so we always disable it just to be safe.
|
||
*/
|
||
iris_emit_reg(batch, GENX(HIZ_CHICKEN), reg) {
|
||
reg.HZDepthTestLEGEOptimizationDisable = true;
|
||
reg.HZDepthTestLEGEOptimizationDisableMask = true;
|
||
}
|
||
#endif
|
||
|
||
#if GFX_VERx10 == 125
|
||
iris_emit_reg(batch, GENX(CHICKEN_RASTER_2), reg) {
|
||
reg.TBIMRBatchSizeOverride = true;
|
||
reg.TBIMROpenBatchEnable = true;
|
||
reg.TBIMRFastClip = true;
|
||
reg.TBIMRBatchSizeOverrideMask = true;
|
||
reg.TBIMROpenBatchEnableMask = true;
|
||
reg.TBIMRFastClipMask = true;
|
||
};
|
||
#endif
|
||
|
||
#if GFX_VER >= 20
|
||
iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), p) {
|
||
p.DX10OGLBorderModeforYCRCB = true;
|
||
p.DX10OGLBorderModeforYCRCBMask = true;
|
||
}
|
||
|
||
if (intel_device_info_is_bmg_g31(devinfo)) {
|
||
iris_emit_reg(batch, GENX(CACHE_MODE_0), reg) {
|
||
reg.MsaaFastClearEnabled = true;
|
||
reg.MsaaFastClearEnabledMask = true;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
#if GFX_VER >= 30
|
||
iris_emit_cmd(batch, GENX(STATE_COMPUTE_MODE), cm) {
|
||
cm.EnableVariableRegisterSizeAllocationMask = 1;
|
||
cm.EnableVariableRegisterSizeAllocation = !INTEL_DEBUG(DEBUG_NO_VRT);
|
||
}
|
||
#endif
|
||
|
||
upload_pixel_hashing_tables(batch);
|
||
|
||
/* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
|
||
* changing it dynamically. We set it to the maximum size here, and
|
||
* instead include the render target dimensions in the viewport, so
|
||
* viewport extents clipping takes care of pruning stray geometry.
|
||
*/
|
||
iris_emit_cmd(batch, _3DSTATE_DRAWING_RECTANGLE, rect) {
|
||
rect.ClippedDrawingRectangleXMax = UINT16_MAX;
|
||
rect.ClippedDrawingRectangleYMax = UINT16_MAX;
|
||
}
|
||
|
||
/* Set the initial MSAA sample positions. */
|
||
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
|
||
INTEL_SAMPLE_POS_1X(pat._1xSample);
|
||
INTEL_SAMPLE_POS_2X(pat._2xSample);
|
||
INTEL_SAMPLE_POS_4X(pat._4xSample);
|
||
INTEL_SAMPLE_POS_8X(pat._8xSample);
|
||
#if GFX_VER >= 9
|
||
INTEL_SAMPLE_POS_16X(pat._16xSample);
|
||
#endif
|
||
}
|
||
|
||
/* Use the legacy AA line coverage computation. */
|
||
iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
|
||
|
||
/* Disable chromakeying (it's for media) */
|
||
iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
|
||
|
||
/* We want regular rendering, not special HiZ operations. */
|
||
iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
|
||
|
||
/* No polygon stippling offsets are necessary. */
|
||
/* TODO: may need to set an offset for origin-UL framebuffers */
|
||
iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
|
||
|
||
#if GFX_VERx10 >= 125
|
||
iris_emit_cmd(batch, GENX(3DSTATE_MESH_CONTROL), foo);
|
||
iris_emit_cmd(batch, GENX(3DSTATE_TASK_CONTROL), foo);
|
||
#endif
|
||
|
||
#if INTEL_NEEDS_WA_14019857787
|
||
iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), p) {
|
||
p.EnableOOOreadsinRCPB = true;
|
||
p.EnableOOOreadsinRCPBMask = true;
|
||
}
|
||
#endif
|
||
|
||
iris_alloc_push_constants(batch);
|
||
|
||
#if GFX_VER >= 12
|
||
init_aux_map_state(batch);
|
||
#endif
|
||
|
||
iris_batch_sync_region_end(batch);
|
||
}
|
||
|
||
static void
|
||
iris_init_compute_context(struct iris_batch *batch)
|
||
{
|
||
UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
|
||
|
||
iris_batch_sync_region_start(batch);
|
||
|
||
/* Wa_1607854226:
|
||
*
|
||
* Start with pipeline in 3D mode to set the STATE_BASE_ADDRESS.
|
||
*/
|
||
#if GFX_VERx10 == 120
|
||
emit_pipeline_select(batch, _3D);
|
||
#else
|
||
emit_pipeline_select(batch, GPGPU);
|
||
#endif
|
||
|
||
toggle_protected(batch);
|
||
|
||
iris_emit_l3_config(batch, batch->screen->l3_config_cs);
|
||
|
||
init_state_base_address(batch);
|
||
|
||
iris_init_common_context(batch);
|
||
|
||
#if GFX_VERx10 == 120
|
||
emit_pipeline_select(batch, GPGPU);
|
||
#endif
|
||
|
||
#if GFX_VER == 9
|
||
if (devinfo->platform == INTEL_PLATFORM_GLK)
|
||
init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
|
||
#endif
|
||
|
||
#if GFX_VER >= 12
|
||
init_aux_map_state(batch);
|
||
#endif
|
||
|
||
#if GFX_VERx10 >= 125
|
||
/* Wa_14015782607 - Issue pipe control with HDC_flush and
|
||
* untyped cache flush set to 1 when CCS has NP state update with
|
||
* STATE_COMPUTE_MODE.
|
||
*/
|
||
if (intel_needs_workaround(devinfo, 14015782607))
|
||
iris_emit_pipe_control_flush(batch, "Wa_14015782607",
|
||
PIPE_CONTROL_CS_STALL |
|
||
PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
|
||
PIPE_CONTROL_FLUSH_HDC);
|
||
|
||
/* Wa_14014427904/22013045878 - We need additional invalidate/flush when
|
||
* emitting NP state commands with ATS-M in compute mode.
|
||
*/
|
||
if (intel_device_info_is_atsm(devinfo))
|
||
iris_emit_pipe_control_flush(batch, "Wa_14014427904/22013045878",
|
||
PIPE_CONTROL_CS_STALL |
|
||
PIPE_CONTROL_STATE_CACHE_INVALIDATE |
|
||
PIPE_CONTROL_CONST_CACHE_INVALIDATE |
|
||
PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
|
||
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
|
||
PIPE_CONTROL_INSTRUCTION_INVALIDATE |
|
||
PIPE_CONTROL_FLUSH_HDC);
|
||
|
||
uint8_t pixel_async_compute_thread_limit, z_pass_async_compute_thread_limit,
|
||
np_z_async_throttle_settings;
|
||
intel_compute_engine_async_threads_limit(devinfo, 0, false,
|
||
&pixel_async_compute_thread_limit,
|
||
&z_pass_async_compute_thread_limit,
|
||
&np_z_async_throttle_settings);
|
||
batch->ice->state.pixel_async_compute_thread_limit = pixel_async_compute_thread_limit;
|
||
batch->ice->state.z_pass_async_compute_thread_limit = z_pass_async_compute_thread_limit;
|
||
batch->ice->state.np_z_async_throttle_settings = np_z_async_throttle_settings;
|
||
|
||
iris_emit_cmd(batch, GENX(STATE_COMPUTE_MODE), cm) {
|
||
#if GFX_VER >= 30
|
||
cm.EnableVariableRegisterSizeAllocationMask = 1;
|
||
cm.EnableVariableRegisterSizeAllocation = !INTEL_DEBUG(DEBUG_NO_VRT);
|
||
#endif
|
||
#if GFX_VER >= 20
|
||
cm.AsyncComputeThreadLimit = pixel_async_compute_thread_limit;
|
||
cm.ZPassAsyncComputeThreadLimit = z_pass_async_compute_thread_limit;
|
||
cm.ZAsyncThrottlesettings = np_z_async_throttle_settings;
|
||
cm.AsyncComputeThreadLimitMask = 0x7;
|
||
cm.ZPassAsyncComputeThreadLimitMask = 0x7;
|
||
cm.ZAsyncThrottlesettingsMask = 0x3;
|
||
#else
|
||
cm.PixelAsyncComputeThreadLimit = pixel_async_compute_thread_limit;
|
||
cm.ZPassAsyncComputeThreadLimit = z_pass_async_compute_thread_limit;
|
||
cm.PixelAsyncComputeThreadLimitMask = 0x7;
|
||
cm.ZPassAsyncComputeThreadLimitMask = 0x7;
|
||
if (intel_device_info_is_mtl_or_arl(devinfo)) {
|
||
cm.ZAsyncThrottlesettings = np_z_async_throttle_settings;
|
||
cm.ZAsyncThrottlesettingsMask = 0x3;
|
||
}
|
||
#endif
|
||
}
|
||
#endif
|
||
|
||
#if GFX_VERx10 >= 125
|
||
iris_emit_cmd(batch, GENX(CFE_STATE), cfe) {
|
||
cfe.MaximumNumberofThreads =
|
||
devinfo->max_cs_threads * devinfo->subslice_total;
|
||
}
|
||
#endif
|
||
|
||
iris_batch_sync_region_end(batch);
|
||
}
|
||
|
||
static void
|
||
iris_init_copy_context(struct iris_batch *batch)
|
||
{
|
||
iris_batch_sync_region_start(batch);
|
||
|
||
#if GFX_VER >= 12
|
||
init_aux_map_state(batch);
|
||
#endif
|
||
|
||
state_system_mem_fence_address_emit(batch);
|
||
|
||
iris_batch_sync_region_end(batch);
|
||
}
|
||
|
||
struct iris_vertex_buffer_state {
|
||
/** The VERTEX_BUFFER_STATE hardware structure. */
|
||
uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
|
||
|
||
/** The resource to source vertex data from. */
|
||
struct pipe_resource *resource;
|
||
|
||
int offset;
|
||
};
|
||
|
||
struct iris_depth_buffer_state {
|
||
/* Depth/HiZ/Stencil related hardware packets. */
|
||
#if GFX_VER < 20
|
||
uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
|
||
GENX(3DSTATE_STENCIL_BUFFER_length) +
|
||
GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
|
||
GENX(3DSTATE_CLEAR_PARAMS_length)];
|
||
#else
|
||
uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
|
||
GENX(3DSTATE_STENCIL_BUFFER_length) +
|
||
GENX(3DSTATE_HIER_DEPTH_BUFFER_length)];
|
||
#endif
|
||
};
|
||
|
||
#if INTEL_NEEDS_WA_1808121037
|
||
enum iris_depth_reg_mode {
|
||
IRIS_DEPTH_REG_MODE_HW_DEFAULT = 0,
|
||
IRIS_DEPTH_REG_MODE_D16_1X_MSAA,
|
||
IRIS_DEPTH_REG_MODE_UNKNOWN,
|
||
};
|
||
#endif
|
||
|
||
/**
|
||
* Generation-specific context state (ice->state.genx->...).
|
||
*
|
||
* Most state can go in iris_context directly, but these encode hardware
|
||
* packets which vary by generation.
|
||
*/
|
||
struct iris_genx_state {
|
||
struct iris_vertex_buffer_state vertex_buffers[33];
|
||
uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
|
||
|
||
struct iris_depth_buffer_state depth_buffer;
|
||
|
||
uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
|
||
|
||
#if GFX_VER == 8
|
||
bool pma_fix_enabled;
|
||
#endif
|
||
|
||
/* Is object level preemption enabled? */
|
||
bool object_preemption;
|
||
|
||
#if INTEL_NEEDS_WA_1808121037
|
||
enum iris_depth_reg_mode depth_reg_mode;
|
||
#endif
|
||
|
||
struct {
|
||
#if GFX_VER == 8
|
||
struct isl_image_param image_param[PIPE_MAX_SHADER_IMAGES];
|
||
#endif
|
||
} shaders[MESA_SHADER_STAGES];
|
||
};
|
||
|
||
/**
|
||
* The pipe->set_blend_color() driver hook.
|
||
*
|
||
* This corresponds to our COLOR_CALC_STATE.
|
||
*/
|
||
static void
|
||
iris_set_blend_color(struct pipe_context *ctx,
|
||
const struct pipe_blend_color *state)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
|
||
/* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
|
||
memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
|
||
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
|
||
}
|
||
|
||
/**
|
||
* Gallium CSO for blend state (see pipe_blend_state).
|
||
*/
|
||
struct iris_blend_state {
|
||
/** Partial 3DSTATE_PS_BLEND */
|
||
uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
|
||
|
||
/** Partial BLEND_STATE */
|
||
uint32_t blend_state[GENX(BLEND_STATE_length) +
|
||
IRIS_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
|
||
|
||
bool alpha_to_coverage; /* for shader key */
|
||
|
||
/** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
|
||
uint8_t blend_enables;
|
||
|
||
/** Bitfield of whether color writes are enabled for RT[i] */
|
||
uint8_t color_write_enables;
|
||
|
||
/** Does RT[0] use dual color blending? */
|
||
bool dual_color_blending;
|
||
|
||
int ps_dst_blend_factor[IRIS_MAX_DRAW_BUFFERS];
|
||
int ps_dst_alpha_blend_factor[IRIS_MAX_DRAW_BUFFERS];
|
||
};
|
||
|
||
static enum pipe_blendfactor
|
||
fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
|
||
{
|
||
if (alpha_to_one) {
|
||
if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
|
||
return PIPE_BLENDFACTOR_ONE;
|
||
|
||
if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
|
||
return PIPE_BLENDFACTOR_ZERO;
|
||
}
|
||
|
||
return f;
|
||
}
|
||
|
||
/**
|
||
* The pipe->create_blend_state() driver hook.
|
||
*
|
||
* Translates a pipe_blend_state into iris_blend_state.
|
||
*/
|
||
static void *
|
||
iris_create_blend_state(struct pipe_context *ctx,
|
||
const struct pipe_blend_state *state)
|
||
{
|
||
struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
|
||
uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
|
||
|
||
cso->blend_enables = 0;
|
||
cso->color_write_enables = 0;
|
||
STATIC_ASSERT(IRIS_MAX_DRAW_BUFFERS <= 8);
|
||
|
||
cso->alpha_to_coverage = state->alpha_to_coverage;
|
||
|
||
bool indep_alpha_blend = false;
|
||
|
||
for (int i = 0; i < IRIS_MAX_DRAW_BUFFERS; i++) {
|
||
const struct pipe_rt_blend_state *rt =
|
||
&state->rt[state->independent_blend_enable ? i : 0];
|
||
|
||
enum pipe_blendfactor src_rgb =
|
||
fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
|
||
enum pipe_blendfactor src_alpha =
|
||
fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
|
||
enum pipe_blendfactor dst_rgb =
|
||
fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
|
||
enum pipe_blendfactor dst_alpha =
|
||
fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
|
||
|
||
/* Stored separately in cso for dynamic emission. */
|
||
cso->ps_dst_blend_factor[i] = (int) dst_rgb;
|
||
cso->ps_dst_alpha_blend_factor[i] = (int) dst_alpha;
|
||
|
||
if (rt->rgb_func != rt->alpha_func ||
|
||
src_rgb != src_alpha || dst_rgb != dst_alpha)
|
||
indep_alpha_blend = true;
|
||
|
||
if (rt->blend_enable)
|
||
cso->blend_enables |= 1u << i;
|
||
|
||
if (rt->colormask)
|
||
cso->color_write_enables |= 1u << i;
|
||
|
||
iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
|
||
be.LogicOpEnable = state->logicop_enable;
|
||
be.LogicOpFunction = state->logicop_func;
|
||
|
||
be.PreBlendSourceOnlyClampEnable = false;
|
||
be.ColorClampRange = COLORCLAMP_RTFORMAT;
|
||
be.PreBlendColorClampEnable = true;
|
||
be.PostBlendColorClampEnable = true;
|
||
|
||
be.ColorBufferBlendEnable = rt->blend_enable;
|
||
|
||
be.ColorBlendFunction = rt->rgb_func;
|
||
be.AlphaBlendFunction = rt->alpha_func;
|
||
|
||
/* The casts prevent warnings about implicit enum type conversions. */
|
||
be.SourceBlendFactor = (int) src_rgb;
|
||
be.SourceAlphaBlendFactor = (int) src_alpha;
|
||
|
||
be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
|
||
be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
|
||
be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
|
||
be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
|
||
#if GFX_VER >= 30
|
||
be.SimpleFloatBlendEnable = true;
|
||
#endif
|
||
}
|
||
blend_entry += GENX(BLEND_STATE_ENTRY_length);
|
||
}
|
||
|
||
iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
|
||
/* pb.HasWriteableRT is filled in at draw time.
|
||
* pb.AlphaTestEnable is filled in at draw time.
|
||
*
|
||
* pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
|
||
* setting it when dual color blending without an appropriate shader.
|
||
*/
|
||
|
||
pb.AlphaToCoverageEnable = state->alpha_to_coverage;
|
||
pb.IndependentAlphaBlendEnable = indep_alpha_blend;
|
||
|
||
/* The casts prevent warnings about implicit enum type conversions. */
|
||
pb.SourceBlendFactor =
|
||
(int) fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
|
||
pb.SourceAlphaBlendFactor =
|
||
(int) fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
|
||
}
|
||
|
||
iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
|
||
bs.AlphaToCoverageEnable = state->alpha_to_coverage;
|
||
bs.IndependentAlphaBlendEnable = indep_alpha_blend;
|
||
bs.AlphaToOneEnable = state->alpha_to_one;
|
||
bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage_dither;
|
||
bs.ColorDitherEnable = state->dither;
|
||
/* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
|
||
}
|
||
|
||
cso->dual_color_blending = util_blend_state_is_dual(state, 0);
|
||
|
||
return cso;
|
||
}
|
||
|
||
/**
|
||
* The pipe->bind_blend_state() driver hook.
|
||
*
|
||
* Bind a blending CSO and flag related dirty bits.
|
||
*/
|
||
static void
|
||
iris_bind_blend_state(struct pipe_context *ctx, void *state)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
struct iris_blend_state *cso = state;
|
||
|
||
ice->state.cso_blend = cso;
|
||
|
||
ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
|
||
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
|
||
ice->state.stage_dirty |= ice->state.stage_dirty_for_nos[IRIS_NOS_BLEND];
|
||
|
||
if (GFX_VER == 8)
|
||
ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
|
||
}
|
||
|
||
/**
|
||
* Return true if the FS writes to any color outputs which are not disabled
|
||
* via color masking.
|
||
*/
|
||
static bool
|
||
has_writeable_rt(const struct iris_blend_state *cso_blend,
|
||
const struct shader_info *fs_info)
|
||
{
|
||
if (!fs_info)
|
||
return false;
|
||
|
||
unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
|
||
|
||
if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
|
||
rt_outputs = (1 << IRIS_MAX_DRAW_BUFFERS) - 1;
|
||
|
||
return cso_blend->color_write_enables & rt_outputs;
|
||
}
|
||
|
||
/**
|
||
* Gallium CSO for depth, stencil, and alpha testing state.
|
||
*/
|
||
struct iris_depth_stencil_alpha_state {
|
||
/** Partial 3DSTATE_WM_DEPTH_STENCIL. */
|
||
uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
|
||
|
||
#if GFX_VER >= 12
|
||
uint32_t depth_bounds[GENX(3DSTATE_DEPTH_BOUNDS_length)];
|
||
#endif
|
||
|
||
/** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
|
||
unsigned alpha_enabled:1;
|
||
unsigned alpha_func:3; /**< PIPE_FUNC_x */
|
||
float alpha_ref_value; /**< reference value */
|
||
|
||
/** Outbound to resolve and cache set tracking. */
|
||
bool depth_writes_enabled;
|
||
bool stencil_writes_enabled;
|
||
|
||
/** Outbound to Gfx8-9 PMA stall equations */
|
||
bool depth_test_enabled;
|
||
|
||
/** Tracking state of DS writes for Wa_18019816803. */
|
||
bool ds_write_state;
|
||
};
|
||
|
||
/**
|
||
* The pipe->create_depth_stencil_alpha_state() driver hook.
|
||
*
|
||
* We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
|
||
* testing state since we need pieces of it in a variety of places.
|
||
*/
|
||
static void *
|
||
iris_create_zsa_state(struct pipe_context *ctx,
|
||
const struct pipe_depth_stencil_alpha_state *state)
|
||
{
|
||
struct iris_depth_stencil_alpha_state *cso =
|
||
malloc(sizeof(struct iris_depth_stencil_alpha_state));
|
||
|
||
bool two_sided_stencil = state->stencil[1].enabled;
|
||
|
||
bool depth_write_enabled = false;
|
||
bool stencil_write_enabled = false;
|
||
|
||
/* Depth writes enabled? */
|
||
if (state->depth_writemask &&
|
||
((!state->depth_enabled) ||
|
||
((state->depth_func != PIPE_FUNC_NEVER) &&
|
||
(state->depth_func != PIPE_FUNC_EQUAL))))
|
||
depth_write_enabled = true;
|
||
|
||
bool stencil_all_keep =
|
||
state->stencil[0].fail_op == PIPE_STENCIL_OP_KEEP &&
|
||
state->stencil[0].zfail_op == PIPE_STENCIL_OP_KEEP &&
|
||
state->stencil[0].zpass_op == PIPE_STENCIL_OP_KEEP &&
|
||
(!two_sided_stencil ||
|
||
(state->stencil[1].fail_op == PIPE_STENCIL_OP_KEEP &&
|
||
state->stencil[1].zfail_op == PIPE_STENCIL_OP_KEEP &&
|
||
state->stencil[1].zpass_op == PIPE_STENCIL_OP_KEEP));
|
||
|
||
bool stencil_mask_zero =
|
||
state->stencil[0].writemask == 0 ||
|
||
(!two_sided_stencil || state->stencil[1].writemask == 0);
|
||
|
||
bool stencil_func_never =
|
||
state->stencil[0].func == PIPE_FUNC_NEVER &&
|
||
state->stencil[0].fail_op == PIPE_STENCIL_OP_KEEP &&
|
||
(!two_sided_stencil ||
|
||
(state->stencil[1].func == PIPE_FUNC_NEVER &&
|
||
state->stencil[1].fail_op == PIPE_STENCIL_OP_KEEP));
|
||
|
||
/* Stencil writes enabled? */
|
||
if (state->stencil[0].writemask != 0 ||
|
||
((two_sided_stencil && state->stencil[1].writemask != 0) &&
|
||
(!stencil_all_keep &&
|
||
!stencil_mask_zero &&
|
||
!stencil_func_never)))
|
||
stencil_write_enabled = true;
|
||
|
||
cso->ds_write_state = depth_write_enabled || stencil_write_enabled;
|
||
|
||
cso->alpha_enabled = state->alpha_enabled;
|
||
cso->alpha_func = state->alpha_func;
|
||
cso->alpha_ref_value = state->alpha_ref_value;
|
||
cso->depth_writes_enabled = state->depth_writemask;
|
||
cso->depth_test_enabled = state->depth_enabled;
|
||
cso->stencil_writes_enabled =
|
||
state->stencil[0].writemask != 0 ||
|
||
(two_sided_stencil && state->stencil[1].writemask != 0);
|
||
|
||
/* gallium frontends need to optimize away EQUAL writes for us. */
|
||
assert(!(state->depth_func == PIPE_FUNC_EQUAL && state->depth_writemask));
|
||
|
||
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
|
||
wmds.StencilFailOp = state->stencil[0].fail_op;
|
||
wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
|
||
wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
|
||
wmds.StencilTestFunction =
|
||
translate_compare_func(state->stencil[0].func);
|
||
wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
|
||
wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
|
||
wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
|
||
wmds.BackfaceStencilTestFunction =
|
||
translate_compare_func(state->stencil[1].func);
|
||
wmds.DepthTestFunction = translate_compare_func(state->depth_func);
|
||
wmds.DoubleSidedStencilEnable = two_sided_stencil;
|
||
wmds.StencilTestEnable = state->stencil[0].enabled;
|
||
wmds.StencilBufferWriteEnable =
|
||
state->stencil[0].writemask != 0 ||
|
||
(two_sided_stencil && state->stencil[1].writemask != 0);
|
||
wmds.DepthTestEnable = state->depth_enabled;
|
||
wmds.DepthBufferWriteEnable = state->depth_writemask;
|
||
wmds.StencilTestMask = state->stencil[0].valuemask;
|
||
wmds.StencilWriteMask = state->stencil[0].writemask;
|
||
wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
|
||
wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
|
||
/* wmds.[Backface]StencilReferenceValue are merged later */
|
||
#if GFX_VER >= 12
|
||
wmds.StencilReferenceValueModifyDisable = true;
|
||
#endif
|
||
}
|
||
|
||
#if GFX_VER >= 12
|
||
iris_pack_command(GENX(3DSTATE_DEPTH_BOUNDS), cso->depth_bounds, depth_bounds) {
|
||
depth_bounds.DepthBoundsTestValueModifyDisable = false;
|
||
depth_bounds.DepthBoundsTestEnableModifyDisable = false;
|
||
depth_bounds.DepthBoundsTestEnable = state->depth_bounds_test;
|
||
depth_bounds.DepthBoundsTestMinValue = state->depth_bounds_min;
|
||
depth_bounds.DepthBoundsTestMaxValue = state->depth_bounds_max;
|
||
}
|
||
#endif
|
||
|
||
return cso;
|
||
}
|
||
|
||
/**
|
||
* The pipe->bind_depth_stencil_alpha_state() driver hook.
|
||
*
|
||
* Bind a depth/stencil/alpha CSO and flag related dirty bits.
|
||
*/
|
||
static void
|
||
iris_bind_zsa_state(struct pipe_context *ctx, void *state)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
|
||
struct iris_depth_stencil_alpha_state *new_cso = state;
|
||
|
||
if (new_cso) {
|
||
if (cso_changed(alpha_ref_value))
|
||
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
|
||
|
||
if (cso_changed(alpha_enabled))
|
||
ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
|
||
|
||
if (cso_changed(alpha_func))
|
||
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
|
||
|
||
if (cso_changed(depth_writes_enabled) || cso_changed(stencil_writes_enabled))
|
||
ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
|
||
|
||
ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
|
||
ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
|
||
|
||
/* State ds_write_enable changed, need to flag dirty DS. */
|
||
if (!old_cso || (ice->state.ds_write_state != new_cso->ds_write_state)) {
|
||
ice->state.dirty |= IRIS_DIRTY_DS_WRITE_ENABLE;
|
||
ice->state.ds_write_state = new_cso->ds_write_state;
|
||
}
|
||
|
||
#if GFX_VER >= 12
|
||
if (cso_changed(depth_bounds))
|
||
ice->state.dirty |= IRIS_DIRTY_DEPTH_BOUNDS;
|
||
#endif
|
||
}
|
||
|
||
ice->state.cso_zsa = new_cso;
|
||
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
|
||
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
|
||
ice->state.stage_dirty |=
|
||
ice->state.stage_dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
|
||
|
||
if (GFX_VER == 8)
|
||
ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
|
||
}
|
||
|
||
#if GFX_VER == 8
|
||
static bool
|
||
want_pma_fix(struct iris_context *ice)
|
||
{
|
||
const struct iris_fs_data *fs_data =
|
||
iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
|
||
const struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
|
||
const struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
|
||
const struct iris_blend_state *cso_blend = ice->state.cso_blend;
|
||
|
||
/* In very specific combinations of state, we can instruct Gfx8-9 hardware
|
||
* to avoid stalling at the pixel mask array. The state equations are
|
||
* documented in these places:
|
||
*
|
||
* - Gfx8 Depth PMA Fix: CACHE_MODE_1::NP_PMA_FIX_ENABLE
|
||
* - Gfx9 Stencil PMA Fix: CACHE_MODE_0::STC PMA Optimization Enable
|
||
*
|
||
* Both equations share some common elements:
|
||
*
|
||
* no_hiz_op =
|
||
* !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
|
||
* 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
|
||
* 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
|
||
* 3DSTATE_WM_HZ_OP::StencilBufferClear) &&
|
||
*
|
||
* killpixels =
|
||
* 3DSTATE_WM::ForceKillPix != ForceOff &&
|
||
* (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
|
||
* 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
|
||
* 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
|
||
* 3DSTATE_PS_BLEND::AlphaTestEnable ||
|
||
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
|
||
*
|
||
* (Technically the stencil PMA treats ForceKillPix differently,
|
||
* but I think this is a documentation oversight, and we don't
|
||
* ever use it in this way, so it doesn't matter).
|
||
*
|
||
* common_pma_fix =
|
||
* 3DSTATE_WM::ForceThreadDispatch != 1 &&
|
||
* 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0 &&
|
||
* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
|
||
* 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
|
||
* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS &&
|
||
* 3DSTATE_PS_EXTRA::PixelShaderValid &&
|
||
* no_hiz_op
|
||
*
|
||
* These are always true:
|
||
*
|
||
* 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0
|
||
* 3DSTATE_PS_EXTRA::PixelShaderValid
|
||
*
|
||
* Also, we never use the normal drawing path for HiZ ops; these are true:
|
||
*
|
||
* !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
|
||
* 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
|
||
* 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
|
||
* 3DSTATE_WM_HZ_OP::StencilBufferClear)
|
||
*
|
||
* This happens sometimes:
|
||
*
|
||
* 3DSTATE_WM::ForceThreadDispatch != 1
|
||
*
|
||
* However, we choose to ignore it as it either agrees with the signal
|
||
* (dispatch was already enabled, so nothing out of the ordinary), or
|
||
* there are no framebuffer attachments (so no depth or HiZ anyway,
|
||
* meaning the PMA signal will already be disabled).
|
||
*/
|
||
|
||
if (!cso_fb->zsbuf.texture)
|
||
return false;
|
||
|
||
struct iris_resource *zres, *sres;
|
||
iris_get_depth_stencil_resources(cso_fb->zsbuf.texture, &zres, &sres);
|
||
|
||
/* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
|
||
* 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
|
||
*/
|
||
if (!zres || zres->aux.usage == ISL_AUX_USAGE_NONE)
|
||
return false;
|
||
|
||
/* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS */
|
||
if (fs_data->early_fragment_tests)
|
||
return false;
|
||
|
||
/* 3DSTATE_WM::ForceKillPix != ForceOff &&
|
||
* (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
|
||
* 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
|
||
* 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
|
||
* 3DSTATE_PS_BLEND::AlphaTestEnable ||
|
||
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
|
||
*/
|
||
bool killpixels = fs_data->uses_kill || fs_data->uses_omask ||
|
||
cso_blend->alpha_to_coverage || cso_zsa->alpha_enabled;
|
||
|
||
/* The Gfx8 depth PMA equation becomes:
|
||
*
|
||
* depth_writes =
|
||
* 3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable &&
|
||
* 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE
|
||
*
|
||
* stencil_writes =
|
||
* 3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
|
||
* 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE &&
|
||
* 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE
|
||
*
|
||
* Z_PMA_OPT =
|
||
* common_pma_fix &&
|
||
* 3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&
|
||
* ((killpixels && (depth_writes || stencil_writes)) ||
|
||
* 3DSTATE_PS_EXTRA::PixelShaderComputedDepthMode != PSCDEPTH_OFF)
|
||
*
|
||
*/
|
||
if (!cso_zsa->depth_test_enabled)
|
||
return false;
|
||
|
||
return fs_data->computed_depth_mode != PSCDEPTH_OFF ||
|
||
(killpixels && (cso_zsa->depth_writes_enabled ||
|
||
(sres && cso_zsa->stencil_writes_enabled)));
|
||
}
|
||
#endif
|
||
|
||
void
|
||
genX(update_pma_fix)(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
bool enable)
|
||
{
|
||
#if GFX_VER == 8
|
||
struct iris_genx_state *genx = ice->state.genx;
|
||
|
||
if (genx->pma_fix_enabled == enable)
|
||
return;
|
||
|
||
genx->pma_fix_enabled = enable;
|
||
|
||
/* According to the Broadwell PIPE_CONTROL documentation, software should
|
||
* emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set
|
||
* prior to the LRI. If stencil buffer writes are enabled, then a Render
|
||
* Cache Flush is also necessary.
|
||
*
|
||
* The Gfx9 docs say to use a depth stall rather than a command streamer
|
||
* stall. However, the hardware seems to violently disagree. A full
|
||
* command streamer stall seems to be needed in both cases.
|
||
*/
|
||
iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
|
||
PIPE_CONTROL_CS_STALL |
|
||
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
|
||
PIPE_CONTROL_RENDER_TARGET_FLUSH);
|
||
|
||
iris_emit_reg(batch, GENX(CACHE_MODE_1), reg) {
|
||
reg.NPPMAFixEnable = enable;
|
||
reg.NPEarlyZFailsDisable = enable;
|
||
reg.NPPMAFixEnableMask = true;
|
||
reg.NPEarlyZFailsDisableMask = true;
|
||
}
|
||
|
||
/* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache
|
||
* Flush bits is often necessary. We do it regardless because it's easier.
|
||
* The render cache flush is also necessary if stencil writes are enabled.
|
||
*
|
||
* Again, the Gfx9 docs give a different set of flushes but the Broadwell
|
||
* flushes seem to work just as well.
|
||
*/
|
||
iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
|
||
PIPE_CONTROL_DEPTH_STALL |
|
||
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
|
||
PIPE_CONTROL_RENDER_TARGET_FLUSH);
|
||
#endif
|
||
}
|
||
|
||
/**
|
||
* Gallium CSO for rasterizer state.
|
||
*/
|
||
struct iris_rasterizer_state {
|
||
uint32_t sf[GENX(3DSTATE_SF_length)];
|
||
uint32_t clip[GENX(3DSTATE_CLIP_length)];
|
||
uint32_t raster[GENX(3DSTATE_RASTER_length)];
|
||
uint32_t wm[GENX(3DSTATE_WM_length)];
|
||
uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
|
||
|
||
uint8_t num_clip_plane_consts;
|
||
bool clip_halfz; /* for CC_VIEWPORT */
|
||
bool depth_clip_near; /* for CC_VIEWPORT */
|
||
bool depth_clip_far; /* for CC_VIEWPORT */
|
||
bool flatshade; /* for shader state */
|
||
bool flatshade_first; /* for stream output */
|
||
bool light_twoside; /* for shader state */
|
||
bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
|
||
bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
|
||
bool line_smooth;
|
||
bool line_stipple_enable;
|
||
bool poly_stipple_enable;
|
||
bool multisample;
|
||
bool force_persample_interp;
|
||
bool conservative_rasterization;
|
||
bool fill_mode_point;
|
||
bool fill_mode_line;
|
||
bool fill_mode_point_or_line;
|
||
enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
|
||
uint16_t sprite_coord_enable;
|
||
};
|
||
|
||
static float
|
||
get_line_width(const struct pipe_rasterizer_state *state)
|
||
{
|
||
float line_width = state->line_width;
|
||
|
||
/* From the OpenGL 4.4 spec:
|
||
*
|
||
* "The actual width of non-antialiased lines is determined by rounding
|
||
* the supplied width to the nearest integer, then clamping it to the
|
||
* implementation-dependent maximum non-antialiased line width."
|
||
*/
|
||
if (!state->multisample && !state->line_smooth)
|
||
line_width = roundf(state->line_width);
|
||
|
||
if (!state->multisample && state->line_smooth && line_width < 1.5f) {
|
||
/* For 1 pixel line thickness or less, the general anti-aliasing
|
||
* algorithm gives up, and a garbage line is generated. Setting a
|
||
* Line Width of 0.0 specifies the rasterization of the "thinnest"
|
||
* (one-pixel-wide), non-antialiased lines.
|
||
*
|
||
* Lines rendered with zero Line Width are rasterized using the
|
||
* "Grid Intersection Quantization" rules as specified by the
|
||
* "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
|
||
*/
|
||
line_width = 0.0f;
|
||
}
|
||
|
||
return line_width;
|
||
}
|
||
|
||
/**
|
||
* The pipe->create_rasterizer_state() driver hook.
|
||
*/
|
||
static void *
|
||
iris_create_rasterizer_state(struct pipe_context *ctx,
|
||
const struct pipe_rasterizer_state *state)
|
||
{
|
||
struct iris_rasterizer_state *cso =
|
||
malloc(sizeof(struct iris_rasterizer_state));
|
||
|
||
cso->multisample = state->multisample;
|
||
cso->force_persample_interp = state->force_persample_interp;
|
||
cso->clip_halfz = state->clip_halfz;
|
||
cso->depth_clip_near = state->depth_clip_near;
|
||
cso->depth_clip_far = state->depth_clip_far;
|
||
cso->flatshade = state->flatshade;
|
||
cso->flatshade_first = state->flatshade_first;
|
||
cso->light_twoside = state->light_twoside;
|
||
cso->rasterizer_discard = state->rasterizer_discard;
|
||
cso->half_pixel_center = state->half_pixel_center;
|
||
cso->sprite_coord_mode = state->sprite_coord_mode;
|
||
cso->sprite_coord_enable = state->sprite_coord_enable;
|
||
cso->line_smooth = state->line_smooth;
|
||
cso->line_stipple_enable = state->line_stipple_enable;
|
||
cso->poly_stipple_enable = state->poly_stipple_enable;
|
||
cso->conservative_rasterization =
|
||
state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
|
||
|
||
cso->fill_mode_point =
|
||
state->fill_front == PIPE_POLYGON_MODE_POINT ||
|
||
state->fill_back == PIPE_POLYGON_MODE_POINT;
|
||
cso->fill_mode_line =
|
||
state->fill_front == PIPE_POLYGON_MODE_LINE ||
|
||
state->fill_back == PIPE_POLYGON_MODE_LINE;
|
||
cso->fill_mode_point_or_line =
|
||
cso->fill_mode_point ||
|
||
cso->fill_mode_line;
|
||
|
||
if (state->clip_plane_enable != 0)
|
||
cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
|
||
else
|
||
cso->num_clip_plane_consts = 0;
|
||
|
||
float line_width = get_line_width(state);
|
||
|
||
iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
|
||
sf.StatisticsEnable = true;
|
||
sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
|
||
sf.LineEndCapAntialiasingRegionWidth =
|
||
state->line_smooth ? _10pixels : _05pixels;
|
||
sf.LastPixelEnable = state->line_last_pixel;
|
||
sf.LineWidth = line_width;
|
||
sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
|
||
!state->point_quad_rasterization;
|
||
sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
|
||
sf.PointWidth = CLAMP(state->point_size, 0.125f, 255.875f);
|
||
|
||
if (state->flatshade_first) {
|
||
sf.TriangleFanProvokingVertexSelect = 1;
|
||
} else {
|
||
sf.TriangleStripListProvokingVertexSelect = 2;
|
||
sf.TriangleFanProvokingVertexSelect = 2;
|
||
sf.LineStripListProvokingVertexSelect = 1;
|
||
}
|
||
}
|
||
|
||
iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
|
||
rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
|
||
rr.CullMode = translate_cull_mode(state->cull_face);
|
||
rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
|
||
rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
|
||
rr.DXMultisampleRasterizationEnable = state->multisample;
|
||
rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
|
||
rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
|
||
rr.GlobalDepthOffsetEnablePoint = state->offset_point;
|
||
rr.GlobalDepthOffsetConstant = state->offset_units * 2;
|
||
rr.GlobalDepthOffsetScale = state->offset_scale;
|
||
rr.GlobalDepthOffsetClamp = state->offset_clamp;
|
||
rr.SmoothPointEnable = state->point_smooth;
|
||
rr.ScissorRectangleEnable = state->scissor;
|
||
#if GFX_VER >= 9
|
||
rr.ViewportZNearClipTestEnable = state->depth_clip_near;
|
||
rr.ViewportZFarClipTestEnable = state->depth_clip_far;
|
||
rr.ConservativeRasterizationEnable =
|
||
cso->conservative_rasterization;
|
||
#else
|
||
rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
|
||
#endif
|
||
}
|
||
|
||
iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
|
||
/* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
|
||
* the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
|
||
*/
|
||
cl.EarlyCullEnable = true;
|
||
cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
|
||
cl.ForceUserClipDistanceClipTestEnableBitmask = true;
|
||
cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
|
||
cl.GuardbandClipTestEnable = true;
|
||
cl.ClipEnable = true;
|
||
cl.MinimumPointWidth = 0.125;
|
||
cl.MaximumPointWidth = 255.875;
|
||
|
||
if (state->flatshade_first) {
|
||
cl.TriangleFanProvokingVertexSelect = 1;
|
||
} else {
|
||
cl.TriangleStripListProvokingVertexSelect = 2;
|
||
cl.TriangleFanProvokingVertexSelect = 2;
|
||
cl.LineStripListProvokingVertexSelect = 1;
|
||
}
|
||
}
|
||
|
||
iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
|
||
/* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
|
||
* filled in at draw time from the FS program.
|
||
*/
|
||
wm.LineAntialiasingRegionWidth = _10pixels;
|
||
wm.LineEndCapAntialiasingRegionWidth = _05pixels;
|
||
wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
|
||
wm.LineStippleEnable = state->line_stipple_enable;
|
||
wm.PolygonStippleEnable = state->poly_stipple_enable;
|
||
}
|
||
|
||
/* Remap from 0..255 back to 1..256 */
|
||
const unsigned line_stipple_factor = state->line_stipple_factor + 1;
|
||
|
||
iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
|
||
if (state->line_stipple_enable) {
|
||
line.LineStipplePattern = state->line_stipple_pattern;
|
||
line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
|
||
line.LineStippleRepeatCount = line_stipple_factor;
|
||
}
|
||
}
|
||
|
||
return cso;
|
||
}
|
||
|
||
/**
|
||
* The pipe->bind_rasterizer_state() driver hook.
|
||
*
|
||
* Bind a rasterizer CSO and flag related dirty bits.
|
||
*/
|
||
static void
|
||
iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
|
||
struct iris_rasterizer_state *new_cso = state;
|
||
|
||
if (new_cso) {
|
||
/* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
|
||
if (cso_changed_memcmp(line_stipple))
|
||
ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
|
||
|
||
if (cso_changed(half_pixel_center))
|
||
ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
|
||
|
||
if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
|
||
ice->state.dirty |= IRIS_DIRTY_WM;
|
||
|
||
if (cso_changed(rasterizer_discard))
|
||
ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
|
||
|
||
if (cso_changed(flatshade_first))
|
||
ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
|
||
|
||
if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
|
||
cso_changed(clip_halfz))
|
||
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
|
||
|
||
if (cso_changed(sprite_coord_enable) ||
|
||
cso_changed(sprite_coord_mode) ||
|
||
cso_changed(light_twoside))
|
||
ice->state.dirty |= IRIS_DIRTY_SBE;
|
||
|
||
if (cso_changed(conservative_rasterization))
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
|
||
}
|
||
|
||
ice->state.cso_rast = new_cso;
|
||
ice->state.dirty |= IRIS_DIRTY_RASTER;
|
||
ice->state.dirty |= IRIS_DIRTY_CLIP;
|
||
ice->state.stage_dirty |=
|
||
ice->state.stage_dirty_for_nos[IRIS_NOS_RASTERIZER];
|
||
}
|
||
|
||
/**
|
||
* Return true if the given wrap mode requires the border color to exist.
|
||
*
|
||
* (We can skip uploading it if the sampler isn't going to use it.)
|
||
*/
|
||
static bool
|
||
wrap_mode_needs_border_color(unsigned wrap_mode)
|
||
{
|
||
return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
|
||
}
|
||
|
||
/**
|
||
* Gallium CSO for sampler state.
|
||
*/
|
||
struct iris_sampler_state {
|
||
union pipe_color_union border_color;
|
||
bool needs_border_color;
|
||
|
||
uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
|
||
|
||
#if GFX_VERx10 == 125
|
||
/* Sampler state structure to use for 3D textures in order to
|
||
* implement Wa_14014414195.
|
||
*/
|
||
uint32_t sampler_state_3d[GENX(SAMPLER_STATE_length)];
|
||
#endif
|
||
};
|
||
|
||
static void
|
||
fill_sampler_state(uint32_t *sampler_state,
|
||
const struct pipe_sampler_state *state,
|
||
unsigned max_anisotropy)
|
||
{
|
||
float min_lod = state->min_lod;
|
||
unsigned mag_img_filter = state->mag_img_filter;
|
||
|
||
// XXX: explain this code ported from ilo...I don't get it at all...
|
||
if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
|
||
state->min_lod > 0.0f) {
|
||
min_lod = 0.0f;
|
||
mag_img_filter = state->min_img_filter;
|
||
}
|
||
|
||
#if GFX_VER > 8
|
||
uint32_t reduction_mode =
|
||
translate_tex_filter_mode(state->reduction_mode);
|
||
#endif
|
||
|
||
iris_pack_state(GENX(SAMPLER_STATE), sampler_state, samp) {
|
||
samp.TCXAddressControlMode = translate_wrap(state->wrap_s);
|
||
samp.TCYAddressControlMode = translate_wrap(state->wrap_t);
|
||
samp.TCZAddressControlMode = translate_wrap(state->wrap_r);
|
||
samp.CubeSurfaceControlMode = state->seamless_cube_map;
|
||
samp.NonnormalizedCoordinateEnable = state->unnormalized_coords;
|
||
samp.MinModeFilter = state->min_img_filter;
|
||
samp.MagModeFilter = mag_img_filter;
|
||
samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
|
||
samp.MaximumAnisotropy = RATIO21;
|
||
#if GFX_VER > 8
|
||
samp.ReductionType = reduction_mode;
|
||
samp.ReductionTypeEnable =
|
||
reduction_mode != PIPE_TEX_REDUCTION_WEIGHTED_AVERAGE;
|
||
#endif
|
||
if (max_anisotropy >= 2) {
|
||
if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
|
||
#if GFX_VER >= 30
|
||
samp.MinModeFilter = MAPFILTER_ANISOTROPIC_FAST;
|
||
#else
|
||
samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
|
||
#endif
|
||
samp.AnisotropicAlgorithm = EWAApproximation;
|
||
}
|
||
|
||
if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR) {
|
||
#if GFX_VER >= 30
|
||
samp.MagModeFilter = MAPFILTER_ANISOTROPIC_FAST;
|
||
#else
|
||
samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
|
||
#endif
|
||
}
|
||
|
||
samp.MaximumAnisotropy =
|
||
MIN2((max_anisotropy - 2) / 2, RATIO161);
|
||
}
|
||
|
||
/* Set address rounding bits if not using nearest filtering. */
|
||
if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
|
||
samp.UAddressMinFilterRoundingEnable = true;
|
||
samp.VAddressMinFilterRoundingEnable = true;
|
||
samp.RAddressMinFilterRoundingEnable = true;
|
||
}
|
||
|
||
if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
|
||
samp.UAddressMagFilterRoundingEnable = true;
|
||
samp.VAddressMagFilterRoundingEnable = true;
|
||
samp.RAddressMagFilterRoundingEnable = true;
|
||
}
|
||
|
||
if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
|
||
samp.ShadowFunction = translate_shadow_func(state->compare_func);
|
||
|
||
const float hw_max_lod = GFX_VER >= 7 ? 14 : 13;
|
||
|
||
samp.LODPreClampMode = CLAMP_MODE_OGL;
|
||
samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
|
||
samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
|
||
samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
|
||
|
||
/* .BorderColorPointer is filled in by iris_bind_sampler_states. */
|
||
}
|
||
}
|
||
|
||
/**
|
||
* The pipe->create_sampler_state() driver hook.
|
||
*
|
||
* We fill out SAMPLER_STATE (except for the border color pointer), and
|
||
* store that on the CPU. It doesn't make sense to upload it to a GPU
|
||
* buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
|
||
* all bound sampler states to be in contiguous memory.
|
||
*/
|
||
static void *
|
||
iris_create_sampler_state(struct pipe_context *ctx,
|
||
const struct pipe_sampler_state *state)
|
||
{
|
||
UNUSED struct iris_screen *screen = (void *)ctx->screen;
|
||
UNUSED const struct intel_device_info *devinfo = screen->devinfo;
|
||
struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
|
||
|
||
if (!cso)
|
||
return NULL;
|
||
|
||
STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
|
||
STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
|
||
|
||
unsigned wrap_s = translate_wrap(state->wrap_s);
|
||
unsigned wrap_t = translate_wrap(state->wrap_t);
|
||
unsigned wrap_r = translate_wrap(state->wrap_r);
|
||
|
||
memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
|
||
|
||
cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
|
||
wrap_mode_needs_border_color(wrap_t) ||
|
||
wrap_mode_needs_border_color(wrap_r);
|
||
|
||
fill_sampler_state(cso->sampler_state, state, state->max_anisotropy);
|
||
|
||
#if GFX_VERx10 == 125
|
||
/* Fill an extra sampler state structure with anisotropic filtering
|
||
* disabled used to implement Wa_14014414195.
|
||
*/
|
||
if (intel_needs_workaround(screen->devinfo, 14014414195))
|
||
fill_sampler_state(cso->sampler_state_3d, state, 0);
|
||
#endif
|
||
|
||
return cso;
|
||
}
|
||
|
||
/**
|
||
* The pipe->bind_sampler_states() driver hook.
|
||
*/
|
||
static void
|
||
iris_bind_sampler_states(struct pipe_context *ctx,
|
||
mesa_shader_stage stage,
|
||
unsigned start, unsigned count,
|
||
void **states)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
struct iris_shader_state *shs = &ice->state.shaders[stage];
|
||
|
||
assert(start + count <= IRIS_MAX_SAMPLERS);
|
||
|
||
bool dirty = false;
|
||
|
||
for (int i = 0; i < count; i++) {
|
||
struct iris_sampler_state *state = states ? states[i] : NULL;
|
||
if (shs->samplers[start + i] != state) {
|
||
shs->samplers[start + i] = state;
|
||
dirty = true;
|
||
}
|
||
}
|
||
|
||
if (dirty)
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage;
|
||
}
|
||
|
||
/**
|
||
* Upload the sampler states into a contiguous area of GPU memory, for
|
||
* for 3DSTATE_SAMPLER_STATE_POINTERS_*.
|
||
*
|
||
* Also fill out the border color state pointers.
|
||
*/
|
||
static void
|
||
iris_upload_sampler_states(struct iris_context *ice, mesa_shader_stage stage)
|
||
{
|
||
struct iris_screen *screen = (struct iris_screen *) ice->ctx.screen;
|
||
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
|
||
struct iris_shader_state *shs = &ice->state.shaders[stage];
|
||
struct iris_border_color_pool *border_color_pool =
|
||
iris_bufmgr_get_border_color_pool(screen->bufmgr);
|
||
|
||
/* We assume gallium frontends will call pipe->bind_sampler_states()
|
||
* if the program's number of textures changes.
|
||
*/
|
||
unsigned count = util_last_bit64(shader->bt.samplers_used_mask);
|
||
|
||
if (!count)
|
||
return;
|
||
|
||
/* Assemble the SAMPLER_STATEs into a contiguous table that lives
|
||
* in the dynamic state memory zone, so we can point to it via the
|
||
* 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
|
||
*/
|
||
unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
|
||
uint32_t *map =
|
||
upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
|
||
if (unlikely(!map))
|
||
return;
|
||
|
||
struct pipe_resource *res = shs->sampler_table.res;
|
||
struct iris_bo *bo = iris_resource_bo(res);
|
||
|
||
iris_record_state_size(ice->state.sizes,
|
||
bo->address + shs->sampler_table.offset, size);
|
||
|
||
shs->sampler_table.offset += iris_bo_offset_from_base_address(bo);
|
||
|
||
ice->state.need_border_colors &= ~(1 << stage);
|
||
|
||
for (int i = 0; i < count; i++) {
|
||
struct iris_sampler_state *state = shs->samplers[i];
|
||
struct iris_sampler_view *tex = shs->textures[i];
|
||
|
||
if (!state) {
|
||
memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
|
||
} else {
|
||
const uint32_t *sampler_state = state->sampler_state;
|
||
|
||
#if GFX_VERx10 == 125
|
||
if (intel_needs_workaround(screen->devinfo, 14014414195) &&
|
||
tex && tex->res->base.b.target == PIPE_TEXTURE_3D) {
|
||
sampler_state = state->sampler_state_3d;
|
||
}
|
||
#endif
|
||
|
||
if (!state->needs_border_color) {
|
||
memcpy(map, sampler_state, 4 * GENX(SAMPLER_STATE_length));
|
||
} else {
|
||
ice->state.need_border_colors |= 1 << stage;
|
||
|
||
/* We may need to swizzle the border color for format faking.
|
||
* A/LA formats are faked as R/RG with 000R or R00G swizzles.
|
||
* This means we need to move the border color's A channel into
|
||
* the R or G channels so that those read swizzles will move it
|
||
* back into A.
|
||
*/
|
||
union pipe_color_union *color = &state->border_color;
|
||
union pipe_color_union tmp;
|
||
if (tex) {
|
||
enum pipe_format internal_format = tex->res->internal_format;
|
||
|
||
if (util_format_is_alpha(internal_format)) {
|
||
unsigned char swz[4] = {
|
||
PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
|
||
PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
|
||
};
|
||
util_format_apply_color_swizzle(&tmp, color, swz, true);
|
||
color = &tmp;
|
||
} else if (util_format_is_luminance_alpha(internal_format) &&
|
||
internal_format != PIPE_FORMAT_L8A8_SRGB) {
|
||
unsigned char swz[4] = {
|
||
PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
|
||
PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
|
||
};
|
||
util_format_apply_color_swizzle(&tmp, color, swz, true);
|
||
color = &tmp;
|
||
}
|
||
}
|
||
|
||
/* Stream out the border color and merge the pointer. */
|
||
uint32_t offset = iris_upload_border_color(border_color_pool,
|
||
color);
|
||
|
||
uint32_t dynamic[GENX(SAMPLER_STATE_length)];
|
||
iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
|
||
dyns.BorderColorPointer = offset;
|
||
}
|
||
|
||
for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
|
||
map[j] = sampler_state[j] | dynamic[j];
|
||
}
|
||
}
|
||
|
||
map += GENX(SAMPLER_STATE_length);
|
||
}
|
||
}
|
||
|
||
static enum isl_channel_select
|
||
fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
|
||
{
|
||
switch (swz) {
|
||
case PIPE_SWIZZLE_X: return fmt->swizzle.r;
|
||
case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
|
||
case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
|
||
case PIPE_SWIZZLE_W: return fmt->swizzle.a;
|
||
case PIPE_SWIZZLE_1: return ISL_CHANNEL_SELECT_ONE;
|
||
case PIPE_SWIZZLE_0: return ISL_CHANNEL_SELECT_ZERO;
|
||
default: UNREACHABLE("invalid swizzle");
|
||
}
|
||
}
|
||
|
||
static void
|
||
fill_buffer_surface_state(struct isl_device *isl_dev,
|
||
struct iris_resource *res,
|
||
void *map,
|
||
enum isl_format format,
|
||
struct isl_swizzle swizzle,
|
||
unsigned offset,
|
||
unsigned size,
|
||
isl_surf_usage_flags_t usage)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(format);
|
||
const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
|
||
|
||
/* The ARB_texture_buffer_specification says:
|
||
*
|
||
* "The number of texels in the buffer texture's texel array is given by
|
||
*
|
||
* floor(<buffer_size> / (<components> * sizeof(<base_type>)),
|
||
*
|
||
* where <buffer_size> is the size of the buffer object, in basic
|
||
* machine units and <components> and <base_type> are the element count
|
||
* and base data type for elements, as specified in Table X.1. The
|
||
* number of texels in the texel array is then clamped to the
|
||
* implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
|
||
*
|
||
* We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
|
||
* so that when ISL divides by stride to obtain the number of texels, that
|
||
* texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
|
||
*/
|
||
unsigned final_size =
|
||
MIN3(size, res->bo->size - res->offset - offset,
|
||
IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
|
||
|
||
isl_buffer_fill_state(isl_dev, map,
|
||
.address = res->bo->address + res->offset + offset,
|
||
.size_B = final_size,
|
||
.format = format,
|
||
.swizzle = swizzle,
|
||
.stride_B = cpp,
|
||
.usage = usage,
|
||
.mocs = iris_mocs(res->bo, isl_dev, usage));
|
||
}
|
||
|
||
#define SURFACE_STATE_ALIGNMENT 64
|
||
|
||
/**
|
||
* Allocate several contiguous SURFACE_STATE structures, one for each
|
||
* supported auxiliary surface mode. This only allocates the CPU-side
|
||
* copy, they will need to be uploaded later after they're filled in.
|
||
*/
|
||
static void
|
||
alloc_surface_states(struct iris_surface_state *surf_state,
|
||
unsigned aux_usages)
|
||
{
|
||
enum { surf_size = 4 * GENX(RENDER_SURFACE_STATE_length) };
|
||
|
||
/* If this changes, update this to explicitly align pointers */
|
||
STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
|
||
|
||
assert(aux_usages != 0);
|
||
|
||
/* In case we're re-allocating them... */
|
||
free(surf_state->cpu);
|
||
|
||
surf_state->aux_usages = aux_usages;
|
||
surf_state->num_states = util_bitcount(aux_usages);
|
||
surf_state->cpu = calloc(surf_state->num_states, surf_size);
|
||
surf_state->ref.offset = 0;
|
||
pipe_resource_reference(&surf_state->ref.res, NULL);
|
||
|
||
assert(surf_state->cpu);
|
||
}
|
||
|
||
/**
|
||
* Upload the CPU side SURFACE_STATEs into a GPU buffer.
|
||
*/
|
||
static void
|
||
upload_surface_states(struct u_upload_mgr *mgr,
|
||
struct iris_surface_state *surf_state)
|
||
{
|
||
const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
|
||
const unsigned bytes = surf_state->num_states * surf_size;
|
||
|
||
void *map =
|
||
upload_state(mgr, &surf_state->ref, bytes, SURFACE_STATE_ALIGNMENT);
|
||
|
||
surf_state->ref.offset +=
|
||
iris_bo_offset_from_base_address(iris_resource_bo(surf_state->ref.res));
|
||
|
||
if (map)
|
||
memcpy(map, surf_state->cpu, bytes);
|
||
}
|
||
|
||
/**
|
||
* Update resource addresses in a set of SURFACE_STATE descriptors,
|
||
* and re-upload them if necessary.
|
||
*/
|
||
static bool
|
||
update_surface_state_addrs(struct u_upload_mgr *mgr,
|
||
struct iris_surface_state *surf_state,
|
||
struct iris_bo *bo)
|
||
{
|
||
if (surf_state->bo_address == bo->address)
|
||
return false;
|
||
|
||
STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) % 64 == 0);
|
||
STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_bits) == 64);
|
||
|
||
uint64_t *ss_addr = (uint64_t *) &surf_state->cpu[GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) / 32];
|
||
|
||
/* First, update the CPU copies. We assume no other fields exist in
|
||
* the QWord containing Surface Base Address.
|
||
*/
|
||
for (unsigned i = 0; i < surf_state->num_states; i++) {
|
||
*ss_addr = *ss_addr - surf_state->bo_address + bo->address;
|
||
ss_addr = ((void *) ss_addr) + SURFACE_STATE_ALIGNMENT;
|
||
}
|
||
|
||
/* Next, upload the updated copies to a GPU buffer. */
|
||
upload_surface_states(mgr, surf_state);
|
||
|
||
surf_state->bo_address = bo->address;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* We should only use this function when it's needed to fill out
|
||
* surf with information provided by the pipe_(image|sampler)_view.
|
||
* This is only necessary for CL extension cl_khr_image2d_from_buffer.
|
||
* This is the reason why ISL_SURF_DIM_2D is hardcoded on dim field.
|
||
*/
|
||
static void
|
||
fill_surf_for_tex2d_from_buffer(struct isl_device *isl_dev,
|
||
enum isl_format format,
|
||
unsigned width,
|
||
unsigned height,
|
||
unsigned row_stride,
|
||
isl_surf_usage_flags_t usage,
|
||
struct isl_surf *surf)
|
||
{
|
||
const struct isl_format_layout *fmtl = isl_format_get_layout(format);
|
||
const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
|
||
|
||
const struct isl_surf_init_info init_info = {
|
||
.dim = ISL_SURF_DIM_2D,
|
||
.format = format,
|
||
.width = width,
|
||
.height = height,
|
||
.depth = 1,
|
||
.levels = 1,
|
||
.array_len = 1,
|
||
.samples = 1,
|
||
.min_alignment_B = 4,
|
||
.row_pitch_B = row_stride * cpp,
|
||
.usage = usage,
|
||
.tiling_flags = ISL_TILING_LINEAR_BIT,
|
||
};
|
||
|
||
const bool isl_surf_created_successfully =
|
||
isl_surf_init_s(isl_dev, surf, &init_info);
|
||
|
||
assert(isl_surf_created_successfully);
|
||
}
|
||
|
||
static void
|
||
fill_surface_state(struct isl_device *isl_dev,
|
||
void *map,
|
||
struct iris_resource *res,
|
||
struct isl_surf *surf,
|
||
struct isl_view *view,
|
||
unsigned aux_usage,
|
||
uint32_t extra_main_offset,
|
||
uint32_t tile_x_sa,
|
||
uint32_t tile_y_sa)
|
||
{
|
||
struct isl_surf_fill_state_info f = {
|
||
.surf = surf,
|
||
.view = view,
|
||
.mocs = iris_mocs(res->bo, isl_dev, view->usage),
|
||
.address = res->bo->address + res->offset + extra_main_offset,
|
||
.x_offset_sa = tile_x_sa,
|
||
.y_offset_sa = tile_y_sa,
|
||
};
|
||
|
||
if (aux_usage != ISL_AUX_USAGE_NONE) {
|
||
f.aux_surf = &res->aux.surf;
|
||
f.aux_usage = aux_usage;
|
||
f.clear_color = res->aux.clear_color;
|
||
|
||
if (aux_usage == ISL_AUX_USAGE_MC)
|
||
f.mc_format = iris_format_for_usage(isl_dev->info,
|
||
res->external_format,
|
||
surf->usage).fmt;
|
||
|
||
if (res->aux.bo)
|
||
f.aux_address = res->aux.bo->address + res->aux.offset;
|
||
|
||
if (res->aux.clear_color_bo) {
|
||
f.clear_address = res->aux.clear_color_bo->address +
|
||
res->aux.clear_color_offset;
|
||
f.use_clear_address = isl_dev->info->ver > 9;
|
||
}
|
||
}
|
||
|
||
isl_surf_fill_state_s(isl_dev, map, &f);
|
||
}
|
||
|
||
static void
|
||
fill_surface_states(struct isl_device *isl_dev,
|
||
struct iris_surface_state *surf_state,
|
||
struct iris_resource *res,
|
||
struct isl_surf *surf,
|
||
struct isl_view *view,
|
||
uint64_t extra_main_offset,
|
||
uint32_t tile_x_sa,
|
||
uint32_t tile_y_sa)
|
||
{
|
||
void *map = surf_state->cpu;
|
||
unsigned aux_modes = surf_state->aux_usages;
|
||
|
||
while (aux_modes) {
|
||
enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
|
||
|
||
fill_surface_state(isl_dev, map, res, surf, view, aux_usage,
|
||
extra_main_offset, tile_x_sa, tile_y_sa);
|
||
|
||
map += SURFACE_STATE_ALIGNMENT;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* The pipe->create_sampler_view() driver hook.
|
||
*/
|
||
static struct pipe_sampler_view *
|
||
iris_create_sampler_view(struct pipe_context *ctx,
|
||
struct pipe_resource *tex,
|
||
const struct pipe_sampler_view *tmpl)
|
||
{
|
||
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
|
||
const struct intel_device_info *devinfo = screen->devinfo;
|
||
struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
|
||
|
||
if (!isv)
|
||
return NULL;
|
||
|
||
/* initialize base object */
|
||
isv->base = *tmpl;
|
||
isv->base.context = ctx;
|
||
isv->base.texture = NULL;
|
||
pipe_reference_init(&isv->base.reference, 1);
|
||
pipe_resource_reference(&isv->base.texture, tex);
|
||
|
||
if (util_format_is_depth_or_stencil(tmpl->format)) {
|
||
struct iris_resource *zres, *sres;
|
||
const struct util_format_description *desc =
|
||
util_format_description(tmpl->format);
|
||
|
||
iris_get_depth_stencil_resources(tex, &zres, &sres);
|
||
|
||
tex = util_format_has_depth(desc) ? &zres->base.b : &sres->base.b;
|
||
}
|
||
|
||
isv->res = (struct iris_resource *) tex;
|
||
|
||
isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
|
||
|
||
if (isv->base.target == PIPE_TEXTURE_CUBE ||
|
||
isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
|
||
usage |= ISL_SURF_USAGE_CUBE_BIT;
|
||
|
||
const struct iris_format_info fmt =
|
||
iris_format_for_usage(devinfo, tmpl->format, usage);
|
||
|
||
isv->clear_color = isv->res->aux.clear_color;
|
||
|
||
isv->view = (struct isl_view) {
|
||
.format = fmt.fmt,
|
||
.swizzle = (struct isl_swizzle) {
|
||
.r = fmt_swizzle(&fmt, tmpl->swizzle_r),
|
||
.g = fmt_swizzle(&fmt, tmpl->swizzle_g),
|
||
.b = fmt_swizzle(&fmt, tmpl->swizzle_b),
|
||
.a = fmt_swizzle(&fmt, tmpl->swizzle_a),
|
||
},
|
||
.usage = usage,
|
||
};
|
||
|
||
unsigned aux_usages = 0;
|
||
|
||
if ((isv->res->aux.usage == ISL_AUX_USAGE_CCS_D ||
|
||
isv->res->aux.usage == ISL_AUX_USAGE_CCS_E ||
|
||
isv->res->aux.usage == ISL_AUX_USAGE_FCV_CCS_E) &&
|
||
!isl_format_supports_ccs_e(devinfo, isv->view.format)) {
|
||
aux_usages = 1 << ISL_AUX_USAGE_NONE;
|
||
} else if (isl_aux_usage_has_hiz(isv->res->aux.usage) &&
|
||
!iris_sample_with_depth_aux(devinfo, isv->res)) {
|
||
aux_usages = 1 << ISL_AUX_USAGE_NONE;
|
||
} else {
|
||
aux_usages = 1 << ISL_AUX_USAGE_NONE |
|
||
1 << isv->res->aux.usage;
|
||
}
|
||
|
||
alloc_surface_states(&isv->surface_state, aux_usages);
|
||
isv->surface_state.bo_address = isv->res->bo->address;
|
||
|
||
/* Fill out SURFACE_STATE for this view. */
|
||
if (tmpl->target != PIPE_BUFFER) {
|
||
isv->view.base_level = tmpl->u.tex.first_level;
|
||
isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
|
||
|
||
if (tmpl->target == PIPE_TEXTURE_3D) {
|
||
isv->view.base_array_layer = 0;
|
||
isv->view.array_len = 1;
|
||
} else {
|
||
#if GFX_VER < 9
|
||
/* Hardware older than skylake ignores this value */
|
||
assert(tex->target != PIPE_TEXTURE_3D || !tmpl->u.tex.first_layer);
|
||
#endif
|
||
isv->view.base_array_layer = tmpl->u.tex.first_layer;
|
||
isv->view.array_len =
|
||
tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
|
||
}
|
||
|
||
fill_surface_states(&screen->isl_dev, &isv->surface_state, isv->res,
|
||
&isv->res->surf, &isv->view, 0, 0, 0);
|
||
} else if (isv->base.is_tex2d_from_buf) {
|
||
/* In case it's a 2d image created from a buffer, we should
|
||
* use fill_surface_states function with image parameters provided
|
||
* by the CL application
|
||
*/
|
||
isv->view.base_array_layer = 0;
|
||
isv->view.array_len = 1;
|
||
|
||
/* Create temp_surf and fill with values provided by CL application */
|
||
struct isl_surf temp_surf;
|
||
fill_surf_for_tex2d_from_buffer(&screen->isl_dev, fmt.fmt,
|
||
isv->base.u.tex2d_from_buf.width,
|
||
isv->base.u.tex2d_from_buf.height,
|
||
isv->base.u.tex2d_from_buf.row_stride,
|
||
usage,
|
||
&temp_surf);
|
||
|
||
fill_surface_states(&screen->isl_dev, &isv->surface_state, isv->res,
|
||
&temp_surf, &isv->view, 0, 0, 0);
|
||
} else {
|
||
fill_buffer_surface_state(&screen->isl_dev, isv->res,
|
||
isv->surface_state.cpu,
|
||
isv->view.format, isv->view.swizzle,
|
||
tmpl->u.buf.offset, tmpl->u.buf.size,
|
||
ISL_SURF_USAGE_TEXTURE_BIT);
|
||
}
|
||
|
||
return &isv->base;
|
||
}
|
||
|
||
static void
|
||
iris_sampler_view_destroy(struct pipe_context *ctx,
|
||
struct pipe_sampler_view *state)
|
||
{
|
||
struct iris_sampler_view *isv = (void *) state;
|
||
pipe_resource_reference(&state->texture, NULL);
|
||
pipe_resource_reference(&isv->surface_state.ref.res, NULL);
|
||
free(isv->surface_state.cpu);
|
||
free(isv);
|
||
}
|
||
|
||
/**
|
||
* The pipe->create_surface() driver hook.
|
||
*
|
||
* In Gallium nomenclature, "surfaces" are a view of a resource that
|
||
* can be bound as a render target or depth/stencil buffer.
|
||
*/
|
||
static struct pipe_surface *
|
||
iris_create_surface(struct pipe_context *ctx,
|
||
struct pipe_resource *tex,
|
||
const struct pipe_surface *tmpl)
|
||
{
|
||
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
|
||
const struct intel_device_info *devinfo = screen->devinfo;
|
||
|
||
isl_surf_usage_flags_t usage = 0;
|
||
if (util_format_is_depth_or_stencil(tmpl->format))
|
||
usage = ISL_SURF_USAGE_DEPTH_BIT;
|
||
else
|
||
usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
|
||
|
||
const struct iris_format_info fmt =
|
||
iris_format_for_usage(devinfo, tmpl->format, usage);
|
||
|
||
if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
|
||
!isl_format_supports_rendering(devinfo, fmt.fmt)) {
|
||
/* Framebuffer validation will reject this invalid case, but it
|
||
* hasn't had the opportunity yet. In the meantime, we need to
|
||
* avoid hitting ISL asserts about unsupported formats below.
|
||
*/
|
||
return NULL;
|
||
}
|
||
|
||
struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
|
||
struct iris_resource *res = (struct iris_resource *) tex;
|
||
|
||
if (!surf)
|
||
return NULL;
|
||
|
||
uint32_t array_len = tmpl->last_layer - tmpl->first_layer + 1;
|
||
|
||
struct isl_view *view = &surf->view;
|
||
*view = (struct isl_view) {
|
||
.format = fmt.fmt,
|
||
.base_level = tmpl->level,
|
||
.levels = 1,
|
||
.base_array_layer = tmpl->first_layer,
|
||
.array_len = array_len,
|
||
.swizzle = ISL_SWIZZLE_IDENTITY,
|
||
.usage = usage,
|
||
};
|
||
|
||
#if GFX_VER == 8
|
||
struct isl_view *read_view = &surf->read_view;
|
||
*read_view = (struct isl_view) {
|
||
.format = fmt.fmt,
|
||
.base_level = tmpl->level,
|
||
.levels = 1,
|
||
.base_array_layer = tmpl->first_layer,
|
||
.array_len = array_len,
|
||
.swizzle = ISL_SWIZZLE_IDENTITY,
|
||
.usage = ISL_SURF_USAGE_TEXTURE_BIT,
|
||
};
|
||
|
||
struct isl_surf read_surf = res->surf;
|
||
uint64_t read_surf_offset_B = 0;
|
||
uint32_t read_surf_tile_x_sa = 0, read_surf_tile_y_sa = 0;
|
||
if (tex->target == PIPE_TEXTURE_3D && array_len == 1) {
|
||
/* The minimum array element field of the surface state structure is
|
||
* ignored by the sampler unit for 3D textures on some hardware. If the
|
||
* render buffer is a single slice of a 3D texture, create a 2D texture
|
||
* covering that slice.
|
||
*
|
||
* TODO: This only handles the case where we're rendering to a single
|
||
* slice of an array texture. If we have layered rendering combined
|
||
* with non-coherent FB fetch and a non-zero base_array_layer, then
|
||
* we're going to run into problems.
|
||
*
|
||
* See https://gitlab.freedesktop.org/mesa/mesa/-/issues/4904
|
||
*/
|
||
isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
|
||
read_view->base_level,
|
||
0, read_view->base_array_layer,
|
||
&read_surf, &read_surf_offset_B,
|
||
&read_surf_tile_x_sa, &read_surf_tile_y_sa);
|
||
read_view->base_level = 0;
|
||
read_view->base_array_layer = 0;
|
||
assert(read_view->array_len == 1);
|
||
} else if (tex->target == PIPE_TEXTURE_1D_ARRAY) {
|
||
/* Convert 1D array textures to 2D arrays because shaders always provide
|
||
* the array index coordinate at the Z component to avoid recompiles
|
||
* when changing the texture target of the framebuffer.
|
||
*/
|
||
assert(read_surf.dim_layout == ISL_DIM_LAYOUT_GFX4_2D);
|
||
read_surf.dim = ISL_SURF_DIM_2D;
|
||
}
|
||
#endif
|
||
|
||
struct isl_surf isl_surf = res->surf;
|
||
uint64_t offset_B = 0;
|
||
uint32_t tile_x_el = 0, tile_y_el = 0;
|
||
if (isl_format_is_compressed(res->surf.format)) {
|
||
/* The resource has a compressed format, which is not renderable, but we
|
||
* have a renderable view format. We must be attempting to upload
|
||
* blocks of compressed data via an uncompressed view.
|
||
*
|
||
* In this case, we can assume there are no auxiliary surfaces, a single
|
||
* miplevel, and that the resource is single-sampled. Gallium may try
|
||
* and create an uncompressed view with multiple layers, however.
|
||
*/
|
||
assert(res->aux.surf.size_B == 0);
|
||
assert(res->surf.samples == 1);
|
||
assert(view->levels == 1);
|
||
|
||
bool ok = isl_surf_get_uncompressed_surf(&screen->isl_dev,
|
||
&res->surf, view,
|
||
&isl_surf, view, &offset_B,
|
||
&tile_x_el, &tile_y_el);
|
||
|
||
/* On Broadwell, HALIGN and VALIGN are specified in pixels and are
|
||
* hard-coded to align to exactly the block size of the compressed
|
||
* texture. This means that, when reinterpreted as a non-compressed
|
||
* texture, the tile offsets may be anything.
|
||
*
|
||
* We need them to be multiples of 4 to be usable in RENDER_SURFACE_STATE,
|
||
* so force the state tracker to take fallback paths if they're not.
|
||
*/
|
||
#if GFX_VER == 8
|
||
if (tile_x_el % 4 != 0 || tile_y_el % 4 != 0) {
|
||
ok = false;
|
||
}
|
||
#endif
|
||
|
||
if (!ok) {
|
||
free(surf);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
surf->clear_color = res->aux.clear_color;
|
||
|
||
struct pipe_surface *psurf = &surf->base;
|
||
pipe_reference_init(&psurf->reference, 1);
|
||
pipe_resource_reference(&psurf->texture, tex);
|
||
psurf->context = ctx;
|
||
psurf->format = tmpl->format;
|
||
psurf->texture = tex;
|
||
psurf->first_layer = tmpl->first_layer;
|
||
psurf->last_layer = tmpl->last_layer;
|
||
psurf->level = tmpl->level;
|
||
|
||
/* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
|
||
if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
|
||
ISL_SURF_USAGE_STENCIL_BIT))
|
||
return psurf;
|
||
|
||
/* Fill out a SURFACE_STATE for each possible auxiliary surface mode and
|
||
* return the pipe_surface.
|
||
*/
|
||
unsigned aux_usages = 0;
|
||
|
||
if ((res->aux.usage == ISL_AUX_USAGE_CCS_E ||
|
||
res->aux.usage == ISL_AUX_USAGE_FCV_CCS_E) &&
|
||
!isl_format_supports_ccs_e(devinfo, view->format)) {
|
||
aux_usages = 1 << ISL_AUX_USAGE_NONE;
|
||
} else {
|
||
aux_usages = 1 << ISL_AUX_USAGE_NONE |
|
||
1 << res->aux.usage;
|
||
}
|
||
|
||
alloc_surface_states(&surf->surface_state, aux_usages);
|
||
surf->surface_state.bo_address = res->bo->address;
|
||
fill_surface_states(&screen->isl_dev, &surf->surface_state, res,
|
||
&isl_surf, view, offset_B, tile_x_el, tile_y_el);
|
||
|
||
#if GFX_VER == 8
|
||
alloc_surface_states(&surf->surface_state_read, aux_usages);
|
||
surf->surface_state_read.bo_address = res->bo->address;
|
||
fill_surface_states(&screen->isl_dev, &surf->surface_state_read, res,
|
||
&read_surf, read_view, read_surf_offset_B,
|
||
read_surf_tile_x_sa, read_surf_tile_y_sa);
|
||
#endif
|
||
|
||
return psurf;
|
||
}
|
||
|
||
#if GFX_VER < 9
|
||
static void
|
||
fill_default_image_param(struct isl_image_param *param)
|
||
{
|
||
memset(param, 0, sizeof(*param));
|
||
/* Set the swizzling shifts to all-ones to effectively disable swizzling --
|
||
* See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
|
||
* detailed explanation of these parameters.
|
||
*/
|
||
param->swizzling[0] = 0xff;
|
||
param->swizzling[1] = 0xff;
|
||
}
|
||
|
||
static void
|
||
fill_buffer_image_param(struct isl_image_param *param,
|
||
enum pipe_format pfmt,
|
||
unsigned size)
|
||
{
|
||
const unsigned cpp = util_format_get_blocksize(pfmt);
|
||
|
||
fill_default_image_param(param);
|
||
param->size[0] = size / cpp;
|
||
param->stride[0] = cpp;
|
||
}
|
||
#else
|
||
#define isl_surf_fill_image_param(x, ...)
|
||
#define fill_default_image_param(x, ...)
|
||
#define fill_buffer_image_param(x, ...)
|
||
#endif
|
||
|
||
/**
|
||
* The pipe->set_shader_images() driver hook.
|
||
*/
|
||
static void
|
||
iris_set_shader_images(struct pipe_context *ctx,
|
||
mesa_shader_stage stage,
|
||
unsigned start_slot, unsigned count,
|
||
unsigned unbind_num_trailing_slots,
|
||
const struct pipe_image_view *p_images)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
|
||
struct iris_shader_state *shs = &ice->state.shaders[stage];
|
||
#if GFX_VER == 8
|
||
struct iris_genx_state *genx = ice->state.genx;
|
||
struct isl_image_param *image_params = genx->shaders[stage].image_param;
|
||
#endif
|
||
|
||
shs->bound_image_views &=
|
||
~u_bit_consecutive64(start_slot, count + unbind_num_trailing_slots);
|
||
|
||
for (unsigned i = 0; i < count; i++) {
|
||
struct iris_image_view *iv = &shs->image[start_slot + i];
|
||
|
||
if (p_images && p_images[i].resource) {
|
||
const struct pipe_image_view *img = &p_images[i];
|
||
struct iris_resource *res = (void *) img->resource;
|
||
|
||
util_copy_image_view(&iv->base, img);
|
||
|
||
shs->bound_image_views |= BITFIELD64_BIT(start_slot + i);
|
||
|
||
res->bind_history |= PIPE_BIND_SHADER_IMAGE;
|
||
res->bind_stages |= 1 << stage;
|
||
|
||
enum isl_format isl_fmt = iris_image_view_get_format(ice, img);
|
||
|
||
unsigned aux_usages = 1 << ISL_AUX_USAGE_NONE;
|
||
|
||
/* Gfx12+ supports render compression for images */
|
||
if (GFX_VER >= 12 && isl_aux_usage_has_ccs_e(res->aux.usage))
|
||
aux_usages |= 1 << ISL_AUX_USAGE_CCS_E;
|
||
|
||
alloc_surface_states(&iv->surface_state, aux_usages);
|
||
iv->surface_state.bo_address = res->bo->address;
|
||
|
||
if (res->base.b.target != PIPE_BUFFER) {
|
||
struct isl_view view = {
|
||
.format = isl_fmt,
|
||
.base_level = img->u.tex.level,
|
||
.levels = 1,
|
||
.base_array_layer = img->u.tex.first_layer,
|
||
.array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
|
||
.swizzle = ISL_SWIZZLE_IDENTITY,
|
||
.usage = ISL_SURF_USAGE_STORAGE_BIT,
|
||
};
|
||
|
||
/* If using untyped fallback. */
|
||
if (isl_fmt == ISL_FORMAT_RAW) {
|
||
fill_buffer_surface_state(&screen->isl_dev, res,
|
||
iv->surface_state.cpu,
|
||
isl_fmt, ISL_SWIZZLE_IDENTITY,
|
||
0, res->bo->size,
|
||
ISL_SURF_USAGE_STORAGE_BIT);
|
||
} else {
|
||
fill_surface_states(&screen->isl_dev, &iv->surface_state, res,
|
||
&res->surf, &view, 0, 0, 0);
|
||
}
|
||
|
||
isl_surf_fill_image_param(&screen->isl_dev,
|
||
&image_params[start_slot + i],
|
||
&res->surf, &view);
|
||
} else if (img->access & PIPE_IMAGE_ACCESS_TEX2D_FROM_BUFFER) {
|
||
/* In case it's a 2d image created from a buffer, we should
|
||
* use fill_surface_states function with image parameters provided
|
||
* by the CL application
|
||
*/
|
||
isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
|
||
struct isl_view view = {
|
||
.format = isl_fmt,
|
||
.base_level = 0,
|
||
.levels = 1,
|
||
.base_array_layer = 0,
|
||
.array_len = 1,
|
||
.swizzle = ISL_SWIZZLE_IDENTITY,
|
||
.usage = usage,
|
||
};
|
||
|
||
/* Create temp_surf and fill with values provided by CL application */
|
||
struct isl_surf temp_surf;
|
||
enum isl_format fmt = iris_image_view_get_format(ice, img);
|
||
fill_surf_for_tex2d_from_buffer(&screen->isl_dev, fmt,
|
||
img->u.tex2d_from_buf.width,
|
||
img->u.tex2d_from_buf.height,
|
||
img->u.tex2d_from_buf.row_stride,
|
||
usage,
|
||
&temp_surf);
|
||
|
||
fill_surface_states(&screen->isl_dev, &iv->surface_state, res,
|
||
&temp_surf, &view, 0, 0, 0);
|
||
isl_surf_fill_image_param(&screen->isl_dev,
|
||
&image_params[start_slot + i],
|
||
&temp_surf, &view);
|
||
} else {
|
||
util_range_add(&res->base.b, &res->valid_buffer_range, img->u.buf.offset,
|
||
img->u.buf.offset + img->u.buf.size);
|
||
|
||
fill_buffer_surface_state(&screen->isl_dev, res,
|
||
iv->surface_state.cpu,
|
||
isl_fmt, ISL_SWIZZLE_IDENTITY,
|
||
img->u.buf.offset, img->u.buf.size,
|
||
ISL_SURF_USAGE_STORAGE_BIT);
|
||
fill_buffer_image_param(&image_params[start_slot + i],
|
||
img->format, img->u.buf.size);
|
||
}
|
||
|
||
upload_surface_states(ice->state.surface_uploader, &iv->surface_state);
|
||
} else {
|
||
pipe_resource_reference(&iv->base.resource, NULL);
|
||
pipe_resource_reference(&iv->surface_state.ref.res, NULL);
|
||
fill_default_image_param(&image_params[start_slot + i]);
|
||
}
|
||
}
|
||
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
|
||
ice->state.dirty |=
|
||
stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
|
||
: IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
|
||
|
||
/* Broadwell also needs isl_image_params re-uploaded */
|
||
if (GFX_VER < 9) {
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
|
||
shs->sysvals_need_upload = true;
|
||
}
|
||
|
||
if (unbind_num_trailing_slots) {
|
||
iris_set_shader_images(ctx, stage, start_slot + count,
|
||
unbind_num_trailing_slots, 0, NULL);
|
||
}
|
||
}
|
||
|
||
UNUSED static bool
|
||
is_sampler_view_3d(const struct iris_sampler_view *view)
|
||
{
|
||
return view && view->res->base.b.target == PIPE_TEXTURE_3D;
|
||
}
|
||
|
||
/**
|
||
* The pipe->set_sampler_views() driver hook.
|
||
*/
|
||
static void
|
||
iris_set_sampler_views(struct pipe_context *ctx,
|
||
mesa_shader_stage stage,
|
||
unsigned start, unsigned count,
|
||
unsigned unbind_num_trailing_slots,
|
||
struct pipe_sampler_view **views)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
UNUSED struct iris_screen *screen = (void *) ctx->screen;
|
||
UNUSED const struct intel_device_info *devinfo = screen->devinfo;
|
||
struct iris_shader_state *shs = &ice->state.shaders[stage];
|
||
unsigned i;
|
||
|
||
if (count == 0 && unbind_num_trailing_slots == 0)
|
||
return;
|
||
|
||
BITSET_CLEAR_RANGE(shs->bound_sampler_views, start,
|
||
start + count + unbind_num_trailing_slots - 1);
|
||
|
||
for (i = 0; i < count; i++) {
|
||
struct pipe_sampler_view *pview = views ? views[i] : NULL;
|
||
struct iris_sampler_view *view = (void *) pview;
|
||
|
||
#if GFX_VERx10 == 125
|
||
if (intel_needs_workaround(screen->devinfo, 14014414195)) {
|
||
if (is_sampler_view_3d(shs->textures[start + i]) !=
|
||
is_sampler_view_3d(view))
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage;
|
||
}
|
||
#endif
|
||
|
||
pipe_sampler_view_reference((struct pipe_sampler_view **)
|
||
&shs->textures[start + i], pview);
|
||
if (view) {
|
||
view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
|
||
view->res->bind_stages |= 1 << stage;
|
||
|
||
BITSET_SET(shs->bound_sampler_views, start + i);
|
||
|
||
update_surface_state_addrs(ice->state.surface_uploader,
|
||
&view->surface_state, view->res->bo);
|
||
}
|
||
}
|
||
for (; i < count + unbind_num_trailing_slots; i++) {
|
||
pipe_sampler_view_reference((struct pipe_sampler_view **)
|
||
&shs->textures[start + i], NULL);
|
||
}
|
||
|
||
ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_BINDINGS_VS << stage);
|
||
ice->state.dirty |=
|
||
stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
|
||
: IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
|
||
}
|
||
|
||
static void
|
||
iris_set_global_binding(struct pipe_context *ctx,
|
||
unsigned start_slot, unsigned count,
|
||
struct pipe_resource **resources,
|
||
uint32_t **handles)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
|
||
assert(start_slot + count <= IRIS_MAX_GLOBAL_BINDINGS);
|
||
for (unsigned i = 0; i < count; i++) {
|
||
if (resources && resources[i]) {
|
||
pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
|
||
resources[i]);
|
||
|
||
struct iris_resource *res = (void *) resources[i];
|
||
assert(res->base.b.target == PIPE_BUFFER);
|
||
util_range_add(&res->base.b, &res->valid_buffer_range,
|
||
0, res->base.b.width0);
|
||
|
||
uint64_t addr = 0;
|
||
memcpy(&addr, handles[i], sizeof(addr));
|
||
addr += res->bo->address + res->offset;
|
||
memcpy(handles[i], &addr, sizeof(addr));
|
||
} else {
|
||
pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
|
||
NULL);
|
||
}
|
||
}
|
||
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_CS;
|
||
}
|
||
|
||
/**
|
||
* The pipe->set_tess_state() driver hook.
|
||
*/
|
||
static void
|
||
iris_set_tess_state(struct pipe_context *ctx,
|
||
const float default_outer_level[4],
|
||
const float default_inner_level[2])
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
|
||
|
||
memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
|
||
memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
|
||
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_TCS;
|
||
shs->sysvals_need_upload = true;
|
||
}
|
||
|
||
static void
|
||
iris_set_patch_vertices(struct pipe_context *ctx, uint8_t patch_vertices)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
|
||
ice->state.patch_vertices = patch_vertices;
|
||
}
|
||
|
||
static void
|
||
iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
|
||
{
|
||
struct iris_surface *surf = (void *) p_surf;
|
||
pipe_resource_reference(&p_surf->texture, NULL);
|
||
pipe_resource_reference(&surf->surface_state.ref.res, NULL);
|
||
pipe_resource_reference(&surf->surface_state_read.ref.res, NULL);
|
||
free(surf->surface_state.cpu);
|
||
free(surf->surface_state_read.cpu);
|
||
free(surf);
|
||
}
|
||
|
||
static void
|
||
iris_set_clip_state(struct pipe_context *ctx,
|
||
const struct pipe_clip_state *state)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
|
||
struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
|
||
struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
|
||
|
||
memcpy(&ice->state.clip_planes, state, sizeof(*state));
|
||
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS |
|
||
IRIS_STAGE_DIRTY_CONSTANTS_GS |
|
||
IRIS_STAGE_DIRTY_CONSTANTS_TES;
|
||
shs->sysvals_need_upload = true;
|
||
gshs->sysvals_need_upload = true;
|
||
tshs->sysvals_need_upload = true;
|
||
}
|
||
|
||
/**
|
||
* The pipe->set_polygon_stipple() driver hook.
|
||
*/
|
||
static void
|
||
iris_set_polygon_stipple(struct pipe_context *ctx,
|
||
const struct pipe_poly_stipple *state)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
memcpy(&ice->state.poly_stipple, state, sizeof(*state));
|
||
ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
|
||
}
|
||
|
||
/**
|
||
* The pipe->set_sample_mask() driver hook.
|
||
*/
|
||
static void
|
||
iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
|
||
/* We only support 16x MSAA, so we have 16 bits of sample maks.
|
||
* st/mesa may pass us 0xffffffff though, meaning "enable all samples".
|
||
*/
|
||
ice->state.sample_mask = sample_mask & 0xffff;
|
||
ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
|
||
}
|
||
|
||
/**
|
||
* The pipe->set_scissor_states() driver hook.
|
||
*
|
||
* This corresponds to our SCISSOR_RECT state structures. It's an
|
||
* exact match, so we just store them, and memcpy them out later.
|
||
*/
|
||
static void
|
||
iris_set_scissor_states(struct pipe_context *ctx,
|
||
unsigned start_slot,
|
||
unsigned num_scissors,
|
||
const struct pipe_scissor_state *rects)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
|
||
for (unsigned i = 0; i < num_scissors; i++) {
|
||
if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
|
||
/* If the scissor was out of bounds and got clamped to 0 width/height
|
||
* at the bounds, the subtraction of 1 from maximums could produce a
|
||
* negative number and thus not clip anything. Instead, just provide
|
||
* a min > max scissor inside the bounds, which produces the expected
|
||
* no rendering.
|
||
*/
|
||
ice->state.scissors[start_slot + i] = (struct iris_scissor_state) {
|
||
.minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
|
||
};
|
||
} else {
|
||
ice->state.scissors[start_slot + i] = (struct iris_scissor_state) {
|
||
.minx = rects[i].minx, .miny = rects[i].miny,
|
||
.maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
|
||
};
|
||
}
|
||
}
|
||
|
||
ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
|
||
}
|
||
|
||
/**
|
||
* The pipe->set_stencil_ref() driver hook.
|
||
*
|
||
* This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
|
||
*/
|
||
static void
|
||
iris_set_stencil_ref(struct pipe_context *ctx,
|
||
const struct pipe_stencil_ref state)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
memcpy(&ice->state.stencil_ref, &state, sizeof(state));
|
||
if (GFX_VER >= 12)
|
||
ice->state.dirty |= IRIS_DIRTY_STENCIL_REF;
|
||
else if (GFX_VER >= 9)
|
||
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
|
||
else
|
||
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
|
||
}
|
||
|
||
static float
|
||
viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
|
||
{
|
||
return copysignf(state->scale[axis], sign) + state->translate[axis];
|
||
}
|
||
|
||
/**
|
||
* The pipe->set_viewport_states() driver hook.
|
||
*
|
||
* This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
|
||
* the guardband yet, as we need the framebuffer dimensions, but we can
|
||
* at least fill out the rest.
|
||
*/
|
||
static void
|
||
iris_set_viewport_states(struct pipe_context *ctx,
|
||
unsigned start_slot,
|
||
unsigned count,
|
||
const struct pipe_viewport_state *states)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
|
||
|
||
memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
|
||
|
||
/* Fix depth test misrenderings by lowering translated depth range */
|
||
if (screen->driconf.lower_depth_range_rate != 1.0f)
|
||
ice->state.viewports[start_slot].translate[2] *=
|
||
screen->driconf.lower_depth_range_rate;
|
||
|
||
ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
|
||
|
||
if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
|
||
!ice->state.cso_rast->depth_clip_far))
|
||
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
|
||
}
|
||
|
||
/**
|
||
* The pipe->set_framebuffer_state() driver hook.
|
||
*
|
||
* Sets the current draw FBO, including color render targets, depth,
|
||
* and stencil buffers.
|
||
*/
|
||
static void
|
||
iris_set_framebuffer_state(struct pipe_context *ctx,
|
||
const struct pipe_framebuffer_state *state)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
|
||
const struct intel_device_info *devinfo = screen->devinfo;
|
||
struct isl_device *isl_dev = &screen->isl_dev;
|
||
struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
|
||
struct iris_resource *zres;
|
||
struct iris_resource *stencil_res;
|
||
struct iris_resource *new_res = NULL;
|
||
struct pipe_box new_render_area;
|
||
|
||
unsigned samples = util_framebuffer_get_num_samples(state);
|
||
unsigned layers = util_framebuffer_get_num_layers(state);
|
||
|
||
/* multiview not supported */
|
||
assert(!state->viewmask);
|
||
|
||
if (cso->samples != samples) {
|
||
ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
|
||
|
||
/* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
|
||
if (GFX_VER >= 9 && GFX_VER < 30 &&
|
||
(cso->samples == 16 || samples == 16))
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
|
||
|
||
/* We may need to emit blend state for Wa_14018912822. */
|
||
if ((cso->samples > 1) != (samples > 1) &&
|
||
intel_needs_workaround(devinfo, 14018912822)) {
|
||
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
|
||
ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
|
||
}
|
||
}
|
||
|
||
if (cso->nr_cbufs != state->nr_cbufs) {
|
||
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
|
||
}
|
||
|
||
if ((cso->layers == 0) != (layers == 0)) {
|
||
ice->state.dirty |= IRIS_DIRTY_CLIP;
|
||
}
|
||
|
||
if (state->nr_cbufs > 0)
|
||
new_res = (struct iris_resource *)state->cbufs[0].texture;
|
||
|
||
if (new_res && new_res->use_damage) {
|
||
new_render_area = new_res->damage;
|
||
} else {
|
||
new_render_area.x = 0;
|
||
new_render_area.y = 0;
|
||
new_render_area.z = 0;
|
||
new_render_area.width = state->width;
|
||
new_render_area.height = state->height;
|
||
new_render_area.depth = 0;
|
||
}
|
||
|
||
if (memcmp(&ice->state.render_area, &new_render_area, sizeof(new_render_area))) {
|
||
ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
|
||
ice->state.render_area = new_render_area;
|
||
}
|
||
|
||
if (cso->zsbuf.texture || state->zsbuf.texture) {
|
||
ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
|
||
}
|
||
|
||
bool has_integer_rt = false;
|
||
for (unsigned i = 0; i < state->nr_cbufs; i++) {
|
||
if (state->cbufs[i].texture) {
|
||
enum isl_format ifmt =
|
||
isl_format_for_pipe_format(state->cbufs[i].format);
|
||
has_integer_rt |= isl_format_has_int_channel(ifmt);
|
||
}
|
||
}
|
||
|
||
/* 3DSTATE_RASTER::AntialiasingEnable */
|
||
if (has_integer_rt != ice->state.has_integer_rt ||
|
||
cso->samples != samples) {
|
||
ice->state.dirty |= IRIS_DIRTY_RASTER;
|
||
}
|
||
|
||
util_framebuffer_init(ctx, state, ice->state.fb_cbufs, &ice->state.fb_zsbuf);
|
||
util_copy_framebuffer_state(cso, state);
|
||
cso->samples = samples;
|
||
cso->layers = layers;
|
||
|
||
ice->state.has_integer_rt = has_integer_rt;
|
||
|
||
struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
|
||
|
||
struct isl_view view = {
|
||
.base_level = 0,
|
||
.levels = 1,
|
||
.base_array_layer = 0,
|
||
.array_len = 1,
|
||
.swizzle = ISL_SWIZZLE_IDENTITY,
|
||
};
|
||
|
||
struct isl_depth_stencil_hiz_emit_info info = {
|
||
.view = &view,
|
||
.mocs = iris_mocs(NULL, isl_dev, ISL_SURF_USAGE_DEPTH_BIT),
|
||
};
|
||
|
||
if (cso->zsbuf.texture) {
|
||
iris_get_depth_stencil_resources(cso->zsbuf.texture, &zres,
|
||
&stencil_res);
|
||
|
||
view.base_level = cso->zsbuf.level;
|
||
view.base_array_layer = cso->zsbuf.first_layer;
|
||
view.array_len =
|
||
cso->zsbuf.last_layer - cso->zsbuf.first_layer + 1;
|
||
|
||
if (zres) {
|
||
view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
|
||
|
||
info.depth_surf = &zres->surf;
|
||
info.depth_address = zres->bo->address + zres->offset;
|
||
info.mocs = iris_mocs(zres->bo, isl_dev, view.usage);
|
||
|
||
view.format = zres->surf.format;
|
||
|
||
if (zres->aux.usage != ISL_AUX_USAGE_NONE) {
|
||
info.hiz_usage = zres->aux.usage;
|
||
info.hiz_surf = &zres->aux.surf;
|
||
info.hiz_address = zres->aux.bo->address + zres->aux.offset;
|
||
}
|
||
|
||
ice->state.hiz_usage = info.hiz_usage;
|
||
}
|
||
|
||
if (stencil_res) {
|
||
view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
|
||
info.stencil_aux_usage = stencil_res->aux.usage;
|
||
info.stencil_surf = &stencil_res->surf;
|
||
info.stencil_address = stencil_res->bo->address + stencil_res->offset;
|
||
if (!zres) {
|
||
view.format = stencil_res->surf.format;
|
||
info.mocs = iris_mocs(stencil_res->bo, isl_dev, view.usage);
|
||
}
|
||
}
|
||
}
|
||
|
||
isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
|
||
|
||
/* Make a null surface for unbound buffers */
|
||
void *null_surf_map =
|
||
upload_state(ice->state.surface_uploader, &ice->state.null_fb,
|
||
4 * GENX(RENDER_SURFACE_STATE_length), 64);
|
||
isl_null_fill_state(&screen->isl_dev, null_surf_map,
|
||
.size = isl_extent3d(MAX2(cso->width, 1),
|
||
MAX2(cso->height, 1),
|
||
cso->layers ? cso->layers : 1));
|
||
ice->state.null_fb.offset +=
|
||
iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
|
||
|
||
/* Render target change */
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_FS;
|
||
|
||
ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER;
|
||
|
||
ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
|
||
|
||
ice->state.stage_dirty |=
|
||
ice->state.stage_dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
|
||
|
||
if (GFX_VER == 8)
|
||
ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
|
||
}
|
||
|
||
/**
|
||
* The pipe->set_constant_buffer() driver hook.
|
||
*
|
||
* This uploads any constant data in user buffers, and references
|
||
* any UBO resources containing constant data.
|
||
*/
|
||
static void
|
||
iris_set_constant_buffer(struct pipe_context *ctx,
|
||
mesa_shader_stage stage, unsigned index,
|
||
const struct pipe_constant_buffer *input)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
struct iris_shader_state *shs = &ice->state.shaders[stage];
|
||
struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
|
||
|
||
/* TODO: Only do this if the buffer changes? */
|
||
pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
|
||
|
||
if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
|
||
shs->bound_cbufs |= 1u << index;
|
||
|
||
if (input->user_buffer) {
|
||
void *map = NULL;
|
||
pipe_resource_reference(&cbuf->buffer, NULL);
|
||
u_upload_alloc_ref(ice->ctx.const_uploader, 0, input->buffer_size, 64,
|
||
&cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
|
||
|
||
if (!cbuf->buffer) {
|
||
/* Allocation was unsuccessful - just unbind */
|
||
iris_set_constant_buffer(ctx, stage, index, NULL);
|
||
return;
|
||
}
|
||
|
||
assert(map);
|
||
memcpy(map, input->user_buffer, input->buffer_size);
|
||
} else if (input->buffer) {
|
||
if (cbuf->buffer != input->buffer) {
|
||
ice->state.dirty |= (IRIS_DIRTY_RENDER_MISC_BUFFER_FLUSHES |
|
||
IRIS_DIRTY_COMPUTE_MISC_BUFFER_FLUSHES);
|
||
shs->dirty_cbufs |= 1u << index;
|
||
}
|
||
|
||
pipe_resource_reference(&cbuf->buffer, input->buffer);
|
||
|
||
cbuf->buffer_offset = input->buffer_offset;
|
||
}
|
||
|
||
cbuf->buffer_size =
|
||
MIN2(input->buffer_size,
|
||
iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
|
||
|
||
struct iris_resource *res = (void *) cbuf->buffer;
|
||
res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
|
||
res->bind_stages |= 1 << stage;
|
||
} else {
|
||
shs->bound_cbufs &= ~(1u << index);
|
||
pipe_resource_reference(&cbuf->buffer, NULL);
|
||
}
|
||
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
|
||
}
|
||
|
||
static void
|
||
upload_sysvals(struct iris_context *ice,
|
||
mesa_shader_stage stage,
|
||
const struct pipe_grid_info *grid)
|
||
{
|
||
UNUSED struct iris_genx_state *genx = ice->state.genx;
|
||
struct iris_shader_state *shs = &ice->state.shaders[stage];
|
||
|
||
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
|
||
if (!shader || shader->num_system_values == 0)
|
||
return;
|
||
|
||
assert(shader->num_cbufs > 0);
|
||
|
||
unsigned sysval_cbuf_index = shader->num_cbufs - 1;
|
||
struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
|
||
unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
|
||
void *map = NULL;
|
||
|
||
assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
|
||
u_upload_alloc_ref(ice->ctx.const_uploader, 0, upload_size, 64,
|
||
&cbuf->buffer_offset, &cbuf->buffer, &map);
|
||
|
||
uint32_t *sysval_map = map;
|
||
for (int i = 0; i < shader->num_system_values; i++) {
|
||
uint32_t sysval = shader->system_values[i];
|
||
uint32_t value = 0;
|
||
|
||
#if GFX_VER >= 9
|
||
#define COMPILER(x) BRW_##x
|
||
#else
|
||
#define COMPILER(x) ELK_##x
|
||
#endif
|
||
|
||
if (ELK_PARAM_DOMAIN(sysval) == ELK_PARAM_DOMAIN_IMAGE) {
|
||
#if GFX_VER == 8
|
||
unsigned img = ELK_PARAM_IMAGE_IDX(sysval);
|
||
unsigned offset = ELK_PARAM_IMAGE_OFFSET(sysval);
|
||
struct isl_image_param *param =
|
||
&genx->shaders[stage].image_param[img];
|
||
|
||
assert(offset < sizeof(struct isl_image_param));
|
||
value = ((uint32_t *) param)[offset];
|
||
#endif
|
||
} else if (sysval == COMPILER(PARAM_BUILTIN_ZERO)) {
|
||
value = 0;
|
||
} else if (COMPILER(PARAM_BUILTIN_IS_CLIP_PLANE(sysval))) {
|
||
int plane = COMPILER(PARAM_BUILTIN_CLIP_PLANE_IDX(sysval));
|
||
int comp = COMPILER(PARAM_BUILTIN_CLIP_PLANE_COMP(sysval));
|
||
value = fui(ice->state.clip_planes.ucp[plane][comp]);
|
||
} else if (sysval == COMPILER(PARAM_BUILTIN_PATCH_VERTICES_IN)) {
|
||
if (stage == MESA_SHADER_TESS_CTRL) {
|
||
value = ice->state.vertices_per_patch;
|
||
} else {
|
||
assert(stage == MESA_SHADER_TESS_EVAL);
|
||
const struct shader_info *tcs_info =
|
||
iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
|
||
if (tcs_info)
|
||
value = tcs_info->tess.tcs_vertices_out;
|
||
else
|
||
value = ice->state.vertices_per_patch;
|
||
}
|
||
} else if (sysval >= COMPILER(PARAM_BUILTIN_TESS_LEVEL_OUTER_X) &&
|
||
sysval <= COMPILER(PARAM_BUILTIN_TESS_LEVEL_OUTER_W)) {
|
||
unsigned i = sysval - COMPILER(PARAM_BUILTIN_TESS_LEVEL_OUTER_X);
|
||
value = fui(ice->state.default_outer_level[i]);
|
||
} else if (sysval == COMPILER(PARAM_BUILTIN_TESS_LEVEL_INNER_X)) {
|
||
value = fui(ice->state.default_inner_level[0]);
|
||
} else if (sysval == COMPILER(PARAM_BUILTIN_TESS_LEVEL_INNER_Y)) {
|
||
value = fui(ice->state.default_inner_level[1]);
|
||
} else if (sysval >= COMPILER(PARAM_BUILTIN_WORK_GROUP_SIZE_X) &&
|
||
sysval <= COMPILER(PARAM_BUILTIN_WORK_GROUP_SIZE_Z)) {
|
||
unsigned i = sysval - COMPILER(PARAM_BUILTIN_WORK_GROUP_SIZE_X);
|
||
value = ice->state.last_block[i];
|
||
} else if (sysval == COMPILER(PARAM_BUILTIN_WORK_DIM)) {
|
||
value = grid->work_dim;
|
||
} else {
|
||
assert(!"unhandled system value");
|
||
}
|
||
|
||
*sysval_map++ = value;
|
||
}
|
||
|
||
cbuf->buffer_size = upload_size;
|
||
iris_upload_ubo_ssbo_surf_state(ice, cbuf,
|
||
&shs->constbuf_surf_state[sysval_cbuf_index],
|
||
ISL_SURF_USAGE_CONSTANT_BUFFER_BIT);
|
||
|
||
shs->sysvals_need_upload = false;
|
||
}
|
||
|
||
/**
|
||
* The pipe->set_shader_buffers() driver hook.
|
||
*
|
||
* This binds SSBOs and ABOs. Unfortunately, we need to stream out
|
||
* SURFACE_STATE here, as the buffer offset may change each time.
|
||
*/
|
||
static void
|
||
iris_set_shader_buffers(struct pipe_context *ctx,
|
||
mesa_shader_stage stage,
|
||
unsigned start_slot, unsigned count,
|
||
const struct pipe_shader_buffer *buffers,
|
||
unsigned writable_bitmask)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
struct iris_shader_state *shs = &ice->state.shaders[stage];
|
||
|
||
unsigned modified_bits = u_bit_consecutive(start_slot, count);
|
||
|
||
shs->bound_ssbos &= ~modified_bits;
|
||
shs->writable_ssbos &= ~modified_bits;
|
||
shs->writable_ssbos |= writable_bitmask << start_slot;
|
||
|
||
for (unsigned i = 0; i < count; i++) {
|
||
if (buffers && buffers[i].buffer) {
|
||
struct iris_resource *res = (void *) buffers[i].buffer;
|
||
struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
|
||
struct iris_state_ref *surf_state =
|
||
&shs->ssbo_surf_state[start_slot + i];
|
||
pipe_resource_reference(&ssbo->buffer, &res->base.b);
|
||
ssbo->buffer_offset = buffers[i].buffer_offset;
|
||
ssbo->buffer_size =
|
||
MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
|
||
|
||
shs->bound_ssbos |= 1 << (start_slot + i);
|
||
|
||
isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
|
||
|
||
iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, usage);
|
||
|
||
res->bind_history |= PIPE_BIND_SHADER_BUFFER;
|
||
res->bind_stages |= 1 << stage;
|
||
|
||
util_range_add(&res->base.b, &res->valid_buffer_range, ssbo->buffer_offset,
|
||
ssbo->buffer_offset + ssbo->buffer_size);
|
||
} else {
|
||
pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
|
||
pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
|
||
NULL);
|
||
}
|
||
}
|
||
|
||
ice->state.dirty |= (IRIS_DIRTY_RENDER_MISC_BUFFER_FLUSHES |
|
||
IRIS_DIRTY_COMPUTE_MISC_BUFFER_FLUSHES);
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
|
||
}
|
||
|
||
static void
|
||
iris_delete_state(struct pipe_context *ctx, void *state)
|
||
{
|
||
free(state);
|
||
}
|
||
|
||
/**
|
||
* The pipe->set_vertex_buffers() driver hook.
|
||
*
|
||
* This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
|
||
*/
|
||
static void
|
||
iris_set_vertex_buffers(struct pipe_context *ctx,
|
||
unsigned count,
|
||
const struct pipe_vertex_buffer *buffers)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
|
||
struct iris_genx_state *genx = ice->state.genx;
|
||
|
||
unsigned last_count = util_last_bit64(ice->state.bound_vertex_buffers);
|
||
ice->state.bound_vertex_buffers = 0;
|
||
|
||
for (unsigned i = 0; i < count; i++) {
|
||
const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
|
||
struct iris_vertex_buffer_state *state =
|
||
&genx->vertex_buffers[i];
|
||
|
||
if (!buffer) {
|
||
pipe_resource_reference(&state->resource, NULL);
|
||
continue;
|
||
}
|
||
|
||
/* We may see user buffers that are NULL bindings. */
|
||
assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
|
||
|
||
if (buffer->buffer.resource &&
|
||
state->resource != buffer->buffer.resource)
|
||
ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFER_FLUSHES;
|
||
|
||
pipe_resource_reference(&state->resource, buffer->buffer.resource);
|
||
|
||
struct iris_resource *res = (void *) state->resource;
|
||
|
||
state->offset = (int) buffer->buffer_offset;
|
||
|
||
if (res) {
|
||
ice->state.bound_vertex_buffers |= 1ull << i;
|
||
res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
|
||
}
|
||
|
||
iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
|
||
vb.VertexBufferIndex = i;
|
||
vb.AddressModifyEnable = true;
|
||
/* vb.BufferPitch is merged in dynamically from VE state later */
|
||
if (res) {
|
||
vb.BufferSize = res->base.b.width0 - (int) buffer->buffer_offset;
|
||
vb.BufferStartingAddress =
|
||
ro_bo(NULL, res->bo->address + (int) buffer->buffer_offset);
|
||
vb.MOCS = iris_mocs(res->bo, &screen->isl_dev,
|
||
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
|
||
#if GFX_VER >= 12
|
||
vb.L3BypassDisable = true;
|
||
#endif
|
||
} else {
|
||
vb.NullVertexBuffer = true;
|
||
vb.MOCS = iris_mocs(NULL, &screen->isl_dev,
|
||
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
|
||
}
|
||
}
|
||
}
|
||
|
||
for (unsigned i = count; i < last_count; i++) {
|
||
struct iris_vertex_buffer_state *state =
|
||
&genx->vertex_buffers[i];
|
||
|
||
pipe_resource_reference(&state->resource, NULL);
|
||
}
|
||
|
||
ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
|
||
}
|
||
|
||
/**
|
||
* Gallium CSO for vertex elements.
|
||
*/
|
||
struct iris_vertex_element_state {
|
||
uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
|
||
uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
|
||
uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
|
||
uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
|
||
uint32_t stride[PIPE_MAX_ATTRIBS];
|
||
unsigned vb_count;
|
||
unsigned count;
|
||
};
|
||
|
||
/**
|
||
* The pipe->create_vertex_elements_state() driver hook.
|
||
*
|
||
* This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
|
||
* and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
|
||
* arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
|
||
* needed. In these cases we will need information available at draw time.
|
||
* We setup edgeflag_ve and edgeflag_vfi as alternatives last
|
||
* 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
|
||
* draw time if we detect that EdgeFlag is needed by the Vertex Shader.
|
||
*/
|
||
static void *
|
||
iris_create_vertex_elements(struct pipe_context *ctx,
|
||
unsigned count,
|
||
const struct pipe_vertex_element *state)
|
||
{
|
||
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
|
||
const struct intel_device_info *devinfo = screen->devinfo;
|
||
struct iris_vertex_element_state *cso =
|
||
calloc(1, sizeof(struct iris_vertex_element_state));
|
||
|
||
cso->count = count;
|
||
cso->vb_count = 0;
|
||
|
||
iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
|
||
ve.DWordLength =
|
||
1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
|
||
}
|
||
|
||
uint32_t *ve_pack_dest = &cso->vertex_elements[1];
|
||
uint32_t *vfi_pack_dest = cso->vf_instancing;
|
||
|
||
if (count == 0) {
|
||
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
|
||
ve.Valid = true;
|
||
ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
|
||
ve.Component0Control = VFCOMP_STORE_0;
|
||
ve.Component1Control = VFCOMP_STORE_0;
|
||
ve.Component2Control = VFCOMP_STORE_0;
|
||
ve.Component3Control = VFCOMP_STORE_1_FP;
|
||
}
|
||
|
||
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < count; i++) {
|
||
const struct iris_format_info fmt =
|
||
iris_format_for_usage(devinfo, state[i].src_format, 0);
|
||
unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
|
||
VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
|
||
|
||
switch (isl_format_get_num_channels(fmt.fmt)) {
|
||
case 0: comp[0] = VFCOMP_STORE_0; FALLTHROUGH;
|
||
case 1: comp[1] = VFCOMP_STORE_0; FALLTHROUGH;
|
||
case 2: comp[2] = VFCOMP_STORE_0; FALLTHROUGH;
|
||
case 3:
|
||
comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
|
||
: VFCOMP_STORE_1_FP;
|
||
break;
|
||
}
|
||
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
|
||
ve.EdgeFlagEnable = false;
|
||
ve.VertexBufferIndex = state[i].vertex_buffer_index;
|
||
ve.Valid = true;
|
||
ve.SourceElementOffset = state[i].src_offset;
|
||
ve.SourceElementFormat = fmt.fmt;
|
||
ve.Component0Control = comp[0];
|
||
ve.Component1Control = comp[1];
|
||
ve.Component2Control = comp[2];
|
||
ve.Component3Control = comp[3];
|
||
}
|
||
|
||
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
|
||
vi.VertexElementIndex = i;
|
||
vi.InstancingEnable = state[i].instance_divisor > 0;
|
||
vi.InstanceDataStepRate = state[i].instance_divisor;
|
||
}
|
||
|
||
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
|
||
vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
|
||
cso->stride[state[i].vertex_buffer_index] = state[i].src_stride;
|
||
cso->vb_count = MAX2(state[i].vertex_buffer_index + 1, cso->vb_count);
|
||
}
|
||
|
||
/* An alternative version of the last VE and VFI is stored so it
|
||
* can be used at draw time in case Vertex Shader uses EdgeFlag
|
||
*/
|
||
if (count) {
|
||
const unsigned edgeflag_index = count - 1;
|
||
const struct iris_format_info fmt =
|
||
iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
|
||
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
|
||
ve.EdgeFlagEnable = true ;
|
||
ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
|
||
ve.Valid = true;
|
||
ve.SourceElementOffset = state[edgeflag_index].src_offset;
|
||
ve.SourceElementFormat = fmt.fmt;
|
||
ve.Component0Control = VFCOMP_STORE_SRC;
|
||
ve.Component1Control = VFCOMP_STORE_0;
|
||
ve.Component2Control = VFCOMP_STORE_0;
|
||
ve.Component3Control = VFCOMP_STORE_0;
|
||
}
|
||
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
|
||
/* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
|
||
* at draw time, as it should change if SGVs are emitted.
|
||
*/
|
||
vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
|
||
vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
|
||
}
|
||
}
|
||
|
||
return cso;
|
||
}
|
||
|
||
/**
|
||
* The pipe->bind_vertex_elements_state() driver hook.
|
||
*/
|
||
static void
|
||
iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
|
||
struct iris_vertex_element_state *new_cso = state;
|
||
|
||
/* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
|
||
* we need to re-emit it to ensure we're overriding the right one.
|
||
*/
|
||
if (new_cso && cso_changed(count))
|
||
ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
|
||
|
||
ice->state.cso_vertex_elements = state;
|
||
ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
|
||
if (new_cso) {
|
||
/* re-emit vertex buffer state if stride changes */
|
||
if (cso_changed(vb_count) ||
|
||
cso_changed_memcmp_elts(stride, new_cso->vb_count))
|
||
ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* The pipe->create_stream_output_target() driver hook.
|
||
*
|
||
* "Target" here refers to a destination buffer. We translate this into
|
||
* a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
|
||
* know which buffer this represents, or whether we ought to zero the
|
||
* write-offsets, or append. Those are handled in the set() hook.
|
||
*/
|
||
static struct pipe_stream_output_target *
|
||
iris_create_stream_output_target(struct pipe_context *ctx,
|
||
struct pipe_resource *p_res,
|
||
unsigned buffer_offset,
|
||
unsigned buffer_size)
|
||
{
|
||
struct iris_resource *res = (void *) p_res;
|
||
struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
|
||
if (!cso)
|
||
return NULL;
|
||
|
||
res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
|
||
|
||
pipe_reference_init(&cso->base.reference, 1);
|
||
pipe_resource_reference(&cso->base.buffer, p_res);
|
||
cso->base.buffer_offset = buffer_offset;
|
||
cso->base.buffer_size = buffer_size;
|
||
cso->base.context = ctx;
|
||
|
||
util_range_add(&res->base.b, &res->valid_buffer_range, buffer_offset,
|
||
buffer_offset + buffer_size);
|
||
|
||
return &cso->base;
|
||
}
|
||
|
||
static void
|
||
iris_stream_output_target_destroy(struct pipe_context *ctx,
|
||
struct pipe_stream_output_target *state)
|
||
{
|
||
struct iris_stream_output_target *cso = (void *) state;
|
||
|
||
pipe_resource_reference(&cso->base.buffer, NULL);
|
||
pipe_resource_reference(&cso->offset.res, NULL);
|
||
|
||
free(cso);
|
||
}
|
||
|
||
/**
|
||
* The pipe->set_stream_output_targets() driver hook.
|
||
*
|
||
* At this point, we know which targets are bound to a particular index,
|
||
* and also whether we want to append or start over. We can finish the
|
||
* 3DSTATE_SO_BUFFER packets we started earlier.
|
||
*/
|
||
static void
|
||
iris_set_stream_output_targets(struct pipe_context *ctx,
|
||
unsigned num_targets,
|
||
struct pipe_stream_output_target **targets,
|
||
const unsigned *offsets,
|
||
enum mesa_prim output_prim)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
struct iris_genx_state *genx = ice->state.genx;
|
||
uint32_t *so_buffers = genx->so_buffers;
|
||
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
|
||
|
||
const bool active = num_targets > 0;
|
||
if (ice->state.streamout_active != active) {
|
||
ice->state.streamout_active = active;
|
||
ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
|
||
|
||
/* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
|
||
* it's a non-pipelined command. If we're switching streamout on, we
|
||
* may have missed emitting it earlier, so do so now. (We're already
|
||
* taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
|
||
*/
|
||
if (active) {
|
||
ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
|
||
} else {
|
||
for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
|
||
struct iris_stream_output_target *tgt =
|
||
(void *) ice->state.so_target[i];
|
||
|
||
if (tgt)
|
||
iris_dirty_for_history(ice, (void *)tgt->base.buffer);
|
||
}
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < 4; i++) {
|
||
pipe_so_target_reference(&ice->state.so_target[i],
|
||
i < num_targets ? targets[i] : NULL);
|
||
}
|
||
|
||
/* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
|
||
if (!active)
|
||
return;
|
||
|
||
for (unsigned i = 0; i < 4; i++,
|
||
so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
|
||
|
||
struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
|
||
unsigned offset = offsets[i];
|
||
|
||
if (!tgt) {
|
||
iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
|
||
#if GFX_VER < 12
|
||
sob.SOBufferIndex = i;
|
||
#else
|
||
sob._3DCommandOpcode = 0;
|
||
sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
|
||
#endif
|
||
sob.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
|
||
}
|
||
continue;
|
||
}
|
||
|
||
if (!tgt->offset.res)
|
||
upload_state(ctx->const_uploader, &tgt->offset, sizeof(uint32_t), 4);
|
||
|
||
struct iris_resource *res = (void *) tgt->base.buffer;
|
||
|
||
/* Note that offsets[i] will either be 0, causing us to zero
|
||
* the value in the buffer, or 0xFFFFFFFF, which happens to mean
|
||
* "continue appending at the existing offset."
|
||
*/
|
||
assert(offset == 0 || offset == 0xFFFFFFFF);
|
||
|
||
/* When we're first called with an offset of 0, we want the next
|
||
* 3DSTATE_SO_BUFFER packets to reset the offset to the beginning.
|
||
* Any further times we emit those packets, we want to use 0xFFFFFFFF
|
||
* to continue appending from the current offset.
|
||
*
|
||
* Note that we might be called by Begin (offset = 0), Pause, then
|
||
* Resume (offset = 0xFFFFFFFF) before ever drawing (where these
|
||
* commands will actually be sent to the GPU). In this case, we
|
||
* don't want to append - we still want to do our initial zeroing.
|
||
*/
|
||
if (offset == 0)
|
||
tgt->zero_offset = true;
|
||
|
||
iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
|
||
#if GFX_VER < 12
|
||
sob.SOBufferIndex = i;
|
||
#else
|
||
sob._3DCommandOpcode = 0;
|
||
sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
|
||
#endif
|
||
sob.SurfaceBaseAddress =
|
||
rw_bo(NULL, res->bo->address + tgt->base.buffer_offset,
|
||
IRIS_DOMAIN_OTHER_WRITE);
|
||
sob.SOBufferEnable = true;
|
||
sob.StreamOffsetWriteEnable = true;
|
||
sob.StreamOutputBufferOffsetAddressEnable = true;
|
||
sob.MOCS = iris_mocs(res->bo, &screen->isl_dev,
|
||
ISL_SURF_USAGE_STREAM_OUT_BIT);
|
||
|
||
sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
|
||
sob.StreamOutputBufferOffsetAddress =
|
||
rw_bo(NULL, iris_resource_bo(tgt->offset.res)->address +
|
||
tgt->offset.offset, IRIS_DOMAIN_OTHER_WRITE);
|
||
sob.StreamOffset = 0xFFFFFFFF; /* not offset, see above */
|
||
}
|
||
}
|
||
|
||
ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
|
||
}
|
||
|
||
/**
|
||
* An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
|
||
* 3DSTATE_STREAMOUT packets.
|
||
*
|
||
* 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
|
||
* hardware to record. We can create it entirely based on the shader, with
|
||
* no dynamic state dependencies.
|
||
*
|
||
* 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
|
||
* state-based settings. We capture the shader-related ones here, and merge
|
||
* the rest in at draw time.
|
||
*/
|
||
static uint32_t *
|
||
iris_create_so_decl_list(const struct pipe_stream_output_info *info,
|
||
const struct intel_vue_map *vue_map)
|
||
{
|
||
struct GENX(SO_DECL) so_decl[PIPE_MAX_VERTEX_STREAMS][128];
|
||
int buffer_mask[PIPE_MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
|
||
int next_offset[PIPE_MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
|
||
int decls[PIPE_MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
|
||
int max_decls = 0;
|
||
STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= PIPE_MAX_SO_OUTPUTS);
|
||
|
||
memset(so_decl, 0, sizeof(so_decl));
|
||
|
||
/* Construct the list of SO_DECLs to be emitted. The formatting of the
|
||
* command feels strange -- each dword pair contains a SO_DECL per stream.
|
||
*/
|
||
for (unsigned i = 0; i < info->num_outputs; i++) {
|
||
const struct pipe_stream_output *output = &info->output[i];
|
||
const int buffer = output->output_buffer;
|
||
const int varying = output->register_index;
|
||
const unsigned stream_id = output->stream;
|
||
assert(stream_id < PIPE_MAX_VERTEX_STREAMS);
|
||
|
||
buffer_mask[stream_id] |= 1 << buffer;
|
||
|
||
assert(vue_map->varying_to_slot[varying] >= 0);
|
||
|
||
/* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
|
||
* array. Instead, it simply increments DstOffset for the following
|
||
* input by the number of components that should be skipped.
|
||
*
|
||
* Our hardware is unusual in that it requires us to program SO_DECLs
|
||
* for fake "hole" components, rather than simply taking the offset
|
||
* for each real varying. Each hole can have size 1, 2, 3, or 4; we
|
||
* program as many size = 4 holes as we can, then a final hole to
|
||
* accommodate the final 1, 2, or 3 remaining.
|
||
*/
|
||
int skip_components = output->dst_offset - next_offset[buffer];
|
||
|
||
while (skip_components > 0) {
|
||
so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
|
||
.HoleFlag = 1,
|
||
.OutputBufferSlot = output->output_buffer,
|
||
.ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
|
||
};
|
||
skip_components -= 4;
|
||
}
|
||
|
||
next_offset[buffer] = output->dst_offset + output->num_components;
|
||
|
||
so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
|
||
.OutputBufferSlot = output->output_buffer,
|
||
.RegisterIndex = vue_map->varying_to_slot[varying],
|
||
.ComponentMask =
|
||
((1 << output->num_components) - 1) << output->start_component,
|
||
};
|
||
|
||
if (decls[stream_id] > max_decls)
|
||
max_decls = decls[stream_id];
|
||
}
|
||
|
||
unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
|
||
uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
|
||
uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
|
||
|
||
iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
|
||
int urb_entry_read_offset = 0;
|
||
int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
|
||
urb_entry_read_offset;
|
||
|
||
/* We always read the whole vertex. This could be reduced at some
|
||
* point by reading less and offsetting the register index in the
|
||
* SO_DECLs.
|
||
*/
|
||
sol.Stream0VertexReadOffset = urb_entry_read_offset;
|
||
sol.Stream0VertexReadLength = urb_entry_read_length - 1;
|
||
sol.Stream1VertexReadOffset = urb_entry_read_offset;
|
||
sol.Stream1VertexReadLength = urb_entry_read_length - 1;
|
||
sol.Stream2VertexReadOffset = urb_entry_read_offset;
|
||
sol.Stream2VertexReadLength = urb_entry_read_length - 1;
|
||
sol.Stream3VertexReadOffset = urb_entry_read_offset;
|
||
sol.Stream3VertexReadLength = urb_entry_read_length - 1;
|
||
|
||
/* Set buffer pitches; 0 means unbound. */
|
||
sol.Buffer0SurfacePitch = 4 * info->stride[0];
|
||
sol.Buffer1SurfacePitch = 4 * info->stride[1];
|
||
sol.Buffer2SurfacePitch = 4 * info->stride[2];
|
||
sol.Buffer3SurfacePitch = 4 * info->stride[3];
|
||
}
|
||
|
||
iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
|
||
list.DWordLength = 3 + 2 * max_decls - 2;
|
||
list.StreamtoBufferSelects0 = buffer_mask[0];
|
||
list.StreamtoBufferSelects1 = buffer_mask[1];
|
||
list.StreamtoBufferSelects2 = buffer_mask[2];
|
||
list.StreamtoBufferSelects3 = buffer_mask[3];
|
||
list.NumEntries0 = decls[0];
|
||
list.NumEntries1 = decls[1];
|
||
list.NumEntries2 = decls[2];
|
||
list.NumEntries3 = decls[3];
|
||
}
|
||
|
||
for (int i = 0; i < max_decls; i++) {
|
||
iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
|
||
entry.Stream0Decl = so_decl[0][i];
|
||
entry.Stream1Decl = so_decl[1][i];
|
||
entry.Stream2Decl = so_decl[2][i];
|
||
entry.Stream3Decl = so_decl[3][i];
|
||
}
|
||
}
|
||
|
||
return map;
|
||
}
|
||
|
||
static inline int
|
||
iris_compute_first_urb_slot_required(struct iris_compiled_shader *fs_shader,
|
||
const struct intel_vue_map *prev_stage_vue_map)
|
||
{
|
||
#if GFX_VER >= 9
|
||
uint32_t read_offset, read_length, num_varyings, primid_offset, flat_inputs;
|
||
brw_compute_sbe_per_vertex_urb_read(prev_stage_vue_map,
|
||
false /* mesh*/,
|
||
false /* per_primitive_remapping */,
|
||
brw_wm_prog_data(fs_shader->brw_prog_data),
|
||
&read_offset, &read_length, &num_varyings,
|
||
&primid_offset, &flat_inputs);
|
||
return 2 * read_offset;
|
||
#else
|
||
const struct iris_fs_data *fs_data = iris_fs_data(fs_shader);
|
||
return elk_compute_first_urb_slot_required(fs_data->inputs, prev_stage_vue_map);
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
iris_compute_sbe_urb_read_interval(struct iris_compiled_shader *fs_shader,
|
||
const struct intel_vue_map *last_vue_map,
|
||
bool two_sided_color,
|
||
unsigned *out_offset,
|
||
unsigned *out_length)
|
||
{
|
||
const struct iris_fs_data *fs_data = iris_fs_data(fs_shader);
|
||
|
||
/* The compiler computes the first URB slot without considering COL/BFC
|
||
* swizzling (because it doesn't know whether it's enabled), so we need
|
||
* to do that here too. This may result in a smaller offset, which
|
||
* should be safe.
|
||
*/
|
||
const unsigned first_slot =
|
||
iris_compute_first_urb_slot_required(fs_shader, last_vue_map);
|
||
|
||
/* This becomes the URB read offset (counted in pairs of slots). */
|
||
assert(first_slot % 2 == 0);
|
||
*out_offset = first_slot / 2;
|
||
|
||
/* We need to adjust the inputs read to account for front/back color
|
||
* swizzling, as it can make the URB length longer.
|
||
*/
|
||
uint64_t fs_input_slots = fs_data->inputs;
|
||
for (int c = 0; c <= 1; c++) {
|
||
if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
|
||
/* If two sided color is enabled, the fragment shader's gl_Color
|
||
* (COL0) input comes from either the gl_FrontColor (COL0) or
|
||
* gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
|
||
*/
|
||
if (two_sided_color)
|
||
fs_input_slots |= (VARYING_BIT_BFC0 << c);
|
||
|
||
/* If front color isn't written, we opt to give them back color
|
||
* instead of an undefined value. Switch from COL to BFC.
|
||
*/
|
||
if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
|
||
fs_input_slots &= ~(VARYING_BIT_COL0 << c);
|
||
fs_input_slots |= (VARYING_BIT_BFC0 << c);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Compute the minimum URB Read Length necessary for the FS inputs.
|
||
*
|
||
* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
|
||
* 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
|
||
*
|
||
* "This field should be set to the minimum length required to read the
|
||
* maximum source attribute. The maximum source attribute is indicated
|
||
* by the maximum value of the enabled Attribute # Source Attribute if
|
||
* Attribute Swizzle Enable is set, Number of Output Attributes-1 if
|
||
* enable is not set.
|
||
* read_length = ceiling((max_source_attr + 1) / 2)
|
||
*
|
||
* [errata] Corruption/Hang possible if length programmed larger than
|
||
* recommended"
|
||
*
|
||
* Similar text exists for Ivy Bridge.
|
||
*
|
||
* We find the last URB slot that's actually read by the FS.
|
||
*/
|
||
unsigned last_read_slot = last_vue_map->num_slots - 1;
|
||
while (last_read_slot > first_slot && !(fs_input_slots &
|
||
(1ull << last_vue_map->slot_to_varying[last_read_slot])))
|
||
--last_read_slot;
|
||
|
||
/* The URB read length is the difference of the two, counted in pairs. */
|
||
*out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
|
||
}
|
||
|
||
static void
|
||
iris_emit_sbe_swiz(struct iris_batch *batch,
|
||
const struct iris_context *ice,
|
||
const struct intel_vue_map *vue_map,
|
||
unsigned urb_read_offset,
|
||
unsigned sprite_coord_enables)
|
||
{
|
||
struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
|
||
const struct iris_fs_data *fs_data =
|
||
iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
|
||
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
|
||
|
||
/* XXX: this should be generated when putting programs in place */
|
||
|
||
for (uint8_t idx = 0; idx < fs_data->urb_setup_attribs_count; idx++) {
|
||
const uint8_t fs_attr = fs_data->urb_setup_attribs[idx];
|
||
const int input_index = fs_data->urb_setup[fs_attr];
|
||
if (input_index < 0 || input_index >= 16)
|
||
continue;
|
||
|
||
struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
|
||
&attr_overrides[input_index];
|
||
int slot = vue_map->varying_to_slot[fs_attr];
|
||
|
||
/* Viewport and Layer are stored in the VUE header. We need to override
|
||
* them to zero if earlier stages didn't write them, as GL requires that
|
||
* they read back as zero when not explicitly set.
|
||
*/
|
||
switch (fs_attr) {
|
||
case VARYING_SLOT_VIEWPORT:
|
||
case VARYING_SLOT_LAYER:
|
||
attr->ComponentOverrideX = true;
|
||
attr->ComponentOverrideW = true;
|
||
attr->ConstantSource = CONST_0000;
|
||
|
||
if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
|
||
attr->ComponentOverrideY = true;
|
||
if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
|
||
attr->ComponentOverrideZ = true;
|
||
continue;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (sprite_coord_enables & (1 << input_index))
|
||
continue;
|
||
|
||
/* If there was only a back color written but not front, use back
|
||
* as the color instead of undefined.
|
||
*/
|
||
if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
|
||
slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
|
||
if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
|
||
slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
|
||
|
||
/* Not written by the previous stage - undefined. */
|
||
if (slot == -1) {
|
||
attr->ComponentOverrideX = true;
|
||
attr->ComponentOverrideY = true;
|
||
attr->ComponentOverrideZ = true;
|
||
attr->ComponentOverrideW = true;
|
||
attr->ConstantSource = CONST_0001_FLOAT;
|
||
continue;
|
||
}
|
||
|
||
/* Compute the location of the attribute relative to the read offset,
|
||
* which is counted in 256-bit increments (two 128-bit VUE slots).
|
||
*/
|
||
const int source_attr = slot - 2 * urb_read_offset;
|
||
assert(source_attr >= 0 && source_attr <= 32);
|
||
attr->SourceAttribute = source_attr;
|
||
|
||
/* If we are doing two-sided color, and the VUE slot following this one
|
||
* represents a back-facing color, then we need to instruct the SF unit
|
||
* to do back-facing swizzling.
|
||
*/
|
||
if (cso_rast->light_twoside &&
|
||
((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
|
||
vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
|
||
(vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
|
||
vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
|
||
attr->SwizzleSelect = INPUTATTR_FACING;
|
||
}
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
|
||
for (int i = 0; i < 16; i++)
|
||
sbes.Attribute[i] = attr_overrides[i];
|
||
}
|
||
}
|
||
|
||
static bool
|
||
iris_is_drawing_points(const struct iris_context *ice)
|
||
{
|
||
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
|
||
|
||
if (cso_rast->fill_mode_point) {
|
||
return true;
|
||
}
|
||
|
||
if (ice->shaders.prog[MESA_SHADER_GEOMETRY]) {
|
||
const struct iris_gs_data *gs_data =
|
||
iris_gs_data(ice->shaders.prog[MESA_SHADER_GEOMETRY]);
|
||
return gs_data->output_topology == _3DPRIM_POINTLIST;
|
||
} else if (ice->shaders.prog[MESA_SHADER_TESS_EVAL]) {
|
||
const struct iris_tes_data *tes_data =
|
||
iris_tes_data(ice->shaders.prog[MESA_SHADER_TESS_EVAL]);
|
||
return tes_data->output_topology == INTEL_TESS_OUTPUT_TOPOLOGY_POINT;
|
||
} else {
|
||
return ice->state.prim_mode == MESA_PRIM_POINTS;
|
||
}
|
||
}
|
||
|
||
static unsigned
|
||
iris_calculate_point_sprite_overrides(const struct iris_fs_data *fs_data,
|
||
const struct iris_rasterizer_state *cso)
|
||
{
|
||
unsigned overrides = 0;
|
||
|
||
if (fs_data->urb_setup[VARYING_SLOT_PNTC] != -1)
|
||
overrides |= 1 << fs_data->urb_setup[VARYING_SLOT_PNTC];
|
||
|
||
for (int i = 0; i < 8; i++) {
|
||
if ((cso->sprite_coord_enable & (1 << i)) &&
|
||
fs_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
|
||
overrides |= 1 << fs_data->urb_setup[VARYING_SLOT_TEX0 + i];
|
||
}
|
||
|
||
return overrides;
|
||
}
|
||
|
||
static void
|
||
iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
|
||
{
|
||
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
|
||
const struct iris_fs_data *fs_data =
|
||
iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
|
||
const struct intel_vue_map *last_vue_map =
|
||
&iris_vue_data(ice->shaders.last_vue_shader)->vue_map;
|
||
|
||
unsigned urb_read_offset, urb_read_length;
|
||
iris_compute_sbe_urb_read_interval(ice->shaders.prog[MESA_SHADER_FRAGMENT],
|
||
last_vue_map,
|
||
cso_rast->light_twoside,
|
||
&urb_read_offset, &urb_read_length);
|
||
|
||
unsigned sprite_coord_overrides =
|
||
iris_is_drawing_points(ice) ?
|
||
iris_calculate_point_sprite_overrides(fs_data, cso_rast) : 0;
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
|
||
sbe.AttributeSwizzleEnable = true;
|
||
sbe.NumberofSFOutputAttributes = fs_data->num_varying_inputs;
|
||
sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
|
||
sbe.VertexURBEntryReadOffset = urb_read_offset;
|
||
sbe.VertexURBEntryReadLength = urb_read_length;
|
||
sbe.ForceVertexURBEntryReadOffset = true;
|
||
sbe.ForceVertexURBEntryReadLength = true;
|
||
sbe.ConstantInterpolationEnable = fs_data->flat_inputs;
|
||
sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
|
||
#if GFX_VER >= 9
|
||
for (int i = 0; i < 32; i++) {
|
||
sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
|
||
}
|
||
#endif
|
||
|
||
/* Ask the hardware to supply PrimitiveID if the fragment shader
|
||
* reads it but a previous stage didn't write one.
|
||
*/
|
||
if ((fs_data->inputs & VARYING_BIT_PRIMITIVE_ID) &&
|
||
last_vue_map->varying_to_slot[VARYING_SLOT_PRIMITIVE_ID] == -1) {
|
||
sbe.PrimitiveIDOverrideAttributeSelect =
|
||
fs_data->urb_setup[VARYING_SLOT_PRIMITIVE_ID];
|
||
sbe.PrimitiveIDOverrideComponentX = true;
|
||
sbe.PrimitiveIDOverrideComponentY = true;
|
||
sbe.PrimitiveIDOverrideComponentZ = true;
|
||
sbe.PrimitiveIDOverrideComponentW = true;
|
||
}
|
||
}
|
||
|
||
iris_emit_sbe_swiz(batch, ice, last_vue_map, urb_read_offset,
|
||
sprite_coord_overrides);
|
||
}
|
||
|
||
/* ------------------------------------------------------------------- */
|
||
|
||
/**
|
||
* Populate VS program key fields based on the current state.
|
||
*/
|
||
static void
|
||
iris_populate_vs_key(const struct iris_context *ice,
|
||
const struct shader_info *info,
|
||
mesa_shader_stage last_stage,
|
||
struct iris_vs_prog_key *key)
|
||
{
|
||
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
|
||
|
||
if (info->clip_distance_array_size == 0 &&
|
||
(info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
|
||
last_stage == MESA_SHADER_VERTEX)
|
||
key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
|
||
}
|
||
|
||
/**
|
||
* Populate TCS program key fields based on the current state.
|
||
*/
|
||
static void
|
||
iris_populate_tcs_key(const struct iris_context *ice,
|
||
struct iris_tcs_prog_key *key)
|
||
{
|
||
}
|
||
|
||
/**
|
||
* Populate TES program key fields based on the current state.
|
||
*/
|
||
static void
|
||
iris_populate_tes_key(const struct iris_context *ice,
|
||
const struct shader_info *info,
|
||
mesa_shader_stage last_stage,
|
||
struct iris_tes_prog_key *key)
|
||
{
|
||
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
|
||
|
||
if (info->clip_distance_array_size == 0 &&
|
||
(info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
|
||
last_stage == MESA_SHADER_TESS_EVAL)
|
||
key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
|
||
}
|
||
|
||
/**
|
||
* Populate GS program key fields based on the current state.
|
||
*/
|
||
static void
|
||
iris_populate_gs_key(const struct iris_context *ice,
|
||
const struct shader_info *info,
|
||
mesa_shader_stage last_stage,
|
||
struct iris_gs_prog_key *key)
|
||
{
|
||
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
|
||
|
||
if (info->clip_distance_array_size == 0 &&
|
||
(info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
|
||
last_stage == MESA_SHADER_GEOMETRY)
|
||
key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
|
||
}
|
||
|
||
/**
|
||
* Populate FS program key fields based on the current state.
|
||
*/
|
||
static void
|
||
iris_populate_fs_key(const struct iris_context *ice,
|
||
const struct shader_info *info,
|
||
struct iris_fs_prog_key *key)
|
||
{
|
||
struct iris_screen *screen = (void *) ice->ctx.screen;
|
||
const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
|
||
const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
|
||
const struct iris_rasterizer_state *rast = ice->state.cso_rast;
|
||
const struct iris_blend_state *blend = ice->state.cso_blend;
|
||
|
||
key->nr_color_regions = fb->nr_cbufs;
|
||
|
||
key->alpha_to_coverage = blend->alpha_to_coverage;
|
||
|
||
key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha_enabled;
|
||
|
||
key->persample_interp = rast->force_persample_interp;
|
||
key->multisample_fbo = rast->multisample && fb->samples > 1;
|
||
|
||
key->coherent_fb_fetch = GFX_VER >= 9 && GFX_VER < 20;
|
||
|
||
key->force_dual_color_blend =
|
||
screen->driconf.dual_color_blend_by_location &&
|
||
(blend->blend_enables & 1) && blend->dual_color_blending;
|
||
}
|
||
|
||
static void
|
||
iris_populate_cs_key(const struct iris_context *ice,
|
||
struct iris_cs_prog_key *key)
|
||
{
|
||
}
|
||
|
||
static inline uint32_t
|
||
encode_sampler_count(const struct iris_compiled_shader *shader)
|
||
{
|
||
/* We can potentially have way more than 32 samplers and that's ok.
|
||
* However, the 3DSTATE_XS packets only have 3 bits to specify how
|
||
* many to pre-fetch and all values above 4 are marked reserved.
|
||
*/
|
||
uint32_t count = util_last_bit64(shader->bt.samplers_used_mask);
|
||
return DIV_ROUND_UP(CLAMP(count, 0, 16), 4);
|
||
}
|
||
|
||
#define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
|
||
pkt.KernelStartPointer = KSP(shader); \
|
||
pkt.BindingTableEntryCount = shader->bt.size_bytes / 4; \
|
||
pkt.SamplerCount = encode_sampler_count(shader); \
|
||
pkt.FloatingPointMode = shader->use_alt_mode; \
|
||
\
|
||
pkt.DispatchGRFStartRegisterForURBData = \
|
||
shader->dispatch_grf_start_reg; \
|
||
pkt.prefix##URBEntryReadLength = vue_data->urb_read_length; \
|
||
pkt.prefix##URBEntryReadOffset = 0; \
|
||
\
|
||
pkt.StatisticsEnable = true; \
|
||
pkt.Enable = true; \
|
||
\
|
||
if (shader->total_scratch) { \
|
||
INIT_THREAD_SCRATCH_SIZE(pkt) \
|
||
}
|
||
|
||
/* Note that on Gfx12HP we pass a scratch space surface state offset
|
||
* shifted by 2 relative to the value specified on the BSpec, since
|
||
* that allows the compiler to save a shift instruction while
|
||
* constructing the extended descriptor for SS addressing. That
|
||
* worked because we limit the scratch surface state pool to 8 MB and
|
||
* because we relied on the legacy (ExBSO=0) encoding of the extended
|
||
* descriptor in order to save the shift, which is no longer supported
|
||
* for the UGM shared function on Xe2 platforms, so we no longer
|
||
* attempt to do that trick.
|
||
*/
|
||
#define SCRATCH_SPACE_BUFFER_SHIFT (GFX_VER >= 20 ? 6 : 4)
|
||
|
||
#if GFX_VERx10 >= 125
|
||
#define INIT_THREAD_SCRATCH_SIZE(pkt)
|
||
#define MERGE_SCRATCH_ADDR(name) \
|
||
{ \
|
||
uint32_t pkt2[GENX(name##_length)] = {0}; \
|
||
_iris_pack_command(batch, GENX(name), pkt2, p) { \
|
||
p.ScratchSpaceBuffer = scratch_addr >> SCRATCH_SPACE_BUFFER_SHIFT; \
|
||
} \
|
||
iris_emit_merge(batch, pkt, pkt2, GENX(name##_length)); \
|
||
}
|
||
#else
|
||
#define INIT_THREAD_SCRATCH_SIZE(pkt) \
|
||
pkt.PerThreadScratchSpace = ffs(shader->total_scratch) - 11;
|
||
#define MERGE_SCRATCH_ADDR(name) \
|
||
{ \
|
||
uint32_t pkt2[GENX(name##_length)] = {0}; \
|
||
_iris_pack_command(batch, GENX(name), pkt2, p) { \
|
||
p.ScratchSpaceBasePointer = \
|
||
rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE); \
|
||
} \
|
||
iris_emit_merge(batch, pkt, pkt2, GENX(name##_length)); \
|
||
}
|
||
#endif
|
||
|
||
|
||
/**
|
||
* Encode most of 3DSTATE_VS based on the compiled shader.
|
||
*/
|
||
static void
|
||
iris_store_vs_state(const struct intel_device_info *devinfo,
|
||
struct iris_compiled_shader *shader)
|
||
{
|
||
struct iris_vue_data *vue_data = iris_vue_data(shader);
|
||
|
||
iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
|
||
INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
|
||
vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
|
||
#if GFX_VER < 20
|
||
vs.SIMD8DispatchEnable = true;
|
||
#endif
|
||
vs.UserClipDistanceCullTestEnableBitmask =
|
||
vue_data->cull_distance_mask;
|
||
#if GFX_VER >= 30
|
||
vs.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Encode most of 3DSTATE_HS based on the compiled shader.
|
||
*/
|
||
static void
|
||
iris_store_tcs_state(const struct intel_device_info *devinfo,
|
||
struct iris_compiled_shader *shader)
|
||
{
|
||
struct iris_tcs_data *tcs_data = iris_tcs_data(shader);
|
||
struct iris_vue_data *vue_data = &tcs_data->base;
|
||
|
||
iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
|
||
INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
|
||
|
||
#if GFX_VER >= 12
|
||
/* Wa_1604578095:
|
||
*
|
||
* Hang occurs when the number of max threads is less than 2 times
|
||
* the number of instance count. The number of max threads must be
|
||
* more than 2 times the number of instance count.
|
||
*/
|
||
assert((devinfo->max_tcs_threads / 2) > tcs_data->instances);
|
||
hs.DispatchGRFStartRegisterForURBData = shader->dispatch_grf_start_reg & 0x1f;
|
||
hs.DispatchGRFStartRegisterForURBData5 = shader->dispatch_grf_start_reg >> 5;
|
||
#endif
|
||
|
||
hs.InstanceCount = tcs_data->instances - 1;
|
||
hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
|
||
hs.IncludeVertexHandles = true;
|
||
|
||
#if GFX_VER == 12
|
||
/* Patch Count threshold specifies the maximum number of patches that
|
||
* will be accumulated before a thread dispatch is forced.
|
||
*/
|
||
hs.PatchCountThreshold = tcs_data->patch_count_threshold;
|
||
#endif
|
||
|
||
#if GFX_VER >= 9
|
||
#if GFX_VER < 20
|
||
hs.DispatchMode = vue_data->dispatch_mode;
|
||
#endif
|
||
hs.IncludePrimitiveID = tcs_data->include_primitive_id;
|
||
#endif
|
||
|
||
#if GFX_VER >= 30
|
||
hs.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
|
||
*/
|
||
static void
|
||
iris_store_tes_state(const struct intel_device_info *devinfo,
|
||
struct iris_compiled_shader *shader)
|
||
{
|
||
struct iris_tes_data *tes_data = iris_tes_data(shader);
|
||
struct iris_vue_data *vue_data = &tes_data->base;
|
||
|
||
uint32_t *ds_state = (void *) shader->derived_data;
|
||
uint32_t *te_state = ds_state + GENX(3DSTATE_DS_length);
|
||
|
||
iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
|
||
INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
|
||
|
||
ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
|
||
ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
|
||
ds.ComputeWCoordinateEnable =
|
||
tes_data->domain == INTEL_TESS_DOMAIN_TRI;
|
||
|
||
#if GFX_VER >= 12
|
||
ds.PrimitiveIDNotRequired = !tes_data->include_primitive_id;
|
||
#endif
|
||
ds.UserClipDistanceCullTestEnableBitmask =
|
||
vue_data->cull_distance_mask;
|
||
|
||
#if GFX_VER >= 30
|
||
ds.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
|
||
#endif
|
||
}
|
||
|
||
iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
|
||
te.Partitioning = tes_data->partitioning;
|
||
#if GFX_VER >= 20
|
||
te.NumberOfRegionsPerPatch = 2;
|
||
#endif
|
||
te.OutputTopology = tes_data->output_topology;
|
||
te.TEDomain = tes_data->domain;
|
||
#if GFX_VER >= 12
|
||
te.PatchHeaderLayout = tes_data->domain == INTEL_TESS_DOMAIN_TRI ?
|
||
REVERSED_TRI_INSIDE_SEPARATE : REVERSED;
|
||
#endif
|
||
te.TEEnable = true;
|
||
te.MaximumTessellationFactorOdd = 63.0;
|
||
te.MaximumTessellationFactorNotOdd = 64.0;
|
||
#if GFX_VERx10 >= 125
|
||
STATIC_ASSERT(TEDMODE_OFF == 0);
|
||
|
||
#if GFX_VER >= 20
|
||
if (intel_needs_workaround(devinfo, 16025857284))
|
||
te.TessellationDistributionLevel = TEDLEVEL_PATCH;
|
||
else
|
||
te.TessellationDistributionLevel = TEDLEVEL_REGION;
|
||
#else
|
||
te.TessellationDistributionLevel = TEDLEVEL_PATCH;
|
||
#endif
|
||
/* 64_TRIANGLES */
|
||
te.SmallPatchThreshold = 3;
|
||
/* 1K_TRIANGLES */
|
||
te.TargetBlockSize = 8;
|
||
/* 1K_TRIANGLES */
|
||
te.LocalBOPAccumulatorThreshold = 1;
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Encode most of 3DSTATE_GS based on the compiled shader.
|
||
*/
|
||
static void
|
||
iris_store_gs_state(const struct intel_device_info *devinfo,
|
||
struct iris_compiled_shader *shader)
|
||
{
|
||
struct iris_gs_data *gs_data = iris_gs_data(shader);
|
||
struct iris_vue_data *vue_data = &gs_data->base;
|
||
|
||
iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
|
||
INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
|
||
|
||
gs.OutputVertexSize = gs_data->output_vertex_size_hwords * 2 - 1;
|
||
gs.OutputTopology = gs_data->output_topology;
|
||
gs.ControlDataHeaderSize = gs_data->control_data_header_size_hwords;
|
||
gs.InstanceControl = gs_data->invocations - 1;
|
||
#if GFX_VER < 20
|
||
gs.DispatchMode = DISPATCH_MODE_SIMD8;
|
||
#endif
|
||
gs.IncludePrimitiveID = gs_data->include_primitive_id;
|
||
gs.ControlDataFormat = gs_data->control_data_format;
|
||
gs.ExpectedVertexCount = gs_data->vertices_in;
|
||
gs.MaximumNumberofThreads =
|
||
GFX_VER == 8 ? (devinfo->max_gs_threads / 2 - 1)
|
||
: (devinfo->max_gs_threads - 1);
|
||
|
||
if (gs_data->static_vertex_count != -1) {
|
||
gs.StaticOutput = true;
|
||
gs.StaticOutputVertexCount = gs_data->static_vertex_count;
|
||
}
|
||
gs.IncludeVertexHandles = vue_data->include_vue_handles;
|
||
|
||
gs.UserClipDistanceCullTestEnableBitmask = vue_data->cull_distance_mask;
|
||
|
||
const int urb_entry_write_offset = 1;
|
||
const uint32_t urb_entry_output_length =
|
||
DIV_ROUND_UP(vue_data->vue_map.num_slots, 2) - urb_entry_write_offset;
|
||
|
||
gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
|
||
gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
|
||
|
||
#if GFX_VER >= 30
|
||
gs.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
|
||
*/
|
||
static void
|
||
iris_store_fs_state(const struct intel_device_info *devinfo,
|
||
struct iris_compiled_shader *shader)
|
||
{
|
||
struct iris_fs_data *fs_data = iris_fs_data(shader);
|
||
|
||
uint32_t *ps_state = (void *) shader->derived_data;
|
||
uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
|
||
|
||
iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
|
||
ps.VectorMaskEnable = fs_data->uses_vmask;
|
||
ps.BindingTableEntryCount = shader->bt.size_bytes / 4;
|
||
ps.SamplerCount = encode_sampler_count(shader);
|
||
ps.FloatingPointMode = shader->use_alt_mode;
|
||
ps.MaximumNumberofThreadsPerPSD =
|
||
devinfo->max_threads_per_psd - (GFX_VER == 8 ? 2 : 1);
|
||
|
||
#if GFX_VER < 20
|
||
ps.PushConstantEnable = devinfo->needs_null_push_constant_tbimr_workaround ||
|
||
shader->ubo_ranges[0].length > 0;
|
||
#endif
|
||
|
||
#if GFX_VER >= 30
|
||
ps.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
|
||
#endif
|
||
|
||
/* From the documentation for this packet:
|
||
* "If the PS kernel does not need the Position XY Offsets to
|
||
* compute a Position Value, then this field should be programmed
|
||
* to POSOFFSET_NONE."
|
||
*
|
||
* "SW Recommendation: If the PS kernel needs the Position Offsets
|
||
* to compute a Position XY value, this field should match Position
|
||
* ZW Interpolation Mode to ensure a consistent position.xyzw
|
||
* computation."
|
||
*
|
||
* We only require XY sample offsets. So, this recommendation doesn't
|
||
* look useful at the moment. We might need this in future.
|
||
*/
|
||
ps.PositionXYOffsetSelect =
|
||
fs_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
|
||
|
||
if (shader->total_scratch) {
|
||
INIT_THREAD_SCRATCH_SIZE(ps);
|
||
}
|
||
}
|
||
|
||
iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
|
||
psx.PixelShaderValid = true;
|
||
psx.PixelShaderComputedDepthMode = fs_data->computed_depth_mode;
|
||
psx.PixelShaderKillsPixel = fs_data->uses_kill;
|
||
#if GFX_VER < 20
|
||
psx.AttributeEnable = fs_data->num_varying_inputs != 0;
|
||
#endif
|
||
psx.PixelShaderUsesSourceDepth = fs_data->uses_src_depth;
|
||
psx.PixelShaderUsesSourceW = fs_data->uses_src_w;
|
||
psx.PixelShaderIsPerSample = fs_data->is_per_sample;
|
||
psx.oMaskPresenttoRenderTarget = fs_data->uses_omask;
|
||
|
||
#if GFX_VER >= 9
|
||
#if GFX_VER >= 20
|
||
assert(!fs_data->pulls_bary);
|
||
#else
|
||
psx.PixelShaderPullsBary = fs_data->pulls_bary;
|
||
#endif
|
||
psx.PixelShaderComputesStencil = fs_data->computed_stencil;
|
||
#endif
|
||
|
||
#if GFX_VER >= 11
|
||
psx.PixelShaderRequiresSubpixelSampleOffsets =
|
||
fs_data->uses_sample_offsets;
|
||
psx.PixelShaderRequiresNonPerspectiveBaryPlaneCoefficients =
|
||
fs_data->uses_npc_bary_coefficients;
|
||
psx.PixelShaderRequiresPerspectiveBaryPlaneCoefficients =
|
||
fs_data->uses_pc_bary_coefficients;
|
||
psx.PixelShaderRequiresSourceDepthandorWPlaneCoefficients =
|
||
fs_data->uses_depth_w_coefficients;
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Compute the size of the derived data (shader command packets).
|
||
*
|
||
* This must match the data written by the iris_store_xs_state() functions.
|
||
*/
|
||
static void
|
||
iris_store_cs_state(const struct intel_device_info *devinfo,
|
||
struct iris_compiled_shader *shader)
|
||
{
|
||
struct iris_cs_data *cs_data = iris_cs_data(shader);
|
||
void *map = shader->derived_data;
|
||
|
||
iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
|
||
#if GFX_VERx10 < 125
|
||
desc.ConstantURBEntryReadLength = cs_data->push.per_thread.regs;
|
||
desc.CrossThreadConstantDataReadLength =
|
||
cs_data->push.cross_thread.regs;
|
||
#else
|
||
assert(cs_data->push.per_thread.regs == 0);
|
||
assert(cs_data->push.cross_thread.regs == 0);
|
||
#endif
|
||
#if GFX_VERx10 <= 125
|
||
desc.BarrierEnable = cs_data->uses_barrier;
|
||
#endif
|
||
/* Typically set to 0 to avoid prefetching on every thread dispatch. */
|
||
desc.BindingTableEntryCount = devinfo->verx10 == 125 ?
|
||
0 : MIN2(shader->bt.size_bytes / 4, 31);
|
||
desc.SamplerCount = encode_sampler_count(shader);
|
||
/* TODO: Check if we are missing workarounds and enable mid-thread
|
||
* preemption.
|
||
*
|
||
* We still have issues with mid-thread preemption (it was already
|
||
* disabled by the kernel on gfx11, due to missing workarounds). It's
|
||
* possible that we are just missing some workarounds, and could enable
|
||
* it later, but for now let's disable it to fix a GPU in compute in Car
|
||
* Chase (and possibly more).
|
||
*/
|
||
#if GFX_VER >= 20
|
||
desc.ThreadPreemption = false;
|
||
#elif GFX_VER >= 12
|
||
desc.ThreadPreemptionDisable = true;
|
||
#endif
|
||
#if GFX_VER >= 30
|
||
desc.RegistersPerThread = ptl_register_blocks(
|
||
shader->brw_prog_data->grf_used);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
static unsigned
|
||
iris_derived_program_state_size(enum iris_program_cache_id cache_id)
|
||
{
|
||
assert(cache_id <= IRIS_CACHE_BLORP);
|
||
|
||
static const unsigned dwords[] = {
|
||
[IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
|
||
[IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
|
||
[IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
|
||
[IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
|
||
[IRIS_CACHE_FS] =
|
||
GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
|
||
[IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
|
||
[IRIS_CACHE_BLORP] = 0,
|
||
};
|
||
|
||
return sizeof(uint32_t) * dwords[cache_id];
|
||
}
|
||
|
||
/**
|
||
* Create any state packets corresponding to the given shader stage
|
||
* (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
|
||
* This means that we can look up a program in the in-memory cache and
|
||
* get most of the state packet without having to reconstruct it.
|
||
*/
|
||
static void
|
||
iris_store_derived_program_state(const struct intel_device_info *devinfo,
|
||
enum iris_program_cache_id cache_id,
|
||
struct iris_compiled_shader *shader)
|
||
{
|
||
switch (cache_id) {
|
||
case IRIS_CACHE_VS:
|
||
iris_store_vs_state(devinfo, shader);
|
||
break;
|
||
case IRIS_CACHE_TCS:
|
||
iris_store_tcs_state(devinfo, shader);
|
||
break;
|
||
case IRIS_CACHE_TES:
|
||
iris_store_tes_state(devinfo, shader);
|
||
break;
|
||
case IRIS_CACHE_GS:
|
||
iris_store_gs_state(devinfo, shader);
|
||
break;
|
||
case IRIS_CACHE_FS:
|
||
iris_store_fs_state(devinfo, shader);
|
||
break;
|
||
case IRIS_CACHE_CS:
|
||
iris_store_cs_state(devinfo, shader);
|
||
break;
|
||
case IRIS_CACHE_BLORP:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* ------------------------------------------------------------------- */
|
||
|
||
static const uint32_t push_constant_opcodes[] = {
|
||
[MESA_SHADER_VERTEX] = 21,
|
||
[MESA_SHADER_TESS_CTRL] = 25, /* HS */
|
||
[MESA_SHADER_TESS_EVAL] = 26, /* DS */
|
||
[MESA_SHADER_GEOMETRY] = 22,
|
||
[MESA_SHADER_FRAGMENT] = 23,
|
||
[MESA_SHADER_COMPUTE] = 0,
|
||
};
|
||
|
||
static uint32_t
|
||
use_null_surface(struct iris_batch *batch, struct iris_context *ice)
|
||
{
|
||
struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
|
||
|
||
iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
|
||
|
||
return ice->state.unbound_tex.offset;
|
||
}
|
||
|
||
static uint32_t
|
||
use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
|
||
{
|
||
/* If set_framebuffer_state() was never called, fall back to 1x1x1 */
|
||
if (!ice->state.null_fb.res)
|
||
return use_null_surface(batch, ice);
|
||
|
||
struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
|
||
|
||
iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
|
||
|
||
return ice->state.null_fb.offset;
|
||
}
|
||
|
||
static uint32_t
|
||
surf_state_offset_for_aux(unsigned aux_modes,
|
||
enum isl_aux_usage aux_usage)
|
||
{
|
||
assert(aux_modes & (1 << aux_usage));
|
||
return SURFACE_STATE_ALIGNMENT *
|
||
util_bitcount(aux_modes & ((1 << aux_usage) - 1));
|
||
}
|
||
|
||
#if GFX_VER == 9
|
||
static void
|
||
surf_state_update_clear_value(struct iris_batch *batch,
|
||
struct iris_resource *res,
|
||
struct iris_surface_state *surf_state,
|
||
enum isl_aux_usage aux_usage)
|
||
{
|
||
struct isl_device *isl_dev = &batch->screen->isl_dev;
|
||
struct iris_bo *state_bo = iris_resource_bo(surf_state->ref.res);
|
||
uint64_t real_offset = surf_state->ref.offset + IRIS_MEMZONE_BINDER_START;
|
||
uint32_t offset_into_bo = real_offset - state_bo->address;
|
||
uint32_t clear_offset = offset_into_bo +
|
||
isl_dev->ss.clear_value_offset +
|
||
surf_state_offset_for_aux(surf_state->aux_usages, aux_usage);
|
||
uint32_t *color = res->aux.clear_color.u32;
|
||
|
||
assert(isl_dev->ss.clear_value_size == 16);
|
||
|
||
if (aux_usage == ISL_AUX_USAGE_HIZ) {
|
||
iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
|
||
PIPE_CONTROL_WRITE_IMMEDIATE,
|
||
state_bo, clear_offset, color[0]);
|
||
} else {
|
||
iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
|
||
PIPE_CONTROL_WRITE_IMMEDIATE,
|
||
state_bo, clear_offset,
|
||
(uint64_t) color[0] |
|
||
(uint64_t) color[1] << 32);
|
||
iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
|
||
PIPE_CONTROL_WRITE_IMMEDIATE,
|
||
state_bo, clear_offset + 8,
|
||
(uint64_t) color[2] |
|
||
(uint64_t) color[3] << 32);
|
||
}
|
||
|
||
iris_emit_pipe_control_flush(batch,
|
||
"update fast clear: state cache invalidate",
|
||
PIPE_CONTROL_FLUSH_ENABLE |
|
||
PIPE_CONTROL_STATE_CACHE_INVALIDATE);
|
||
}
|
||
#endif
|
||
|
||
static void
|
||
update_clear_value(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
struct iris_resource *res,
|
||
struct iris_surface_state *surf_state,
|
||
struct isl_view *view)
|
||
{
|
||
UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
|
||
UNUSED unsigned aux_modes = surf_state->aux_usages;
|
||
|
||
/* We only need to update the clear color in the surface state for gfx8 and
|
||
* gfx9. Newer gens can read it directly from the clear color state buffer.
|
||
*/
|
||
#if GFX_VER == 9
|
||
/* Skip updating the ISL_AUX_USAGE_NONE surface state */
|
||
aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
|
||
|
||
while (aux_modes) {
|
||
enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
|
||
|
||
surf_state_update_clear_value(batch, res, surf_state, aux_usage);
|
||
}
|
||
#elif GFX_VER == 8
|
||
/* TODO: Could update rather than re-filling */
|
||
alloc_surface_states(surf_state, surf_state->aux_usages);
|
||
|
||
fill_surface_states(isl_dev, surf_state, res, &res->surf, view, 0, 0, 0);
|
||
|
||
upload_surface_states(ice->state.surface_uploader, surf_state);
|
||
#endif
|
||
}
|
||
|
||
static uint32_t
|
||
use_surface_state(struct iris_batch *batch,
|
||
struct iris_surface_state *surf_state,
|
||
enum isl_aux_usage aux_usage)
|
||
{
|
||
iris_use_pinned_bo(batch, iris_resource_bo(surf_state->ref.res), false,
|
||
IRIS_DOMAIN_NONE);
|
||
|
||
return surf_state->ref.offset +
|
||
surf_state_offset_for_aux(surf_state->aux_usages, aux_usage);
|
||
}
|
||
|
||
/**
|
||
* Add a surface to the validation list, as well as the buffer containing
|
||
* the corresponding SURFACE_STATE.
|
||
*
|
||
* Returns the binding table entry (offset to SURFACE_STATE).
|
||
*/
|
||
static uint32_t
|
||
use_surface(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
struct pipe_surface *p_surf,
|
||
bool writeable,
|
||
enum isl_aux_usage aux_usage,
|
||
bool is_read_surface,
|
||
enum iris_domain access)
|
||
{
|
||
struct iris_surface *surf = (void *) p_surf;
|
||
struct iris_resource *res = (void *) p_surf->texture;
|
||
|
||
if (GFX_VER == 8 && is_read_surface && !surf->surface_state_read.ref.res) {
|
||
upload_surface_states(ice->state.surface_uploader,
|
||
&surf->surface_state_read);
|
||
}
|
||
|
||
if (!surf->surface_state.ref.res) {
|
||
upload_surface_states(ice->state.surface_uploader,
|
||
&surf->surface_state);
|
||
}
|
||
|
||
if (memcmp(&res->aux.clear_color, &surf->clear_color,
|
||
sizeof(surf->clear_color)) != 0) {
|
||
update_clear_value(ice, batch, res, &surf->surface_state, &surf->view);
|
||
if (GFX_VER == 8) {
|
||
update_clear_value(ice, batch, res, &surf->surface_state_read,
|
||
&surf->read_view);
|
||
}
|
||
surf->clear_color = res->aux.clear_color;
|
||
}
|
||
|
||
if (res->aux.clear_color_bo)
|
||
iris_use_pinned_bo(batch, res->aux.clear_color_bo, false, access);
|
||
|
||
if (res->aux.bo)
|
||
iris_use_pinned_bo(batch, res->aux.bo, writeable, access);
|
||
|
||
iris_use_pinned_bo(batch, res->bo, writeable, access);
|
||
|
||
if (GFX_VER == 8 && is_read_surface) {
|
||
return use_surface_state(batch, &surf->surface_state_read, aux_usage);
|
||
} else {
|
||
return use_surface_state(batch, &surf->surface_state, aux_usage);
|
||
}
|
||
}
|
||
|
||
static uint32_t
|
||
use_sampler_view(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
struct iris_sampler_view *isv)
|
||
{
|
||
enum isl_aux_usage aux_usage =
|
||
iris_resource_texture_aux_usage(ice, isv->res, isv->view.format,
|
||
isv->view.base_level, isv->view.levels);
|
||
|
||
if (!isv->surface_state.ref.res)
|
||
upload_surface_states(ice->state.surface_uploader, &isv->surface_state);
|
||
|
||
if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
|
||
sizeof(isv->clear_color)) != 0) {
|
||
update_clear_value(ice, batch, isv->res, &isv->surface_state,
|
||
&isv->view);
|
||
isv->clear_color = isv->res->aux.clear_color;
|
||
}
|
||
|
||
if (isv->res->aux.clear_color_bo) {
|
||
iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo,
|
||
false, IRIS_DOMAIN_SAMPLER_READ);
|
||
}
|
||
|
||
if (isv->res->aux.bo) {
|
||
iris_use_pinned_bo(batch, isv->res->aux.bo,
|
||
false, IRIS_DOMAIN_SAMPLER_READ);
|
||
}
|
||
|
||
iris_use_pinned_bo(batch, isv->res->bo, false, IRIS_DOMAIN_SAMPLER_READ);
|
||
|
||
return use_surface_state(batch, &isv->surface_state, aux_usage);
|
||
}
|
||
|
||
static uint32_t
|
||
use_ubo_ssbo(struct iris_batch *batch,
|
||
struct iris_context *ice,
|
||
struct pipe_shader_buffer *buf,
|
||
struct iris_state_ref *surf_state,
|
||
bool writable, enum iris_domain access)
|
||
{
|
||
if (!buf->buffer || !surf_state->res)
|
||
return use_null_surface(batch, ice);
|
||
|
||
iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable, access);
|
||
iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false,
|
||
IRIS_DOMAIN_NONE);
|
||
|
||
return surf_state->offset;
|
||
}
|
||
|
||
static uint32_t
|
||
use_image(struct iris_batch *batch, struct iris_context *ice,
|
||
struct iris_shader_state *shs, const struct shader_info *info,
|
||
int i)
|
||
{
|
||
struct iris_image_view *iv = &shs->image[i];
|
||
struct iris_resource *res = (void *) iv->base.resource;
|
||
|
||
if (!res)
|
||
return use_null_surface(batch, ice);
|
||
|
||
bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
|
||
|
||
iris_use_pinned_bo(batch, res->bo, write, IRIS_DOMAIN_NONE);
|
||
|
||
if (res->aux.bo)
|
||
iris_use_pinned_bo(batch, res->aux.bo, write, IRIS_DOMAIN_NONE);
|
||
|
||
if (res->aux.clear_color_bo) {
|
||
iris_use_pinned_bo(batch, res->aux.clear_color_bo, false,
|
||
IRIS_DOMAIN_NONE);
|
||
}
|
||
|
||
enum isl_aux_usage aux_usage = shs->image_aux_usage[i];
|
||
|
||
return use_surface_state(batch, &iv->surface_state, aux_usage);
|
||
}
|
||
|
||
#define push_bt_entry(addr) \
|
||
assert(addr >= surf_base_offset); \
|
||
assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
|
||
if (!pin_only) bt_map[s++] = (addr) - surf_base_offset;
|
||
|
||
#define bt_assert(section) \
|
||
if (!pin_only && shader->bt.used_mask[section] != 0) \
|
||
assert(shader->bt.offsets[section] == s);
|
||
|
||
/**
|
||
* Populate the binding table for a given shader stage.
|
||
*
|
||
* This fills out the table of pointers to surfaces required by the shader,
|
||
* and also adds those buffers to the validation list so the kernel can make
|
||
* resident before running our batch.
|
||
*/
|
||
static void
|
||
iris_populate_binding_table(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
mesa_shader_stage stage,
|
||
bool pin_only)
|
||
{
|
||
const struct iris_binder *binder = &ice->state.binder;
|
||
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
|
||
if (!shader)
|
||
return;
|
||
|
||
struct iris_binding_table *bt = &shader->bt;
|
||
struct iris_shader_state *shs = &ice->state.shaders[stage];
|
||
uint32_t surf_base_offset = GFX_VER < 11 ? binder->bo->address : 0;
|
||
|
||
uint32_t *bt_map = binder->map + binder->bt_offset[stage];
|
||
int s = 0;
|
||
|
||
const struct shader_info *info = iris_get_shader_info(ice, stage);
|
||
if (!info) {
|
||
/* TCS passthrough doesn't need a binding table. */
|
||
assert(stage == MESA_SHADER_TESS_CTRL);
|
||
return;
|
||
}
|
||
|
||
if (stage == MESA_SHADER_COMPUTE &&
|
||
shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
|
||
/* surface for gl_NumWorkGroups */
|
||
struct iris_state_ref *grid_data = &ice->state.grid_size;
|
||
struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
|
||
iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false,
|
||
IRIS_DOMAIN_PULL_CONSTANT_READ);
|
||
iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false,
|
||
IRIS_DOMAIN_NONE);
|
||
push_bt_entry(grid_state->offset);
|
||
}
|
||
|
||
if (stage == MESA_SHADER_FRAGMENT) {
|
||
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
|
||
/* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
|
||
if (cso_fb->nr_cbufs) {
|
||
for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
|
||
uint32_t addr;
|
||
if (cso_fb->cbufs[i].texture) {
|
||
addr = use_surface(ice, batch, ice->state.fb_cbufs[i], true,
|
||
ice->state.draw_aux_usage[i], false,
|
||
IRIS_DOMAIN_RENDER_WRITE);
|
||
} else {
|
||
addr = use_null_fb_surface(batch, ice);
|
||
}
|
||
push_bt_entry(addr);
|
||
}
|
||
} else if (bt->use_null_rt) {
|
||
uint32_t addr = use_null_fb_surface(batch, ice);
|
||
push_bt_entry(addr);
|
||
}
|
||
}
|
||
|
||
#define foreach_surface_used(index, group) \
|
||
bt_assert(group); \
|
||
for (int index = 0; index < bt->surf_count[group]; index++) \
|
||
if (iris_group_index_to_bti(bt, group, index) != \
|
||
IRIS_SURFACE_NOT_USED)
|
||
|
||
foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
|
||
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
|
||
uint32_t addr;
|
||
if (cso_fb->cbufs[i].texture) {
|
||
addr = use_surface(ice, batch, ice->state.fb_cbufs[i],
|
||
false, ice->state.draw_aux_usage[i], true,
|
||
IRIS_DOMAIN_SAMPLER_READ);
|
||
push_bt_entry(addr);
|
||
}
|
||
}
|
||
|
||
foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE_LOW64) {
|
||
struct iris_sampler_view *view = shs->textures[i];
|
||
uint32_t addr = view ? use_sampler_view(ice, batch, view)
|
||
: use_null_surface(batch, ice);
|
||
push_bt_entry(addr);
|
||
}
|
||
|
||
foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE_HIGH64) {
|
||
struct iris_sampler_view *view = shs->textures[64 + i];
|
||
uint32_t addr = view ? use_sampler_view(ice, batch, view)
|
||
: use_null_surface(batch, ice);
|
||
push_bt_entry(addr);
|
||
}
|
||
|
||
foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
|
||
uint32_t addr = use_image(batch, ice, shs, info, i);
|
||
push_bt_entry(addr);
|
||
}
|
||
|
||
foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
|
||
uint32_t addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
|
||
&shs->constbuf_surf_state[i], false,
|
||
IRIS_DOMAIN_PULL_CONSTANT_READ);
|
||
push_bt_entry(addr);
|
||
}
|
||
|
||
foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
|
||
uint32_t addr =
|
||
use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
|
||
shs->writable_ssbos & (1u << i), IRIS_DOMAIN_NONE);
|
||
push_bt_entry(addr);
|
||
}
|
||
|
||
#if 0
|
||
/* XXX: YUV surfaces not implemented yet */
|
||
bt_assert(plane_start[1], ...);
|
||
bt_assert(plane_start[2], ...);
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
iris_use_optional_res(struct iris_batch *batch,
|
||
struct pipe_resource *res,
|
||
bool writeable,
|
||
enum iris_domain access)
|
||
{
|
||
if (res) {
|
||
struct iris_bo *bo = iris_resource_bo(res);
|
||
iris_use_pinned_bo(batch, bo, writeable, access);
|
||
}
|
||
}
|
||
|
||
static void
|
||
pin_depth_and_stencil_buffers(struct iris_batch *batch,
|
||
struct pipe_resource *zsbuf,
|
||
struct iris_depth_stencil_alpha_state *cso_zsa)
|
||
{
|
||
if (!zsbuf)
|
||
return;
|
||
|
||
struct iris_resource *zres, *sres;
|
||
iris_get_depth_stencil_resources(zsbuf, &zres, &sres);
|
||
|
||
if (zres) {
|
||
iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled,
|
||
IRIS_DOMAIN_DEPTH_WRITE);
|
||
if (zres->aux.bo) {
|
||
iris_use_pinned_bo(batch, zres->aux.bo,
|
||
cso_zsa->depth_writes_enabled,
|
||
IRIS_DOMAIN_DEPTH_WRITE);
|
||
}
|
||
}
|
||
|
||
if (sres) {
|
||
iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled,
|
||
IRIS_DOMAIN_DEPTH_WRITE);
|
||
}
|
||
}
|
||
|
||
static uint32_t
|
||
pin_scratch_space(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
const struct iris_compiled_shader *shader,
|
||
mesa_shader_stage stage)
|
||
{
|
||
uint32_t scratch_addr = 0;
|
||
|
||
if (shader->total_scratch > 0) {
|
||
struct iris_bo *scratch_bo =
|
||
iris_get_scratch_space(ice, shader->total_scratch, stage);
|
||
iris_use_pinned_bo(batch, scratch_bo, true, IRIS_DOMAIN_NONE);
|
||
|
||
#if GFX_VERx10 >= 125
|
||
const struct iris_state_ref *ref =
|
||
iris_get_scratch_surf(ice, shader->total_scratch);
|
||
iris_use_pinned_bo(batch, iris_resource_bo(ref->res),
|
||
false, IRIS_DOMAIN_NONE);
|
||
scratch_addr = ref->offset +
|
||
iris_resource_bo(ref->res)->address -
|
||
IRIS_MEMZONE_SCRATCH_START;
|
||
assert(util_is_aligned(scratch_addr, 64) && scratch_addr < (1 << 26));
|
||
#else
|
||
scratch_addr = scratch_bo->address;
|
||
#endif
|
||
}
|
||
|
||
return scratch_addr;
|
||
}
|
||
|
||
/* ------------------------------------------------------------------- */
|
||
|
||
/**
|
||
* Pin any BOs which were installed by a previous batch, and restored
|
||
* via the hardware logical context mechanism.
|
||
*
|
||
* We don't need to re-emit all state every batch - the hardware context
|
||
* mechanism will save and restore it for us. This includes pointers to
|
||
* various BOs...which won't exist unless we ask the kernel to pin them
|
||
* by adding them to the validation list.
|
||
*
|
||
* We can skip buffers if we've re-emitted those packets, as we're
|
||
* overwriting those stale pointers with new ones, and don't actually
|
||
* refer to the old BOs.
|
||
*/
|
||
static void
|
||
iris_restore_render_saved_bos(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
const struct pipe_draw_info *draw)
|
||
{
|
||
struct iris_genx_state *genx = ice->state.genx;
|
||
|
||
const uint64_t clean = ~ice->state.dirty;
|
||
const uint64_t stage_clean = ~ice->state.stage_dirty;
|
||
|
||
if (clean & IRIS_DIRTY_CC_VIEWPORT) {
|
||
iris_use_optional_res(batch, ice->state.last_res.cc_vp, false,
|
||
IRIS_DOMAIN_NONE);
|
||
}
|
||
|
||
if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
|
||
iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false,
|
||
IRIS_DOMAIN_NONE);
|
||
}
|
||
|
||
if (clean & IRIS_DIRTY_BLEND_STATE) {
|
||
iris_use_optional_res(batch, ice->state.last_res.blend, false,
|
||
IRIS_DOMAIN_NONE);
|
||
}
|
||
|
||
if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
|
||
iris_use_optional_res(batch, ice->state.last_res.color_calc, false,
|
||
IRIS_DOMAIN_NONE);
|
||
}
|
||
|
||
if (clean & IRIS_DIRTY_SCISSOR_RECT) {
|
||
iris_use_optional_res(batch, ice->state.last_res.scissor, false,
|
||
IRIS_DOMAIN_NONE);
|
||
}
|
||
|
||
if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
|
||
for (int i = 0; i < 4; i++) {
|
||
struct iris_stream_output_target *tgt =
|
||
(void *) ice->state.so_target[i];
|
||
if (tgt) {
|
||
iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
|
||
true, IRIS_DOMAIN_OTHER_WRITE);
|
||
iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
|
||
true, IRIS_DOMAIN_OTHER_WRITE);
|
||
}
|
||
}
|
||
}
|
||
|
||
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
|
||
if (!(stage_clean & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)))
|
||
continue;
|
||
|
||
struct iris_shader_state *shs = &ice->state.shaders[stage];
|
||
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
|
||
|
||
if (!shader)
|
||
continue;
|
||
|
||
for (int i = 0; i < 4; i++) {
|
||
const struct iris_ubo_range *range = &shader->ubo_ranges[i];
|
||
|
||
if (range->length == 0)
|
||
continue;
|
||
|
||
/* Range block is a binding table index, map back to UBO index. */
|
||
unsigned block_index = iris_bti_to_group_index(
|
||
&shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
|
||
assert(block_index != IRIS_SURFACE_NOT_USED);
|
||
|
||
struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
|
||
struct iris_resource *res = (void *) cbuf->buffer;
|
||
|
||
if (res)
|
||
iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_OTHER_READ);
|
||
else
|
||
iris_use_pinned_bo(batch, batch->screen->workaround_bo, false,
|
||
IRIS_DOMAIN_OTHER_READ);
|
||
}
|
||
}
|
||
|
||
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
|
||
if (stage_clean & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
|
||
/* Re-pin any buffers referred to by the binding table. */
|
||
iris_populate_binding_table(ice, batch, stage, true);
|
||
}
|
||
}
|
||
|
||
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
|
||
struct iris_shader_state *shs = &ice->state.shaders[stage];
|
||
struct pipe_resource *res = shs->sampler_table.res;
|
||
if (res)
|
||
iris_use_pinned_bo(batch, iris_resource_bo(res), false,
|
||
IRIS_DOMAIN_NONE);
|
||
}
|
||
|
||
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
|
||
if (stage_clean & (IRIS_STAGE_DIRTY_VS << stage)) {
|
||
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
|
||
|
||
if (shader) {
|
||
struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
|
||
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
|
||
|
||
pin_scratch_space(ice, batch, shader, stage);
|
||
}
|
||
}
|
||
}
|
||
|
||
if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
|
||
(clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
|
||
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
|
||
pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf.texture, ice->state.cso_zsa);
|
||
}
|
||
|
||
iris_use_optional_res(batch, ice->state.last_res.index_buffer, false,
|
||
IRIS_DOMAIN_VF_READ);
|
||
|
||
if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
|
||
uint64_t bound = ice->state.bound_vertex_buffers;
|
||
while (bound) {
|
||
const int i = u_bit_scan64(&bound);
|
||
struct pipe_resource *res = genx->vertex_buffers[i].resource;
|
||
iris_use_pinned_bo(batch, iris_resource_bo(res), false,
|
||
IRIS_DOMAIN_VF_READ);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
iris_restore_compute_saved_bos(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
const struct pipe_grid_info *grid)
|
||
{
|
||
const uint64_t stage_clean = ~ice->state.stage_dirty;
|
||
|
||
const int stage = MESA_SHADER_COMPUTE;
|
||
struct iris_shader_state *shs = &ice->state.shaders[stage];
|
||
|
||
if (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) {
|
||
/* Re-pin any buffers referred to by the binding table. */
|
||
iris_populate_binding_table(ice, batch, stage, true);
|
||
}
|
||
|
||
struct pipe_resource *sampler_res = shs->sampler_table.res;
|
||
if (sampler_res)
|
||
iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false,
|
||
IRIS_DOMAIN_NONE);
|
||
|
||
if ((stage_clean & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS) &&
|
||
(stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) &&
|
||
(stage_clean & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
|
||
(stage_clean & IRIS_STAGE_DIRTY_CS)) {
|
||
iris_use_optional_res(batch, ice->state.last_res.cs_desc, false,
|
||
IRIS_DOMAIN_NONE);
|
||
}
|
||
|
||
if (stage_clean & IRIS_STAGE_DIRTY_CS) {
|
||
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
|
||
|
||
if (shader) {
|
||
struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
|
||
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
|
||
|
||
if (GFX_VERx10 < 125) {
|
||
struct iris_bo *curbe_bo =
|
||
iris_resource_bo(ice->state.last_res.cs_thread_ids);
|
||
iris_use_pinned_bo(batch, curbe_bo, false, IRIS_DOMAIN_NONE);
|
||
}
|
||
|
||
pin_scratch_space(ice, batch, shader, stage);
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
|
||
*/
|
||
static void
|
||
iris_update_binder_address(struct iris_batch *batch,
|
||
struct iris_binder *binder)
|
||
{
|
||
if (batch->last_binder_address == binder->bo->address)
|
||
return;
|
||
|
||
struct isl_device *isl_dev = &batch->screen->isl_dev;
|
||
uint32_t mocs = isl_mocs(isl_dev, 0, false);
|
||
|
||
iris_batch_sync_region_start(batch);
|
||
|
||
#if GFX_VER >= 11
|
||
/* Use 3DSTATE_BINDING_TABLE_POOL_ALLOC on Icelake and later */
|
||
|
||
#if GFX_VERx10 == 120
|
||
/* Wa_1607854226:
|
||
*
|
||
* Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
|
||
* mode by putting the pipeline temporarily in 3D mode..
|
||
*/
|
||
if (batch->name == IRIS_BATCH_COMPUTE)
|
||
emit_pipeline_select(batch, _3D);
|
||
#endif
|
||
|
||
iris_emit_pipe_control_flush(batch, "Stall for binder realloc",
|
||
PIPE_CONTROL_CS_STALL);
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POOL_ALLOC), btpa) {
|
||
btpa.BindingTablePoolBaseAddress = ro_bo(binder->bo, 0);
|
||
btpa.BindingTablePoolBufferSize = binder->size / 4096;
|
||
#if GFX_VERx10 < 125
|
||
btpa.BindingTablePoolEnable = true;
|
||
#endif
|
||
btpa.MOCS = mocs;
|
||
}
|
||
|
||
#if GFX_VERx10 == 120
|
||
/* Wa_1607854226:
|
||
*
|
||
* Put the pipeline back into compute mode.
|
||
*/
|
||
if (batch->name == IRIS_BATCH_COMPUTE)
|
||
emit_pipeline_select(batch, GPGPU);
|
||
#endif
|
||
#else
|
||
/* Use STATE_BASE_ADDRESS on older platforms */
|
||
flush_before_state_base_change(batch);
|
||
|
||
iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
|
||
sba.SurfaceStateBaseAddressModifyEnable = true;
|
||
sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
|
||
|
||
/* The hardware appears to pay attention to the MOCS fields even
|
||
* if you don't set the "Address Modify Enable" bit for the base.
|
||
*/
|
||
sba.GeneralStateMOCS = mocs;
|
||
sba.StatelessDataPortAccessMOCS = mocs;
|
||
sba.DynamicStateMOCS = mocs;
|
||
sba.IndirectObjectMOCS = mocs;
|
||
sba.InstructionMOCS = mocs;
|
||
sba.SurfaceStateMOCS = mocs;
|
||
#if GFX_VER >= 9
|
||
sba.BindlessSurfaceStateMOCS = mocs;
|
||
#endif
|
||
#if GFX_VERx10 >= 125
|
||
sba.L1CacheControl = L1CC_WB;
|
||
#endif
|
||
}
|
||
#endif
|
||
|
||
flush_after_state_base_change(batch);
|
||
iris_batch_sync_region_end(batch);
|
||
|
||
batch->last_binder_address = binder->bo->address;
|
||
}
|
||
|
||
static inline void
|
||
iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
|
||
bool window_space_position, float *zmin, float *zmax)
|
||
{
|
||
if (window_space_position) {
|
||
*zmin = 0.f;
|
||
*zmax = 1.f;
|
||
return;
|
||
}
|
||
util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
|
||
}
|
||
|
||
/* Wa_16018063123 */
|
||
static inline void
|
||
batch_emit_fast_color_dummy_blit(struct iris_batch *batch)
|
||
{
|
||
#if INTEL_WA_16018063123_GFX_VER
|
||
iris_emit_cmd(batch, GENX(XY_FAST_COLOR_BLT), blt) {
|
||
uint32_t mocs = iris_mocs(batch->screen->workaround_address.bo,
|
||
&batch->screen->isl_dev,
|
||
ISL_SURF_USAGE_BLITTER_DST_BIT);
|
||
|
||
blt.DestinationBaseAddress = batch->screen->workaround_address;
|
||
blt.DestinationMOCS = mocs;
|
||
blt.DestinationPitch = 63;
|
||
blt.DestinationX2 = 1;
|
||
blt.DestinationY2 = 4;
|
||
blt.DestinationSurfaceWidth = 1;
|
||
blt.DestinationSurfaceHeight = 4;
|
||
blt.DestinationSurfaceType = XY_SURFTYPE_2D;
|
||
blt.DestinationSurfaceQPitch = 4;
|
||
blt.DestinationTiling = XY_TILE_LINEAR;
|
||
}
|
||
#else
|
||
UNREACHABLE("Not implemented");
|
||
#endif
|
||
}
|
||
|
||
#if GFX_VER >= 12
|
||
static void
|
||
invalidate_aux_map_state_per_engine(struct iris_batch *batch)
|
||
{
|
||
uint64_t register_addr = 0;
|
||
|
||
switch (batch->name) {
|
||
case IRIS_BATCH_RENDER: {
|
||
/* From Bspec 43904 (Register_CCSAuxiliaryTableInvalidate):
|
||
* RCS engine idle sequence:
|
||
*
|
||
* Gfx12+:
|
||
* PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall + Render
|
||
* Target Cache Flush + Depth Cache
|
||
*
|
||
* Gfx125+:
|
||
* PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall + Render
|
||
* Target Cache Flush + Depth Cache + CCS flush
|
||
*/
|
||
iris_emit_end_of_pipe_sync(batch, "Invalidate aux map table",
|
||
PIPE_CONTROL_DATA_CACHE_FLUSH |
|
||
PIPE_CONTROL_L3_FABRIC_FLUSH |
|
||
PIPE_CONTROL_CS_STALL |
|
||
PIPE_CONTROL_RENDER_TARGET_FLUSH |
|
||
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
|
||
(GFX_VERx10 == 125 ?
|
||
PIPE_CONTROL_CCS_CACHE_FLUSH : 0));
|
||
|
||
register_addr = GENX(GFX_CCS_AUX_INV_num);
|
||
break;
|
||
}
|
||
case IRIS_BATCH_COMPUTE: {
|
||
/* From Bspec 43904 (Register_CCSAuxiliaryTableInvalidate):
|
||
* Compute engine idle sequence:
|
||
*
|
||
* Gfx12+:
|
||
* PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall
|
||
*
|
||
* Gfx125+:
|
||
* PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall + CCS flush
|
||
*/
|
||
iris_emit_end_of_pipe_sync(batch, "Invalidate aux map table",
|
||
PIPE_CONTROL_DATA_CACHE_FLUSH |
|
||
PIPE_CONTROL_L3_FABRIC_FLUSH |
|
||
PIPE_CONTROL_CS_STALL |
|
||
(GFX_VERx10 == 125 ?
|
||
PIPE_CONTROL_CCS_CACHE_FLUSH : 0));
|
||
|
||
register_addr = GENX(COMPCS0_CCS_AUX_INV_num);
|
||
break;
|
||
}
|
||
case IRIS_BATCH_BLITTER: {
|
||
#if GFX_VERx10 >= 125
|
||
/* Wa_16018063123 - emit fast color dummy blit before MI_FLUSH_DW. */
|
||
if (INTEL_WA_16018063123_GFX_VER)
|
||
batch_emit_fast_color_dummy_blit(batch);
|
||
|
||
/*
|
||
* Notice we don't set the L3 Fabric Flush here, because we have
|
||
* PIPE_CONTROL_CS_STALL. The PIPE_CONTROL::L3 Fabric Flush
|
||
* documentation says :
|
||
*
|
||
* "L3 Fabric Flush will ensure all the pending transactions in the
|
||
* L3 Fabric are flushed to global observation point. HW does
|
||
* implicit L3 Fabric Flush on all stalling flushes (both explicit
|
||
* and implicit) and on PIPECONTROL having Post Sync Operation
|
||
* enabled."
|
||
*
|
||
* Therefore setting L3 Fabric Flush here would be redundant.
|
||
*
|
||
* From Bspec 43904 (Register_CCSAuxiliaryTableInvalidate):
|
||
* Blitter engine idle sequence:
|
||
*
|
||
* Gfx125+:
|
||
* MI_FLUSH_DW (dw0;b16 – flush CCS)
|
||
*/
|
||
iris_emit_cmd(batch, GENX(MI_FLUSH_DW), fd) {
|
||
fd.FlushCCS = true;
|
||
}
|
||
register_addr = GENX(BCS_CCS_AUX_INV_num);
|
||
#endif
|
||
break;
|
||
}
|
||
default:
|
||
UNREACHABLE("Invalid batch for aux map invalidation");
|
||
break;
|
||
}
|
||
|
||
if (register_addr != 0) {
|
||
/* If the aux-map state number increased, then we need to rewrite the
|
||
* register. Rewriting the register is used to both set the aux-map
|
||
* translation table address, and also to invalidate any previously
|
||
* cached translations.
|
||
*/
|
||
iris_load_register_imm32(batch, register_addr, 1);
|
||
|
||
/* HSD 22012751911: SW Programming sequence when issuing aux invalidation:
|
||
*
|
||
* "Poll Aux Invalidation bit once the invalidation is set (Register
|
||
* 4208 bit 0)"
|
||
*/
|
||
iris_emit_cmd(batch, GENX(MI_SEMAPHORE_WAIT), sem) {
|
||
sem.CompareOperation = COMPARE_SAD_EQUAL_SDD;
|
||
sem.WaitMode = PollingMode;
|
||
sem.RegisterPollMode = true;
|
||
sem.SemaphoreDataDword = 0x0;
|
||
sem.SemaphoreAddress = ro_bo(NULL, register_addr);
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
genX(invalidate_aux_map_state)(struct iris_batch *batch)
|
||
{
|
||
struct iris_screen *screen = batch->screen;
|
||
void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
|
||
if (!aux_map_ctx)
|
||
return;
|
||
uint32_t aux_map_state_num = intel_aux_map_get_state_num(aux_map_ctx);
|
||
if (batch->last_aux_map_state != aux_map_state_num) {
|
||
invalidate_aux_map_state_per_engine(batch);
|
||
batch->last_aux_map_state = aux_map_state_num;
|
||
}
|
||
}
|
||
|
||
static void
|
||
init_aux_map_state(struct iris_batch *batch)
|
||
{
|
||
struct iris_screen *screen = batch->screen;
|
||
void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
|
||
if (!aux_map_ctx)
|
||
return;
|
||
|
||
uint64_t base_addr = intel_aux_map_get_base(aux_map_ctx);
|
||
assert(base_addr != 0 && align64(base_addr, 32 * 1024) == base_addr);
|
||
|
||
uint32_t reg = 0;
|
||
switch (batch->name) {
|
||
case IRIS_BATCH_COMPUTE:
|
||
if (iris_bufmgr_compute_engine_supported(screen->bufmgr)) {
|
||
reg = GENX(COMPCS0_AUX_TABLE_BASE_ADDR_num);
|
||
break;
|
||
}
|
||
/* fallthrough */
|
||
FALLTHROUGH;
|
||
case IRIS_BATCH_RENDER:
|
||
reg = GENX(GFX_AUX_TABLE_BASE_ADDR_num);
|
||
break;
|
||
case IRIS_BATCH_BLITTER:
|
||
#if GFX_VERx10 >= 125
|
||
reg = GENX(BCS_AUX_TABLE_BASE_ADDR_num);
|
||
#endif
|
||
break;
|
||
default:
|
||
UNREACHABLE("Invalid batch for aux map init.");
|
||
}
|
||
|
||
if (reg)
|
||
iris_load_register_imm64(batch, reg, base_addr);
|
||
}
|
||
#endif
|
||
|
||
struct push_bos {
|
||
struct {
|
||
struct iris_address addr;
|
||
uint32_t length;
|
||
} buffers[4];
|
||
int buffer_count;
|
||
uint32_t max_length;
|
||
};
|
||
|
||
static void
|
||
setup_constant_buffers(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
int stage,
|
||
struct push_bos *push_bos)
|
||
{
|
||
struct iris_shader_state *shs = &ice->state.shaders[stage];
|
||
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
|
||
|
||
uint32_t push_range_sum = 0;
|
||
|
||
int n = 0;
|
||
for (int i = 0; i < 4; i++) {
|
||
const struct iris_ubo_range *range = &shader->ubo_ranges[i];
|
||
|
||
if (range->length == 0)
|
||
continue;
|
||
|
||
push_range_sum += range->length;
|
||
|
||
if (range->length > push_bos->max_length)
|
||
push_bos->max_length = range->length;
|
||
|
||
/* Range block is a binding table index, map back to UBO index. */
|
||
unsigned block_index = iris_bti_to_group_index(
|
||
&shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
|
||
assert(block_index != IRIS_SURFACE_NOT_USED);
|
||
|
||
struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
|
||
struct iris_resource *res = (void *) cbuf->buffer;
|
||
|
||
assert(cbuf->buffer_offset % 32 == 0);
|
||
|
||
if (res)
|
||
iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_OTHER_READ);
|
||
|
||
push_bos->buffers[n].length = range->length;
|
||
push_bos->buffers[n].addr =
|
||
res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
|
||
: batch->screen->workaround_address;
|
||
n++;
|
||
}
|
||
|
||
/* From the 3DSTATE_CONSTANT_XS and 3DSTATE_CONSTANT_ALL programming notes:
|
||
*
|
||
* "The sum of all four read length fields must be less than or
|
||
* equal to the size of 64."
|
||
*/
|
||
assert(push_range_sum <= 64);
|
||
|
||
push_bos->buffer_count = n;
|
||
}
|
||
|
||
static void
|
||
emit_push_constant_packets(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
int stage,
|
||
const struct push_bos *push_bos)
|
||
{
|
||
UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
|
||
pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
|
||
|
||
#if GFX_VER >= 9
|
||
pkt.MOCS = isl_mocs(isl_dev, 0, false);
|
||
#endif
|
||
|
||
/* The Skylake PRM contains the following restriction:
|
||
*
|
||
* "The driver must ensure The following case does not occur
|
||
* without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
|
||
* buffer 3 read length equal to zero committed followed by a
|
||
* 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
|
||
* zero committed."
|
||
*
|
||
* To avoid this, we program the buffers in the highest slots.
|
||
* This way, slot 0 is only used if slot 3 is also used.
|
||
*/
|
||
const int n = push_bos->buffer_count;
|
||
assert(n <= 4);
|
||
const unsigned shift = 4 - n;
|
||
for (int i = 0; i < n; i++) {
|
||
pkt.ConstantBody.ReadLength[i + shift] =
|
||
push_bos->buffers[i].length;
|
||
pkt.ConstantBody.Buffer[i + shift] = push_bos->buffers[i].addr;
|
||
}
|
||
}
|
||
}
|
||
|
||
#if GFX_VER >= 12
|
||
static void
|
||
emit_null_push_constant_tbimr_workaround(struct iris_batch *batch)
|
||
{
|
||
struct isl_device *isl_dev = &batch->screen->isl_dev;
|
||
/* Pass a single-register push constant payload for the PS
|
||
* stage even if empty, since PS invocations with zero push
|
||
* constant cycles have been found to cause hangs with TBIMR
|
||
* enabled. See HSDES #22020184996.
|
||
*
|
||
* XXX - Use workaround infrastructure and final workaround
|
||
* when provided by hardware team.
|
||
*/
|
||
const struct iris_address null_addr = {
|
||
.bo = batch->screen->workaround_bo,
|
||
.offset = 1024,
|
||
};
|
||
const uint32_t num_dwords = 2 + 2 * 1;
|
||
uint32_t const_all[num_dwords];
|
||
uint32_t *dw = &const_all[0];
|
||
|
||
iris_pack_command(GENX(3DSTATE_CONSTANT_ALL), dw, all) {
|
||
all.DWordLength = num_dwords - 2;
|
||
all.MOCS = isl_mocs(isl_dev, 0, false);
|
||
all.ShaderUpdateEnable = (1 << MESA_SHADER_FRAGMENT);
|
||
all.PointerBufferMask = 1;
|
||
}
|
||
dw += 2;
|
||
|
||
_iris_pack_state(batch, GENX(3DSTATE_CONSTANT_ALL_DATA), dw, data) {
|
||
data.PointerToConstantBuffer = null_addr;
|
||
data.ConstantBufferReadLength = 1;
|
||
}
|
||
|
||
iris_batch_emit(batch, const_all, sizeof(uint32_t) * num_dwords);
|
||
}
|
||
|
||
static void
|
||
emit_push_constant_packet_all(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
uint32_t shader_mask,
|
||
const struct push_bos *push_bos)
|
||
{
|
||
struct isl_device *isl_dev = &batch->screen->isl_dev;
|
||
|
||
if (!push_bos) {
|
||
if (batch->screen->devinfo->needs_null_push_constant_tbimr_workaround &&
|
||
(shader_mask & (1 << MESA_SHADER_FRAGMENT))) {
|
||
emit_null_push_constant_tbimr_workaround(batch);
|
||
shader_mask &= ~(1 << MESA_SHADER_FRAGMENT);
|
||
}
|
||
|
||
if (shader_mask) {
|
||
iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), pc) {
|
||
pc.ShaderUpdateEnable = shader_mask;
|
||
pc.MOCS = iris_mocs(NULL, isl_dev, 0);
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
const uint32_t n = push_bos->buffer_count;
|
||
const uint32_t max_pointers = 4;
|
||
const uint32_t num_dwords = 2 + 2 * n;
|
||
uint32_t const_all[2 + 2 * max_pointers];
|
||
uint32_t *dw = &const_all[0];
|
||
|
||
assert(n <= max_pointers);
|
||
iris_pack_command(GENX(3DSTATE_CONSTANT_ALL), dw, all) {
|
||
all.DWordLength = num_dwords - 2;
|
||
all.MOCS = isl_mocs(isl_dev, 0, false);
|
||
all.ShaderUpdateEnable = shader_mask;
|
||
all.PointerBufferMask = (1 << n) - 1;
|
||
}
|
||
dw += 2;
|
||
|
||
for (int i = 0; i < n; i++) {
|
||
_iris_pack_state(batch, GENX(3DSTATE_CONSTANT_ALL_DATA),
|
||
dw + i * 2, data) {
|
||
data.PointerToConstantBuffer = push_bos->buffers[i].addr;
|
||
data.ConstantBufferReadLength = push_bos->buffers[i].length;
|
||
}
|
||
}
|
||
iris_batch_emit(batch, const_all, sizeof(uint32_t) * num_dwords);
|
||
}
|
||
#endif
|
||
|
||
void
|
||
genX(emit_depth_state_workarounds)(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
const struct isl_surf *surf)
|
||
{
|
||
#if INTEL_NEEDS_WA_1808121037
|
||
const bool is_d16_1x_msaa = surf->format == ISL_FORMAT_R16_UNORM &&
|
||
surf->samples == 1;
|
||
|
||
switch (ice->state.genx->depth_reg_mode) {
|
||
case IRIS_DEPTH_REG_MODE_HW_DEFAULT:
|
||
if (!is_d16_1x_msaa)
|
||
return;
|
||
break;
|
||
case IRIS_DEPTH_REG_MODE_D16_1X_MSAA:
|
||
if (is_d16_1x_msaa)
|
||
return;
|
||
break;
|
||
case IRIS_DEPTH_REG_MODE_UNKNOWN:
|
||
break;
|
||
}
|
||
|
||
/* We'll change some CHICKEN registers depending on the depth surface
|
||
* format. Do a depth flush and stall so the pipeline is not using these
|
||
* settings while we change the registers.
|
||
*/
|
||
iris_emit_end_of_pipe_sync(batch,
|
||
"Workaround: Stop pipeline for Wa_1808121037",
|
||
PIPE_CONTROL_DEPTH_STALL |
|
||
PIPE_CONTROL_DEPTH_CACHE_FLUSH);
|
||
|
||
/* Wa_1808121037
|
||
*
|
||
* To avoid sporadic corruptions “Set 0x7010[9] when Depth Buffer
|
||
* Surface Format is D16_UNORM , surface type is not NULL & 1X_MSAA”.
|
||
*/
|
||
iris_emit_reg(batch, GENX(COMMON_SLICE_CHICKEN1), reg) {
|
||
reg.HIZPlaneOptimizationdisablebit = is_d16_1x_msaa;
|
||
reg.HIZPlaneOptimizationdisablebitMask = true;
|
||
}
|
||
|
||
ice->state.genx->depth_reg_mode =
|
||
is_d16_1x_msaa ? IRIS_DEPTH_REG_MODE_D16_1X_MSAA :
|
||
IRIS_DEPTH_REG_MODE_HW_DEFAULT;
|
||
#endif
|
||
}
|
||
|
||
/* Calculate TBIMR tiling parameters adequate for the current pipeline
|
||
* setup. Return true if TBIMR should be enabled.
|
||
*/
|
||
UNUSED static bool
|
||
calculate_tile_dimensions(struct iris_context *ice,
|
||
unsigned *tile_width, unsigned *tile_height)
|
||
{
|
||
struct iris_screen *screen = (void *)ice->ctx.screen;
|
||
const struct intel_device_info *devinfo = screen->devinfo;
|
||
|
||
assert(GFX_VER == 12);
|
||
const unsigned aux_scale = ISL_MAIN_TO_CCS_SIZE_RATIO_XE;
|
||
|
||
/* Perform a rough calculation of the tile cache footprint of the
|
||
* pixel pipeline, approximating it as the sum of the amount of
|
||
* memory used per pixel by every render target, depth, stencil and
|
||
* auxiliary surfaces bound to the pipeline.
|
||
*/
|
||
unsigned pixel_size = 0;
|
||
|
||
struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
|
||
|
||
if (cso->width == 0 || cso->height == 0)
|
||
return false;
|
||
|
||
for (unsigned i = 0; i < cso->nr_cbufs; i++) {
|
||
const struct iris_surface *surf = (void *)ice->state.fb_cbufs[i];
|
||
|
||
if (surf) {
|
||
const struct iris_resource *res = (void *)surf->base.texture;
|
||
|
||
pixel_size += intel_calculate_surface_pixel_size(&res->surf);
|
||
|
||
/* XXX - Pessimistic, in some cases it might be helpful to neglect
|
||
* aux surface traffic.
|
||
*/
|
||
if (ice->state.draw_aux_usage[i]) {
|
||
pixel_size += intel_calculate_surface_pixel_size(&res->aux.surf);
|
||
|
||
if (isl_aux_usage_has_ccs(res->aux.usage)) {
|
||
pixel_size += DIV_ROUND_UP(intel_calculate_surface_pixel_size(
|
||
&res->surf), aux_scale);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (cso->zsbuf.texture) {
|
||
struct iris_resource *zres;
|
||
struct iris_resource *sres;
|
||
iris_get_depth_stencil_resources(cso->zsbuf.texture, &zres, &sres);
|
||
|
||
if (zres) {
|
||
pixel_size += intel_calculate_surface_pixel_size(&zres->surf);
|
||
|
||
/* XXX - Pessimistic, in some cases it might be helpful to neglect
|
||
* aux surface traffic.
|
||
*/
|
||
if (zres->aux.usage != ISL_AUX_USAGE_NONE) {
|
||
pixel_size += intel_calculate_surface_pixel_size(&zres->aux.surf);
|
||
|
||
if (isl_aux_usage_has_ccs(zres->aux.usage)) {
|
||
pixel_size += DIV_ROUND_UP(intel_calculate_surface_pixel_size(
|
||
&zres->surf), aux_scale);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (sres) {
|
||
pixel_size += intel_calculate_surface_pixel_size(&sres->surf);
|
||
}
|
||
}
|
||
|
||
/* Compute a tile layout that allows reasonable utilization of the
|
||
* tile cache based on the per-pixel cache footprint estimated
|
||
* above.
|
||
*/
|
||
intel_calculate_tile_dimensions(devinfo, screen->l3_config_3d,
|
||
32, 32, cso->width, cso->height, pixel_size,
|
||
tile_width, tile_height);
|
||
|
||
/* Perform TBIMR tile passes only if the framebuffer covers more
|
||
* than a single tile.
|
||
*/
|
||
return *tile_width < cso->width || *tile_height < cso->height;
|
||
}
|
||
|
||
static void
|
||
iris_preemption_streamout_wa(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
bool enable)
|
||
{
|
||
#if GFX_VERx10 >= 120
|
||
if (!intel_needs_workaround(batch->screen->devinfo, 16013994831))
|
||
return;
|
||
|
||
iris_emit_reg(batch, GENX(CS_CHICKEN1), reg) {
|
||
reg.DisablePreemptionandHighPriorityPausingdueto3DPRIMITIVECommand = !enable;
|
||
reg.DisablePreemptionandHighPriorityPausingdueto3DPRIMITIVECommandMask = true;
|
||
}
|
||
|
||
/* Emit CS_STALL and 250 noops. */
|
||
iris_emit_pipe_control_flush(batch, "workaround: Wa_16013994831",
|
||
PIPE_CONTROL_CS_STALL);
|
||
for (unsigned i = 0; i < 250; i++)
|
||
iris_emit_cmd(batch, GENX(MI_NOOP), noop);
|
||
|
||
ice->state.genx->object_preemption = enable;
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
shader_program_uses_primitive_id(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
struct iris_compiled_shader *shader,
|
||
mesa_shader_stage stage,
|
||
bool *uses_primitive_id)
|
||
{
|
||
switch (stage) {
|
||
case MESA_SHADER_TESS_CTRL: {
|
||
struct iris_tcs_data *tcs_data = iris_tcs_data(shader);
|
||
*uses_primitive_id |= tcs_data->include_primitive_id;
|
||
break;
|
||
}
|
||
case MESA_SHADER_TESS_EVAL: {
|
||
struct iris_tes_data *tes_data = iris_tes_data(shader);
|
||
*uses_primitive_id |= tes_data->include_primitive_id;
|
||
break;
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
|
||
struct iris_compiled_shader *gs_shader =
|
||
ice->shaders.prog[MESA_SHADER_GEOMETRY];
|
||
const struct iris_gs_data *gs_data =
|
||
gs_shader ? iris_gs_data(gs_shader) : NULL;
|
||
|
||
*uses_primitive_id |= gs_data && gs_data->include_primitive_id;
|
||
}
|
||
|
||
static void
|
||
emit_wa_18020335297_dummy_draw(struct iris_batch *batch)
|
||
{
|
||
#if GFX_VERx10 >= 125
|
||
iris_emit_cmd(batch, GENX(3DSTATE_VFG), vfg) {
|
||
vfg.DistributionMode = RR_STRICT;
|
||
}
|
||
iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
|
||
vf.GeometryDistributionEnable =
|
||
batch->screen->driconf.enable_vf_distribution;
|
||
}
|
||
#endif
|
||
|
||
#if GFX_VER >= 12
|
||
iris_emit_cmd(batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr) {
|
||
pr.ReplicaMask = 1;
|
||
}
|
||
#endif
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_RASTER), rr) {
|
||
rr.CullMode = CULLMODE_NONE;
|
||
rr.FrontFaceFillMode = FILL_MODE_SOLID;
|
||
rr.BackFaceFillMode = FILL_MODE_SOLID;
|
||
}
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) { }
|
||
iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgvs) { }
|
||
|
||
#if GFX_VER >= 11
|
||
iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS_2), sgvs2) { }
|
||
#endif
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_CLIP), clip) {
|
||
clip.ClipEnable = true;
|
||
clip.ClipMode = CLIPMODE_REJECT_ALL;
|
||
}
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_VS), vs) { }
|
||
iris_emit_cmd(batch, GENX(3DSTATE_GS), gs) { }
|
||
iris_emit_cmd(batch, GENX(3DSTATE_HS), hs) { }
|
||
iris_emit_cmd(batch, GENX(3DSTATE_TE), te) { }
|
||
iris_emit_cmd(batch, GENX(3DSTATE_DS), ds) { }
|
||
iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), so) { }
|
||
|
||
uint32_t vertex_elements[1 + 2 * GENX(VERTEX_ELEMENT_STATE_length)];
|
||
uint32_t *ve_pack_dest = &vertex_elements[1];
|
||
|
||
iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), vertex_elements, ve) {
|
||
ve.DWordLength = 1 + GENX(VERTEX_ELEMENT_STATE_length) * 2 -
|
||
GENX(3DSTATE_VERTEX_ELEMENTS_length_bias);
|
||
}
|
||
|
||
for (int i = 0; i < 2; i++) {
|
||
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
|
||
ve.Valid = true;
|
||
ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
|
||
ve.Component0Control = VFCOMP_STORE_0;
|
||
ve.Component1Control = VFCOMP_STORE_0;
|
||
ve.Component2Control = i == 0 ? VFCOMP_STORE_0 : VFCOMP_STORE_1_FP;
|
||
ve.Component3Control = i == 0 ? VFCOMP_STORE_0 : VFCOMP_STORE_1_FP;
|
||
}
|
||
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
|
||
}
|
||
|
||
iris_batch_emit(batch, vertex_elements, sizeof(uint32_t) *
|
||
(1 + 2 * GENX(VERTEX_ELEMENT_STATE_length)));
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
|
||
topo.PrimitiveTopologyType = _3DPRIM_TRILIST;
|
||
}
|
||
|
||
/* Emit dummy draw per slice. */
|
||
for (unsigned i = 0; i < batch->screen->devinfo->num_slices; i++) {
|
||
iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
|
||
prim.VertexCountPerInstance = 3;
|
||
prim.PrimitiveTopologyType = _3DPRIM_TRILIST;
|
||
prim.InstanceCount = 1;
|
||
prim.VertexAccessType = SEQUENTIAL;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
setup_autostrip_state(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
bool enable)
|
||
{
|
||
#if GFX_VERx10 >= 200
|
||
if (ice->state.autostrip_state != enable) {
|
||
iris_emit_pipe_control_flush(batch,
|
||
"Wa_14024997852",
|
||
PIPE_CONTROL_CS_STALL);
|
||
/* VF */
|
||
iris_emit_reg(batch, GENX(VFL_SCRATCH_PAD), vfl) {
|
||
vfl.AutostripDisable = !enable;
|
||
vfl.PartialAutostripDisable = !enable;
|
||
vfl.AutostripDisableMask = true;
|
||
vfl.PartialAutostripDisableMask = true;
|
||
}
|
||
/* TE and Mesh. */
|
||
iris_emit_reg(batch, GENX(FF_MODE), ff) {
|
||
ff.TEAutostripDisable = !enable;
|
||
ff.MeshShaderAutostripDisable = !enable;
|
||
ff.MeshShaderPartialAutostripDisable = !enable;
|
||
}
|
||
ice->state.autostrip_state = enable;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
iris_emit_binding_tables(struct iris_context *ice, struct iris_batch *batch,
|
||
uint64_t stage_dirty)
|
||
{
|
||
struct iris_binder *binder = &ice->state.binder;
|
||
|
||
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
|
||
if (stage_dirty & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
|
||
iris_populate_binding_table(ice, batch, stage, false);
|
||
}
|
||
|
||
/* Gfx9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted
|
||
* in order to commit constants. TODO: Investigate "Disable Gather
|
||
* at Set Shader" to go back to legacy mode...
|
||
*/
|
||
if (stage_dirty & ((IRIS_STAGE_DIRTY_BINDINGS_VS |
|
||
(GFX_VER == 9 ? IRIS_STAGE_DIRTY_CONSTANTS_VS : 0))
|
||
<< stage)) {
|
||
iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
|
||
ptr._3DCommandSubOpcode = 38 + stage;
|
||
ptr.PointertoVSBindingTable =
|
||
binder->bt_offset[stage] >> IRIS_BT_OFFSET_SHIFT;
|
||
}
|
||
}
|
||
|
||
if (stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage) &&
|
||
ice->shaders.prog[stage]) {
|
||
iris_upload_sampler_states(ice, stage);
|
||
|
||
struct iris_shader_state *shs = &ice->state.shaders[stage];
|
||
struct pipe_resource *res = shs->sampler_table.res;
|
||
if (res)
|
||
iris_use_pinned_bo(batch, iris_resource_bo(res), false,
|
||
IRIS_DOMAIN_NONE);
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
|
||
ptr._3DCommandSubOpcode = 43 + stage;
|
||
ptr.PointertoVSSamplerState = shs->sampler_table.offset;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
iris_emit_push_constants(struct iris_context *ice, struct iris_batch *batch,
|
||
uint64_t dirty, uint64_t stage_dirty)
|
||
{
|
||
/* Wa_1604061319
|
||
*
|
||
* 3DSTATE_CONSTANT_* needs to be programmed before BTP_*
|
||
*
|
||
* Testing shows that all the 3DSTATE_CONSTANT_XS need to be emitted if
|
||
* any stage has a dirty binding table.
|
||
*/
|
||
const bool emit_const_wa = INTEL_NEEDS_WA_1604061319 &&
|
||
((dirty & IRIS_DIRTY_RENDER_BUFFER) ||
|
||
(stage_dirty & IRIS_ALL_STAGE_DIRTY_BINDINGS_FOR_RENDER));
|
||
|
||
#if GFX_VER >= 12
|
||
uint32_t nobuffer_stages = 0;
|
||
#endif
|
||
|
||
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
|
||
if (!(stage_dirty & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)) &&
|
||
!emit_const_wa)
|
||
continue;
|
||
|
||
struct iris_shader_state *shs = &ice->state.shaders[stage];
|
||
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
|
||
|
||
if (!shader)
|
||
continue;
|
||
|
||
if (shs->sysvals_need_upload)
|
||
upload_sysvals(ice, stage, NULL);
|
||
|
||
struct push_bos push_bos = {};
|
||
setup_constant_buffers(ice, batch, stage, &push_bos);
|
||
|
||
#if GFX_VER >= 12
|
||
/* If this stage doesn't have any push constants, emit it later in a
|
||
* single CONSTANT_ALL packet with all the other stages.
|
||
*/
|
||
if (push_bos.buffer_count == 0) {
|
||
nobuffer_stages |= 1 << stage;
|
||
continue;
|
||
}
|
||
|
||
/* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
|
||
* contains only 5 bits, so we can only use it for buffers smaller than
|
||
* 32.
|
||
*
|
||
* According to Wa_16011448509, Gfx12.0 misinterprets some address bits
|
||
* in 3DSTATE_CONSTANT_ALL. It should still be safe to use the command
|
||
* for disabling stages, where all address bits are zero. However, we
|
||
* can't safely use it for general buffers with arbitrary addresses.
|
||
* Just fall back to the individual 3DSTATE_CONSTANT_XS commands in that
|
||
* case.
|
||
*/
|
||
if (push_bos.max_length < 32 && GFX_VERx10 > 120) {
|
||
emit_push_constant_packet_all(ice, batch, 1 << stage, &push_bos);
|
||
continue;
|
||
}
|
||
#endif
|
||
emit_push_constant_packets(ice, batch, stage, &push_bos);
|
||
}
|
||
|
||
#if GFX_VER >= 12
|
||
if (nobuffer_stages)
|
||
/* Wa_16011448509: all address bits are zero */
|
||
emit_push_constant_packet_all(ice, batch, nobuffer_stages, NULL);
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
iris_upload_dirty_render_state(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
const struct pipe_draw_info *draw,
|
||
bool skip_vb_params)
|
||
{
|
||
struct iris_screen *screen = batch->screen;
|
||
struct iris_border_color_pool *border_color_pool =
|
||
iris_bufmgr_get_border_color_pool(screen->bufmgr);
|
||
|
||
/* Re-emit 3DSTATE_DS before any 3DPRIMITIVE when tessellation is on */
|
||
if (intel_needs_workaround(batch->screen->devinfo, 22018402687) &&
|
||
ice->shaders.prog[MESA_SHADER_TESS_EVAL])
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TES;
|
||
|
||
/* Reprogram SF_CLIP & CC_STATE together. This reproduces the windows driver programming.
|
||
* Since blorp disables 3DSTATE_CLIP::ClipEnable and dirties CC_STATE, this takes care of
|
||
* Wa_14016820455 which requires SF_CLIP to be reprogrammed whenever
|
||
* 3DSTATE_CLIP::ClipEnable is enabled.
|
||
*/
|
||
if (ice->state.dirty & (IRIS_DIRTY_CC_VIEWPORT | IRIS_DIRTY_SF_CL_VIEWPORT))
|
||
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT | IRIS_DIRTY_SF_CL_VIEWPORT;
|
||
|
||
uint64_t dirty = ice->state.dirty;
|
||
uint64_t stage_dirty = ice->state.stage_dirty;
|
||
|
||
if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER) &&
|
||
!(stage_dirty & IRIS_ALL_STAGE_DIRTY_FOR_RENDER))
|
||
return;
|
||
|
||
struct iris_genx_state *genx = ice->state.genx;
|
||
struct iris_fs_data *fs_data =
|
||
iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
|
||
|
||
/* Wa_14024997852: When Draw Cut Index or primitive id is enabled
|
||
* and topology is tri list, we need to toggle autostrip.
|
||
*
|
||
* Note that we do not take primitive id in to account because it
|
||
* is mentioned only in xe2 clone of this wa and autostrip has been
|
||
* disabled globally on xe2 (+xe3 a0) by kernel due to 14021490052
|
||
* workaround.
|
||
*/
|
||
if (intel_needs_workaround(batch->screen->devinfo, 14024997852) &&
|
||
dirty & (IRIS_DIRTY_VF | IRIS_DIRTY_VF_TOPOLOGY)) {
|
||
bool tri_list_topology =
|
||
translate_prim_type(draw->mode, ice->state.vertices_per_patch) ==
|
||
_3DPRIM_TRILIST;
|
||
|
||
/* Enable autostrip unless having triangle list topology and
|
||
* IndexedDrawCutIndexEnable (only used on primitive_restart).
|
||
*/
|
||
setup_autostrip_state(ice, batch,
|
||
tri_list_topology &&
|
||
draw->primitive_restart);
|
||
}
|
||
|
||
/* When MSAA is enabled, instead of using BLENDFACTOR_ZERO use
|
||
* CONST_COLOR, CONST_ALPHA and supply zero by using blend constants.
|
||
*/
|
||
bool needs_wa_14018912822 =
|
||
screen->driconf.intel_enable_wa_14018912822 &&
|
||
intel_needs_workaround(batch->screen->devinfo, 14018912822) &&
|
||
util_framebuffer_get_num_samples(&ice->state.framebuffer) > 1;
|
||
|
||
if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
|
||
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
|
||
uint32_t cc_vp_address;
|
||
bool wa_18020335297_applied = false;
|
||
|
||
/* Wa_18020335297 - Apply the WA when viewport ptr is reprogrammed. */
|
||
if (intel_needs_workaround(screen->devinfo, 18020335297) &&
|
||
batch->name == IRIS_BATCH_RENDER &&
|
||
ice->state.viewport_ptr_set) {
|
||
emit_wa_18020335297_dummy_draw(batch);
|
||
wa_18020335297_applied = true;
|
||
}
|
||
|
||
/* XXX: could avoid streaming for depth_clip [0,1] case. */
|
||
uint32_t *cc_vp_map =
|
||
stream_state(batch, ice->state.dynamic_uploader,
|
||
&ice->state.last_res.cc_vp,
|
||
4 * ice->state.num_viewports *
|
||
GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
|
||
for (int i = 0; i < ice->state.num_viewports; i++) {
|
||
float zmin, zmax;
|
||
iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
|
||
ice->state.window_space_position,
|
||
&zmin, &zmax);
|
||
if (cso_rast->depth_clip_near)
|
||
zmin = 0.0;
|
||
if (cso_rast->depth_clip_far)
|
||
zmax = 1.0;
|
||
|
||
iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
|
||
ccv.MinimumDepth = zmin;
|
||
ccv.MaximumDepth = zmax;
|
||
}
|
||
|
||
cc_vp_map += GENX(CC_VIEWPORT_length);
|
||
}
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
|
||
ptr.CCViewportPointer = cc_vp_address;
|
||
}
|
||
|
||
if (wa_18020335297_applied) {
|
||
#if GFX_VER >= 12
|
||
iris_emit_cmd(batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr) { }
|
||
#endif
|
||
/* Dirty all emitted WA state to make sure that current real
|
||
* state is restored.
|
||
*/
|
||
dirty |= IRIS_DIRTY_VFG |
|
||
IRIS_DIRTY_VF |
|
||
IRIS_DIRTY_RASTER |
|
||
IRIS_DIRTY_VF_STATISTICS |
|
||
IRIS_DIRTY_VF_SGVS |
|
||
IRIS_DIRTY_CLIP |
|
||
IRIS_DIRTY_STREAMOUT |
|
||
IRIS_DIRTY_VERTEX_ELEMENTS |
|
||
IRIS_DIRTY_VF_TOPOLOGY;
|
||
|
||
for (int stage = 0; stage < MESA_SHADER_FRAGMENT; stage++) {
|
||
if (ice->shaders.prog[stage])
|
||
stage_dirty |= (IRIS_STAGE_DIRTY_VS << stage);
|
||
}
|
||
}
|
||
ice->state.viewport_ptr_set = true;
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
|
||
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
|
||
int32_t x_min, y_min, x_max, y_max;
|
||
uint32_t sf_cl_vp_address;
|
||
uint32_t *vp_map =
|
||
stream_state(batch, ice->state.dynamic_uploader,
|
||
&ice->state.last_res.sf_cl_vp,
|
||
4 * ice->state.num_viewports *
|
||
GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
|
||
|
||
x_min = ice->state.render_area.x;
|
||
y_min = ice->state.render_area.y;
|
||
x_max = ice->state.render_area.width;
|
||
y_max = ice->state.render_area.height;
|
||
|
||
for (unsigned i = 0; i < ice->state.num_viewports; i++) {
|
||
const struct pipe_viewport_state *state = &ice->state.viewports[i];
|
||
float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
|
||
|
||
float vp_xmin = viewport_extent(state, 0, -1.0f);
|
||
float vp_xmax = viewport_extent(state, 0, 1.0f);
|
||
float vp_ymin = viewport_extent(state, 1, -1.0f);
|
||
float vp_ymax = viewport_extent(state, 1, 1.0f);
|
||
|
||
intel_calculate_guardband_size(x_min, x_max, y_min, y_max,
|
||
state->scale[0], state->scale[1],
|
||
state->translate[0], state->translate[1],
|
||
&gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
|
||
|
||
iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
|
||
vp.ViewportMatrixElementm00 = state->scale[0];
|
||
vp.ViewportMatrixElementm11 = state->scale[1];
|
||
vp.ViewportMatrixElementm22 = state->scale[2];
|
||
vp.ViewportMatrixElementm30 = state->translate[0];
|
||
vp.ViewportMatrixElementm31 = state->translate[1];
|
||
vp.ViewportMatrixElementm32 = state->translate[2];
|
||
vp.XMinClipGuardband = gb_xmin;
|
||
vp.XMaxClipGuardband = gb_xmax;
|
||
vp.YMinClipGuardband = gb_ymin;
|
||
vp.YMaxClipGuardband = gb_ymax;
|
||
vp.XMinViewPort = MAX2(vp_xmin, 0);
|
||
vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
|
||
vp.YMinViewPort = MAX2(vp_ymin, 0);
|
||
vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
|
||
}
|
||
|
||
vp_map += GENX(SF_CLIP_VIEWPORT_length);
|
||
}
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
|
||
ptr.SFClipViewportPointer = sf_cl_vp_address;
|
||
}
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_URB) {
|
||
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
|
||
if (!ice->shaders.prog[i]) {
|
||
ice->shaders.urb.cfg.size[i] = 1;
|
||
} else {
|
||
struct iris_vue_data *vue_data =
|
||
iris_vue_data(ice->shaders.prog[i]);
|
||
ice->shaders.urb.cfg.size[i] = vue_data->urb_entry_size;
|
||
}
|
||
assert(ice->shaders.urb.cfg.size[i] != 0);
|
||
}
|
||
|
||
genX(emit_urb_config)(batch,
|
||
ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
|
||
ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_BLEND_STATE) {
|
||
struct iris_blend_state *cso_blend = ice->state.cso_blend;
|
||
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
|
||
struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
|
||
|
||
bool color_blend_zero = false;
|
||
bool alpha_blend_zero = false;
|
||
|
||
/* Always write at least one BLEND_STATE - the final RT message will
|
||
* reference BLEND_STATE[0] even if there aren't color writes. There
|
||
* may still be alpha testing, computed depth, and so on.
|
||
*/
|
||
const int rt_dwords =
|
||
MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
|
||
|
||
uint32_t blend_offset;
|
||
uint32_t *blend_map =
|
||
stream_state(batch, ice->state.dynamic_uploader,
|
||
&ice->state.last_res.blend,
|
||
96, 64, &blend_offset);
|
||
|
||
/* Copy of blend entries for merging dynamic changes. */
|
||
uint32_t blend_entries[4 * rt_dwords];
|
||
memcpy(blend_entries, &cso_blend->blend_state[1], sizeof(blend_entries));
|
||
|
||
unsigned cbufs = MAX2(cso_fb->nr_cbufs, 1);
|
||
|
||
uint32_t *blend_entry = blend_entries;
|
||
for (unsigned i = 0; i < cbufs; i++) {
|
||
int dst_blend_factor = cso_blend->ps_dst_blend_factor[i];
|
||
int dst_alpha_blend_factor = cso_blend->ps_dst_alpha_blend_factor[i];
|
||
uint32_t entry[GENX(BLEND_STATE_ENTRY_length)];
|
||
iris_pack_state(GENX(BLEND_STATE_ENTRY), entry, be) {
|
||
if (needs_wa_14018912822) {
|
||
if (dst_blend_factor == BLENDFACTOR_ZERO) {
|
||
dst_blend_factor = BLENDFACTOR_CONST_COLOR;
|
||
color_blend_zero = true;
|
||
}
|
||
if (dst_alpha_blend_factor == BLENDFACTOR_ZERO) {
|
||
dst_alpha_blend_factor = BLENDFACTOR_CONST_ALPHA;
|
||
alpha_blend_zero = true;
|
||
}
|
||
}
|
||
be.DestinationBlendFactor = dst_blend_factor;
|
||
be.DestinationAlphaBlendFactor = dst_alpha_blend_factor;
|
||
}
|
||
|
||
/* Merge entry. */
|
||
uint32_t *dst = blend_entry;
|
||
uint32_t *src = entry;
|
||
for (unsigned j = 0; j < GENX(BLEND_STATE_ENTRY_length); j++)
|
||
*dst |= *src;
|
||
|
||
blend_entry += GENX(BLEND_STATE_ENTRY_length);
|
||
}
|
||
|
||
/* Blend constants modified for Wa_14018912822. */
|
||
if (ice->state.color_blend_zero != color_blend_zero) {
|
||
ice->state.color_blend_zero = color_blend_zero;
|
||
dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
|
||
}
|
||
if (ice->state.alpha_blend_zero != alpha_blend_zero) {
|
||
ice->state.alpha_blend_zero = alpha_blend_zero;
|
||
dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
|
||
}
|
||
|
||
uint32_t blend_state_header;
|
||
iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
|
||
bs.AlphaTestEnable = cso_zsa->alpha_enabled;
|
||
bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha_func);
|
||
}
|
||
|
||
blend_map[0] = blend_state_header | cso_blend->blend_state[0];
|
||
memcpy(&blend_map[1], blend_entries, 4 * rt_dwords);
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
|
||
ptr.BlendStatePointer = blend_offset;
|
||
ptr.BlendStatePointerValid = true;
|
||
}
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
|
||
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
|
||
#if GFX_VER == 8
|
||
struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
|
||
#endif
|
||
uint32_t cc_offset;
|
||
void *cc_map =
|
||
stream_state(batch, ice->state.dynamic_uploader,
|
||
&ice->state.last_res.color_calc,
|
||
sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
|
||
64, &cc_offset);
|
||
iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
|
||
cc.AlphaTestFormat = ALPHATEST_FLOAT32;
|
||
cc.AlphaReferenceValueAsFLOAT32 = cso->alpha_ref_value;
|
||
cc.BlendConstantColorRed = ice->state.color_blend_zero ?
|
||
0.0 : ice->state.blend_color.color[0];
|
||
cc.BlendConstantColorGreen = ice->state.color_blend_zero ?
|
||
0.0 : ice->state.blend_color.color[1];
|
||
cc.BlendConstantColorBlue = ice->state.color_blend_zero ?
|
||
0.0 : ice->state.blend_color.color[2];
|
||
cc.BlendConstantColorAlpha = ice->state.alpha_blend_zero ?
|
||
0.0 : ice->state.blend_color.color[3];
|
||
#if GFX_VER == 8
|
||
cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
|
||
cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
|
||
#endif
|
||
}
|
||
iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
|
||
ptr.ColorCalcStatePointer = cc_offset;
|
||
ptr.ColorCalcStatePointerValid = true;
|
||
}
|
||
}
|
||
|
||
#if GFX_VERx10 == 125
|
||
if (dirty & (IRIS_DIRTY_RENDER_BUFFER | IRIS_DIRTY_DEPTH_BUFFER)) {
|
||
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
|
||
unsigned tile_width, tile_height;
|
||
|
||
ice->state.use_tbimr = batch->screen->driconf.enable_tbimr &&
|
||
calculate_tile_dimensions(ice, &tile_width, &tile_height);
|
||
|
||
if (ice->state.use_tbimr) {
|
||
/* Use a batch size of 128 polygons per slice as recommended
|
||
* by BSpec 68436 "TBIMR Programming".
|
||
*/
|
||
const unsigned num_slices = screen->devinfo->num_slices;
|
||
const unsigned batch_size = DIV_ROUND_UP(num_slices, 2) * 256;
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_TBIMR_TILE_PASS_INFO), tbimr) {
|
||
tbimr.TileRectangleHeight = tile_height;
|
||
tbimr.TileRectangleWidth = tile_width;
|
||
tbimr.VerticalTileCount = DIV_ROUND_UP(cso_fb->height, tile_height);
|
||
tbimr.HorizontalTileCount = DIV_ROUND_UP(cso_fb->width, tile_width);
|
||
tbimr.TBIMRBatchSize = util_logbase2(batch_size) - 5;
|
||
tbimr.TileBoxCheck = true;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
iris_emit_push_constants(ice, batch, dirty, stage_dirty);
|
||
iris_emit_binding_tables(ice, batch, stage_dirty);
|
||
|
||
if (GFX_VER >= 11 && (dirty & IRIS_DIRTY_RENDER_BUFFER)) {
|
||
// XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
|
||
// XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
|
||
|
||
/* The PIPE_CONTROL command description says:
|
||
*
|
||
* "Whenever a Binding Table Index (BTI) used by a Render Target
|
||
* Message points to a different RENDER_SURFACE_STATE, SW must issue a
|
||
* Render Target Cache Flush by enabling this bit. When render target
|
||
* flush is set due to new association of BTI, PS Scoreboard Stall bit
|
||
* must be set in this packet."
|
||
*/
|
||
// XXX: does this need to happen at 3DSTATE_BTP_PS time?
|
||
iris_emit_pipe_control_flush(batch, "workaround: RT BTI change [draw]",
|
||
PIPE_CONTROL_RENDER_TARGET_FLUSH |
|
||
PIPE_CONTROL_STALL_AT_SCOREBOARD);
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_RENDER_BUFFER)
|
||
trace_framebuffer_state(&batch->trace, NULL, &ice->state.framebuffer);
|
||
|
||
if (ice->state.need_border_colors)
|
||
iris_use_pinned_bo(batch, border_color_pool->bo, false, IRIS_DOMAIN_NONE);
|
||
|
||
if (dirty & IRIS_DIRTY_MULTISAMPLE) {
|
||
iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
|
||
ms.PixelLocation =
|
||
ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
|
||
if (ice->state.framebuffer.samples > 0)
|
||
ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
|
||
}
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
|
||
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
|
||
ms.SampleMask = ice->state.sample_mask;
|
||
}
|
||
}
|
||
|
||
#if GFX_VERx10 >= 125
|
||
/* This is only used on >= gfx125 for dynamic 3DSTATE_TE and
|
||
* 3DSTATE_VFG emission related workarounds.
|
||
*/
|
||
bool program_uses_primitive_id = false;
|
||
|
||
/* Check if FS stage will use primitive ID overrides. */
|
||
const struct intel_vue_map *last_vue_map =
|
||
&iris_vue_data(ice->shaders.last_vue_shader)->vue_map;
|
||
if ((fs_data->inputs & VARYING_BIT_PRIMITIVE_ID) &&
|
||
last_vue_map->varying_to_slot[VARYING_SLOT_PRIMITIVE_ID] == -1) {
|
||
program_uses_primitive_id = true;
|
||
}
|
||
#endif
|
||
|
||
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
|
||
if (!(stage_dirty & (IRIS_STAGE_DIRTY_VS << stage)))
|
||
continue;
|
||
|
||
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
|
||
|
||
if (shader) {
|
||
struct iris_resource *cache = (void *) shader->assembly.res;
|
||
iris_use_pinned_bo(batch, cache->bo, false, IRIS_DOMAIN_NONE);
|
||
|
||
uint32_t scratch_addr =
|
||
pin_scratch_space(ice, batch, shader, stage);
|
||
|
||
#if GFX_VERx10 >= 125
|
||
shader_program_uses_primitive_id(ice, batch, shader, stage,
|
||
&program_uses_primitive_id);
|
||
#endif
|
||
|
||
if (stage == MESA_SHADER_FRAGMENT) {
|
||
UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
|
||
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
|
||
|
||
uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
|
||
_iris_pack_command(batch, GENX(3DSTATE_PS), ps_state, ps) {
|
||
#if GFX_VER >= 9
|
||
struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(shader->brw_prog_data);
|
||
#else
|
||
struct elk_wm_prog_data *wm_prog_data = elk_wm_prog_data(shader->elk_prog_data);
|
||
#endif
|
||
intel_set_ps_dispatch_state(&ps, batch->screen->devinfo,
|
||
wm_prog_data, util_framebuffer_get_num_samples(cso_fb),
|
||
0 /* msaa_flags */);
|
||
|
||
#if GFX_VER == 12
|
||
assert(fs_data->dispatch_multi == 0 ||
|
||
(fs_data->dispatch_multi == 16 && fs_data->max_polygons == 2));
|
||
ps.DualSIMD8DispatchEnable = fs_data->dispatch_multi;
|
||
/* XXX - No major improvement observed from enabling
|
||
* overlapping subspans, but it could be helpful
|
||
* in theory when the requirements listed on the
|
||
* BSpec page for 3DSTATE_PS_BODY are met.
|
||
*/
|
||
ps.OverlappingSubspansEnable = false;
|
||
#endif
|
||
|
||
#if GFX_VER >= 9
|
||
ps.DispatchGRFStartRegisterForConstantSetupData0 =
|
||
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
|
||
ps.DispatchGRFStartRegisterForConstantSetupData1 =
|
||
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
|
||
#if GFX_VER < 20
|
||
ps.DispatchGRFStartRegisterForConstantSetupData2 =
|
||
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
|
||
#endif
|
||
|
||
ps.KernelStartPointer0 = KSP(shader) +
|
||
brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
|
||
ps.KernelStartPointer1 = KSP(shader) +
|
||
brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
|
||
#if GFX_VER < 20
|
||
ps.KernelStartPointer2 = KSP(shader) +
|
||
brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
|
||
#endif
|
||
#else
|
||
ps.DispatchGRFStartRegisterForConstantSetupData0 =
|
||
elk_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
|
||
ps.DispatchGRFStartRegisterForConstantSetupData1 =
|
||
elk_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
|
||
ps.DispatchGRFStartRegisterForConstantSetupData2 =
|
||
elk_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
|
||
|
||
ps.KernelStartPointer0 = KSP(shader) +
|
||
elk_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
|
||
ps.KernelStartPointer1 = KSP(shader) +
|
||
elk_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
|
||
ps.KernelStartPointer2 = KSP(shader) +
|
||
elk_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
|
||
#endif
|
||
|
||
#if GFX_VERx10 >= 125
|
||
ps.ScratchSpaceBuffer = scratch_addr >> SCRATCH_SPACE_BUFFER_SHIFT;
|
||
#else
|
||
ps.ScratchSpaceBasePointer =
|
||
rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE);
|
||
#endif
|
||
}
|
||
|
||
uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
|
||
iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
|
||
#if GFX_VER >= 9
|
||
if (!fs_data->uses_sample_mask)
|
||
psx.InputCoverageMaskState = ICMS_NONE;
|
||
else if (fs_data->post_depth_coverage)
|
||
psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
|
||
else if (fs_data->inner_coverage &&
|
||
cso->conservative_rasterization)
|
||
psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
|
||
else
|
||
psx.InputCoverageMaskState = ICMS_NORMAL;
|
||
#else
|
||
psx.PixelShaderUsesInputCoverageMask =
|
||
fs_data->uses_sample_mask;
|
||
#endif
|
||
}
|
||
|
||
uint32_t *shader_ps = (uint32_t *) shader->derived_data;
|
||
uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
|
||
iris_emit_merge(batch, shader_ps, ps_state,
|
||
GENX(3DSTATE_PS_length));
|
||
iris_emit_merge(batch, shader_psx, psx_state,
|
||
GENX(3DSTATE_PS_EXTRA_length));
|
||
#if GFX_VERx10 >= 125
|
||
} else if (stage == MESA_SHADER_TESS_EVAL) {
|
||
uint32_t te_state[GENX(3DSTATE_TE_length)] = { 0 };
|
||
iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
|
||
if (intel_needs_workaround(screen->devinfo, 14015055625) &&
|
||
program_uses_primitive_id)
|
||
te.TessellationDistributionMode = TEDMODE_OFF;
|
||
else if (intel_needs_workaround(screen->devinfo, 22012699309))
|
||
te.TessellationDistributionMode = TEDMODE_RR_STRICT;
|
||
else
|
||
te.TessellationDistributionMode = TEDMODE_RR_FREE;
|
||
|
||
if (!screen->driconf.enable_te_distribution)
|
||
te.TessellationDistributionMode = TEDMODE_OFF;
|
||
}
|
||
|
||
uint32_t ds_state[GENX(3DSTATE_DS_length)] = { 0 };
|
||
iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
|
||
if (scratch_addr)
|
||
ds.ScratchSpaceBuffer =
|
||
scratch_addr >> SCRATCH_SPACE_BUFFER_SHIFT;
|
||
}
|
||
|
||
uint32_t *shader_ds = (uint32_t *) shader->derived_data;
|
||
uint32_t *shader_te = shader_ds + GENX(3DSTATE_DS_length);
|
||
|
||
iris_emit_merge(batch, shader_ds, ds_state,
|
||
GENX(3DSTATE_DS_length));
|
||
iris_emit_merge(batch, shader_te, te_state,
|
||
GENX(3DSTATE_TE_length));
|
||
#endif
|
||
} else if (stage == MESA_SHADER_GEOMETRY) {
|
||
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
|
||
|
||
uint32_t gs_state[GENX(3DSTATE_GS_length)] = { 0 };
|
||
iris_pack_command(GENX(3DSTATE_GS), gs_state, gs) {
|
||
gs.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
|
||
|
||
if (scratch_addr)
|
||
#if GFX_VERx10 >= 125
|
||
gs.ScratchSpaceBuffer =
|
||
scratch_addr >> SCRATCH_SPACE_BUFFER_SHIFT;
|
||
#else
|
||
gs.ScratchSpaceBasePointer =
|
||
rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE);
|
||
#endif
|
||
}
|
||
|
||
uint32_t *shader_gs = (uint32_t *) shader->derived_data;
|
||
iris_emit_merge(batch, shader_gs, gs_state,
|
||
GENX(3DSTATE_GS_length));
|
||
} else if (scratch_addr) {
|
||
uint32_t *pkt = (uint32_t *) shader->derived_data;
|
||
switch (stage) {
|
||
case MESA_SHADER_VERTEX: MERGE_SCRATCH_ADDR(3DSTATE_VS); break;
|
||
case MESA_SHADER_TESS_CTRL: MERGE_SCRATCH_ADDR(3DSTATE_HS); break;
|
||
case MESA_SHADER_TESS_EVAL: {
|
||
uint32_t *shader_ds = (uint32_t *) shader->derived_data;
|
||
uint32_t *shader_te = shader_ds + GENX(3DSTATE_DS_length);
|
||
iris_batch_emit(batch, shader_te, 4 * GENX(3DSTATE_TE_length));
|
||
MERGE_SCRATCH_ADDR(3DSTATE_DS);
|
||
break;
|
||
}
|
||
}
|
||
} else {
|
||
iris_batch_emit(batch, shader->derived_data,
|
||
iris_derived_program_state_size(stage));
|
||
}
|
||
} else {
|
||
if (stage == MESA_SHADER_TESS_EVAL) {
|
||
iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
|
||
iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
|
||
iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
|
||
} else if (stage == MESA_SHADER_GEOMETRY) {
|
||
iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
|
||
}
|
||
}
|
||
}
|
||
|
||
#if GFX_VERx10 >= 125
|
||
/* Inspect program_uses_primitive_id state and dirty VFG if required. */
|
||
if (intel_needs_workaround(batch->screen->devinfo, 14019166699) &&
|
||
program_uses_primitive_id != ice->state.uses_primitive_id) {
|
||
dirty |= IRIS_DIRTY_VFG;
|
||
ice->state.uses_primitive_id = program_uses_primitive_id;
|
||
}
|
||
#endif
|
||
|
||
if (ice->state.streamout_active) {
|
||
if (dirty & IRIS_DIRTY_SO_BUFFERS) {
|
||
/* Wa_16011411144
|
||
* SW must insert a PIPE_CONTROL cmd before and after the
|
||
* 3dstate_so_buffer_index_0/1/2/3 states to ensure so_buffer_index_* state is
|
||
* not combined with other state changes.
|
||
*/
|
||
if (intel_device_info_is_dg2(batch->screen->devinfo)) {
|
||
iris_emit_pipe_control_flush(batch,
|
||
"SO pre change stall WA",
|
||
PIPE_CONTROL_CS_STALL);
|
||
}
|
||
|
||
for (int i = 0; i < 4; i++) {
|
||
struct iris_stream_output_target *tgt =
|
||
(void *) ice->state.so_target[i];
|
||
enum { dwords = GENX(3DSTATE_SO_BUFFER_length) };
|
||
uint32_t *so_buffers = genx->so_buffers + i * dwords;
|
||
bool zero_offset = false;
|
||
|
||
if (tgt) {
|
||
zero_offset = tgt->zero_offset;
|
||
iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
|
||
true, IRIS_DOMAIN_OTHER_WRITE);
|
||
iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
|
||
true, IRIS_DOMAIN_OTHER_WRITE);
|
||
}
|
||
|
||
if (zero_offset) {
|
||
/* Skip the last DWord which contains "Stream Offset" of
|
||
* 0xFFFFFFFF and instead emit a dword of zero directly.
|
||
*/
|
||
STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_StreamOffset_start) ==
|
||
32 * (dwords - 1));
|
||
const uint32_t zero = 0;
|
||
iris_batch_emit(batch, so_buffers, 4 * (dwords - 1));
|
||
iris_batch_emit(batch, &zero, sizeof(zero));
|
||
tgt->zero_offset = false;
|
||
} else {
|
||
iris_batch_emit(batch, so_buffers, 4 * dwords);
|
||
}
|
||
}
|
||
|
||
/* Wa_16011411144 */
|
||
if (intel_device_info_is_dg2(batch->screen->devinfo)) {
|
||
iris_emit_pipe_control_flush(batch,
|
||
"SO post change stall WA",
|
||
PIPE_CONTROL_CS_STALL);
|
||
}
|
||
}
|
||
|
||
if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
|
||
/* Wa_16011773973:
|
||
* If SOL is enabled and SO_DECL state has to be programmed,
|
||
* 1. Send 3D State SOL state with SOL disabled
|
||
* 2. Send SO_DECL NP state
|
||
* 3. Send 3D State SOL with SOL Enabled
|
||
*/
|
||
if (intel_device_info_is_dg2(batch->screen->devinfo))
|
||
iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
|
||
|
||
uint32_t *decl_list =
|
||
ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
|
||
iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
|
||
|
||
#if GFX_VER >= 11 && GFX_VER < 20
|
||
/* ICL PRMs, Volume 2a - Command Reference: Instructions,
|
||
* 3DSTATE_SO_DECL_LIST:
|
||
*
|
||
* "Workaround: This command must be followed by a PIPE_CONTROL
|
||
* with CS Stall bit set."
|
||
*
|
||
* On DG2+ also known as Wa_1509820217.
|
||
*/
|
||
iris_emit_pipe_control_flush(batch,
|
||
"workaround: cs stall after so_decl",
|
||
PIPE_CONTROL_CS_STALL);
|
||
#endif
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_STREAMOUT) {
|
||
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
|
||
|
||
#if GFX_VERx10 >= 120
|
||
/* Wa_16013994831 - Disable preemption. */
|
||
if (intel_needs_workaround(batch->screen->devinfo, 16013994831))
|
||
iris_preemption_streamout_wa(ice, batch, false);
|
||
#endif
|
||
|
||
uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
|
||
iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
|
||
sol.SOFunctionEnable = true;
|
||
sol.SOStatisticsEnable = true;
|
||
|
||
sol.RenderingDisable = cso_rast->rasterizer_discard &&
|
||
!ice->state.prims_generated_query_active;
|
||
sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
|
||
|
||
|
||
#if INTEL_NEEDS_WA_18022508906
|
||
/* Wa_14017076903 :
|
||
*
|
||
* SKL PRMs, Volume 7: 3D-Media-GPGPU, Stream Output Logic (SOL) Stage:
|
||
*
|
||
* SOL_INT::Render_Enable =
|
||
* (3DSTATE_STREAMOUT::Force_Rending == Force_On) ||
|
||
* (
|
||
* (3DSTATE_STREAMOUT::Force_Rending != Force_Off) &&
|
||
* !(3DSTATE_GS::Enable && 3DSTATE_GS::Output Vertex Size == 0) &&
|
||
* !3DSTATE_STREAMOUT::API_Render_Disable &&
|
||
* (
|
||
* 3DSTATE_DEPTH_STENCIL_STATE::Stencil_TestEnable ||
|
||
* 3DSTATE_DEPTH_STENCIL_STATE::Depth_TestEnable ||
|
||
* 3DSTATE_DEPTH_STENCIL_STATE::Depth_WriteEnable ||
|
||
* 3DSTATE_PS_EXTRA::PS_Valid ||
|
||
* 3DSTATE_WM::Legacy Depth_Buffer_Clear ||
|
||
* 3DSTATE_WM::Legacy Depth_Buffer_Resolve_Enable ||
|
||
* 3DSTATE_WM::Legacy Hierarchical_Depth_Buffer_Resolve_Enable
|
||
* )
|
||
* )
|
||
*
|
||
* If SOL_INT::Render_Enable is false, the SO stage will not forward any
|
||
* topologies down the pipeline. Which is not what we want for occlusion
|
||
* queries.
|
||
*
|
||
* Here we force rendering to get SOL_INT::Render_Enable when occlusion
|
||
* queries are active.
|
||
*/
|
||
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
|
||
if (!cso_rast->rasterizer_discard && ice->state.occlusion_query_active)
|
||
sol.ForceRendering = Force_on;
|
||
#endif
|
||
}
|
||
|
||
assert(ice->state.streamout);
|
||
|
||
iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
|
||
GENX(3DSTATE_STREAMOUT_length));
|
||
}
|
||
} else {
|
||
if (dirty & IRIS_DIRTY_STREAMOUT) {
|
||
|
||
#if GFX_VERx10 >= 120
|
||
/* Wa_16013994831 - Enable preemption. */
|
||
if (!ice->state.genx->object_preemption)
|
||
iris_preemption_streamout_wa(ice, batch, true);
|
||
#endif
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
|
||
}
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_CLIP) {
|
||
struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
|
||
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
|
||
|
||
bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
|
||
ice->shaders.prog[MESA_SHADER_TESS_EVAL];
|
||
bool points_or_lines = cso_rast->fill_mode_point_or_line ||
|
||
(gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
|
||
: ice->state.prim_is_points_or_lines);
|
||
const struct intel_vue_map *last =
|
||
&iris_vue_data(ice->shaders.last_vue_shader)->vue_map;
|
||
|
||
uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
|
||
iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
|
||
cl.StatisticsEnable = ice->state.statistics_counters_enabled;
|
||
if (cso_rast->rasterizer_discard)
|
||
cl.ClipMode = CLIPMODE_REJECT_ALL;
|
||
else if (ice->state.window_space_position)
|
||
cl.ClipMode = CLIPMODE_ACCEPT_ALL;
|
||
else
|
||
cl.ClipMode = CLIPMODE_NORMAL;
|
||
|
||
cl.PerspectiveDivideDisable = ice->state.window_space_position;
|
||
cl.ViewportXYClipTestEnable = !points_or_lines;
|
||
|
||
cl.NonPerspectiveBarycentricEnable = fs_data->uses_nonperspective_interp_modes;
|
||
|
||
cl.ForceZeroRTAIndexEnable = cso_fb->layers <= 1 ||
|
||
!(last->slots_valid & VARYING_BIT_LAYER);
|
||
cl.MaximumVPIndex = ice->state.num_viewports - 1;
|
||
}
|
||
iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
|
||
ARRAY_SIZE(cso_rast->clip));
|
||
}
|
||
|
||
if (dirty & (IRIS_DIRTY_RASTER | IRIS_DIRTY_URB)) {
|
||
/* From the Browadwell PRM, Volume 2, documentation for
|
||
* 3DSTATE_RASTER, "Antialiasing Enable":
|
||
*
|
||
* "This field must be disabled if any of the render targets
|
||
* have integer (UINT or SINT) surface format."
|
||
*
|
||
* Additionally internal documentation for Gfx12+ states:
|
||
*
|
||
* "This bit MUST not be set when NUM_MULTISAMPLES > 1 OR
|
||
* FORCED_SAMPLE_COUNT > 1."
|
||
*/
|
||
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
|
||
unsigned samples = util_framebuffer_get_num_samples(cso_fb);
|
||
struct iris_rasterizer_state *cso = ice->state.cso_rast;
|
||
|
||
bool aa_enable = cso->line_smooth &&
|
||
!ice->state.has_integer_rt &&
|
||
!(batch->screen->devinfo->ver >= 12 && samples > 1);
|
||
|
||
uint32_t dynamic_raster[GENX(3DSTATE_RASTER_length)];
|
||
iris_pack_command(GENX(3DSTATE_RASTER), &dynamic_raster, raster) {
|
||
raster.AntialiasingEnable = aa_enable;
|
||
}
|
||
iris_emit_merge(batch, cso->raster, dynamic_raster,
|
||
ARRAY_SIZE(cso->raster));
|
||
|
||
uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
|
||
iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
|
||
sf.ViewportTransformEnable = !ice->state.window_space_position;
|
||
|
||
#if GFX_VER >= 12
|
||
sf.DerefBlockSize = ice->shaders.urb.cfg.deref_block_size;
|
||
#endif
|
||
}
|
||
iris_emit_merge(batch, cso->sf, dynamic_sf,
|
||
ARRAY_SIZE(dynamic_sf));
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_WM) {
|
||
struct iris_rasterizer_state *cso = ice->state.cso_rast;
|
||
uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
|
||
|
||
iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
|
||
wm.StatisticsEnable = ice->state.statistics_counters_enabled;
|
||
|
||
wm.BarycentricInterpolationMode =
|
||
iris_fs_barycentric_modes(ice->shaders.prog[MESA_SHADER_FRAGMENT], 0);
|
||
|
||
if (fs_data->early_fragment_tests)
|
||
wm.EarlyDepthStencilControl = EDSC_PREPS;
|
||
else if (fs_data->has_side_effects)
|
||
wm.EarlyDepthStencilControl = EDSC_PSEXEC;
|
||
else
|
||
wm.EarlyDepthStencilControl = EDSC_NORMAL;
|
||
|
||
/* We could skip this bit if color writes are enabled. */
|
||
if (fs_data->has_side_effects || fs_data->uses_kill)
|
||
wm.ForceThreadDispatchEnable = ForceON;
|
||
}
|
||
iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_SBE) {
|
||
iris_emit_sbe(batch, ice);
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_PS_BLEND) {
|
||
struct iris_blend_state *cso_blend = ice->state.cso_blend;
|
||
struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
|
||
const struct shader_info *fs_info =
|
||
iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
|
||
|
||
int dst_blend_factor = cso_blend->ps_dst_blend_factor[0];
|
||
int dst_alpha_blend_factor = cso_blend->ps_dst_alpha_blend_factor[0];
|
||
|
||
/* When MSAA is enabled, instead of using BLENDFACTOR_ZERO use
|
||
* CONST_COLOR, CONST_ALPHA and supply zero by using blend constants.
|
||
*/
|
||
if (needs_wa_14018912822) {
|
||
if (ice->state.color_blend_zero)
|
||
dst_blend_factor = BLENDFACTOR_CONST_COLOR;
|
||
if (ice->state.alpha_blend_zero)
|
||
dst_alpha_blend_factor = BLENDFACTOR_CONST_ALPHA;
|
||
}
|
||
|
||
uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
|
||
iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
|
||
pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
|
||
pb.AlphaTestEnable = cso_zsa->alpha_enabled;
|
||
|
||
pb.DestinationBlendFactor = dst_blend_factor;
|
||
pb.DestinationAlphaBlendFactor = dst_alpha_blend_factor;
|
||
|
||
/* The dual source blending docs caution against using SRC1 factors
|
||
* when the shader doesn't use a dual source render target write.
|
||
* Empirically, this can lead to GPU hangs, and the results are
|
||
* undefined anyway, so simply disable blending to avoid the hang.
|
||
*/
|
||
pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
|
||
(!cso_blend->dual_color_blending || fs_data->dual_src_blend);
|
||
}
|
||
|
||
iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
|
||
ARRAY_SIZE(cso_blend->ps_blend));
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
|
||
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
|
||
#if GFX_VER >= 9 && GFX_VER < 12
|
||
struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
|
||
uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
|
||
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
|
||
wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
|
||
wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
|
||
}
|
||
iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
|
||
#else
|
||
/* Use modify disable fields which allow us to emit packets
|
||
* directly instead of merging them later.
|
||
*/
|
||
iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
|
||
#endif
|
||
|
||
/* Depth or stencil write changed in cso. */
|
||
if (intel_needs_workaround(batch->screen->devinfo, 18019816803) &&
|
||
(dirty & IRIS_DIRTY_DS_WRITE_ENABLE)) {
|
||
iris_emit_pipe_control_flush(
|
||
batch, "workaround: PSS stall after DS write enable change",
|
||
PIPE_CONTROL_PSS_STALL_SYNC);
|
||
}
|
||
|
||
#if GFX_VER >= 12
|
||
iris_batch_emit(batch, cso->depth_bounds, sizeof(cso->depth_bounds));
|
||
#endif
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_STENCIL_REF) {
|
||
#if GFX_VER >= 12
|
||
/* Use modify disable fields which allow us to emit packets
|
||
* directly instead of merging them later.
|
||
*/
|
||
struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
|
||
uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
|
||
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
|
||
wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
|
||
wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
|
||
wmds.StencilTestMaskModifyDisable = true;
|
||
wmds.StencilWriteMaskModifyDisable = true;
|
||
wmds.StencilStateModifyDisable = true;
|
||
wmds.DepthStateModifyDisable = true;
|
||
}
|
||
iris_batch_emit(batch, stencil_refs, sizeof(stencil_refs));
|
||
#endif
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
|
||
/* Wa_1409725701:
|
||
* "The viewport-specific state used by the SF unit (SCISSOR_RECT) is
|
||
* stored as an array of up to 16 elements. The location of first
|
||
* element of the array, as specified by Pointer to SCISSOR_RECT,
|
||
* should be aligned to a 64-byte boundary.
|
||
*/
|
||
uint32_t alignment = 64;
|
||
uint32_t scissor_offset =
|
||
emit_state(batch, ice->state.dynamic_uploader,
|
||
&ice->state.last_res.scissor,
|
||
ice->state.scissors,
|
||
sizeof(struct pipe_scissor_state) *
|
||
ice->state.num_viewports, alignment);
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
|
||
ptr.ScissorRectPointer = scissor_offset;
|
||
}
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
|
||
struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
|
||
|
||
/* Do not emit the cso yet. We may need to update clear params first. */
|
||
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
|
||
struct iris_resource *zres = NULL, *sres = NULL;
|
||
if (cso_fb->zsbuf.texture) {
|
||
iris_get_depth_stencil_resources(cso_fb->zsbuf.texture,
|
||
&zres, &sres);
|
||
}
|
||
|
||
if (zres && ice->state.hiz_usage != ISL_AUX_USAGE_NONE) {
|
||
#if GFX_VER < 20
|
||
uint32_t *clear_params =
|
||
cso_z->packets + ARRAY_SIZE(cso_z->packets) -
|
||
GENX(3DSTATE_CLEAR_PARAMS_length);
|
||
|
||
iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
|
||
clear.DepthClearValueValid = true;
|
||
clear.DepthClearValue = zres->aux.clear_color.f32[0];
|
||
}
|
||
#endif
|
||
}
|
||
|
||
iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
|
||
|
||
if (intel_needs_workaround(batch->screen->devinfo, 1408224581) ||
|
||
intel_needs_workaround(batch->screen->devinfo, 14014097488) ||
|
||
intel_needs_workaround(batch->screen->devinfo, 14016712196)) {
|
||
/* Wa_1408224581
|
||
*
|
||
* Workaround: Gfx12LP Astep only An additional pipe control with
|
||
* post-sync = store dword operation would be required.( w/a is to
|
||
* have an additional pipe control after the stencil state whenever
|
||
* the surface state bits of this state is changing).
|
||
*
|
||
* This also seems sufficient to handle Wa_14014097488 and
|
||
* Wa_14016712196.
|
||
*/
|
||
iris_emit_pipe_control_write(batch, "WA for depth/stencil state",
|
||
PIPE_CONTROL_WRITE_IMMEDIATE,
|
||
screen->workaround_address.bo,
|
||
screen->workaround_address.offset, 0);
|
||
}
|
||
|
||
if (zres)
|
||
genX(emit_depth_state_workarounds)(ice, batch, &zres->surf);
|
||
}
|
||
|
||
if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
|
||
/* Listen for buffer changes, and also write enable changes. */
|
||
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
|
||
pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf.texture, ice->state.cso_zsa);
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
|
||
iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
|
||
for (int i = 0; i < 32; i++) {
|
||
poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
|
||
}
|
||
}
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
|
||
struct iris_rasterizer_state *cso = ice->state.cso_rast;
|
||
iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
|
||
#if GFX_VER >= 11
|
||
/* ICL PRMs, Volume 2a - Command Reference: Instructions,
|
||
* 3DSTATE_LINE_STIPPLE:
|
||
*
|
||
* "Workaround: This command must be followed by a PIPE_CONTROL with
|
||
* CS Stall bit set."
|
||
*/
|
||
iris_emit_pipe_control_flush(batch,
|
||
"workaround: post 3DSTATE_LINE_STIPPLE",
|
||
PIPE_CONTROL_CS_STALL);
|
||
#endif
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
|
||
iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
|
||
topo.PrimitiveTopologyType =
|
||
translate_prim_type(draw->mode, ice->state.vertices_per_patch);
|
||
}
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
|
||
int count = util_bitcount64(ice->state.bound_vertex_buffers);
|
||
uint64_t dynamic_bound = ice->state.bound_vertex_buffers;
|
||
|
||
if (ice->state.vs_uses_draw_params && !skip_vb_params) {
|
||
assert(ice->draw.draw_params.res);
|
||
|
||
struct iris_vertex_buffer_state *state =
|
||
&(ice->state.genx->vertex_buffers[count]);
|
||
pipe_resource_reference(&state->resource, ice->draw.draw_params.res);
|
||
struct iris_resource *res = (void *) state->resource;
|
||
|
||
iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
|
||
vb.VertexBufferIndex = count;
|
||
vb.AddressModifyEnable = true;
|
||
vb.BufferPitch = 0;
|
||
vb.BufferSize = res->bo->size - ice->draw.draw_params.offset;
|
||
vb.BufferStartingAddress =
|
||
ro_bo(NULL, res->bo->address +
|
||
(int) ice->draw.draw_params.offset);
|
||
vb.MOCS = iris_mocs(res->bo, &screen->isl_dev,
|
||
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
|
||
#if GFX_VER >= 12
|
||
vb.L3BypassDisable = true;
|
||
#endif
|
||
}
|
||
dynamic_bound |= 1ull << count;
|
||
count++;
|
||
}
|
||
|
||
if (ice->state.vs_uses_derived_draw_params && !skip_vb_params) {
|
||
struct iris_vertex_buffer_state *state =
|
||
&(ice->state.genx->vertex_buffers[count]);
|
||
pipe_resource_reference(&state->resource,
|
||
ice->draw.derived_draw_params.res);
|
||
struct iris_resource *res = (void *) ice->draw.derived_draw_params.res;
|
||
|
||
iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
|
||
vb.VertexBufferIndex = count;
|
||
vb.AddressModifyEnable = true;
|
||
vb.BufferPitch = 0;
|
||
vb.BufferSize =
|
||
res->bo->size - ice->draw.derived_draw_params.offset;
|
||
vb.BufferStartingAddress =
|
||
ro_bo(NULL, res->bo->address +
|
||
(int) ice->draw.derived_draw_params.offset);
|
||
vb.MOCS = iris_mocs(res->bo, &screen->isl_dev,
|
||
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
|
||
#if GFX_VER >= 12
|
||
vb.L3BypassDisable = true;
|
||
#endif
|
||
}
|
||
dynamic_bound |= 1ull << count;
|
||
count++;
|
||
}
|
||
|
||
if (count) {
|
||
#if GFX_VER >= 11
|
||
/* Gfx11+ doesn't need the cache workaround below */
|
||
uint64_t bound = dynamic_bound;
|
||
while (bound) {
|
||
const int i = u_bit_scan64(&bound);
|
||
iris_use_optional_res(batch, genx->vertex_buffers[i].resource,
|
||
false, IRIS_DOMAIN_VF_READ);
|
||
}
|
||
#else
|
||
/* The VF cache designers cut corners, and made the cache key's
|
||
* <VertexBufferIndex, Memory Address> tuple only consider the bottom
|
||
* 32 bits of the address. If you have two vertex buffers which get
|
||
* placed exactly 4 GiB apart and use them in back-to-back draw calls,
|
||
* you can get collisions (even within a single batch).
|
||
*
|
||
* So, we need to do a VF cache invalidate if the buffer for a VB
|
||
* slot slot changes [48:32] address bits from the previous time.
|
||
*/
|
||
unsigned flush_flags = 0;
|
||
|
||
uint64_t bound = dynamic_bound;
|
||
while (bound) {
|
||
const int i = u_bit_scan64(&bound);
|
||
uint16_t high_bits = 0;
|
||
|
||
struct iris_resource *res =
|
||
(void *) genx->vertex_buffers[i].resource;
|
||
if (res) {
|
||
iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_VF_READ);
|
||
|
||
high_bits = res->bo->address >> 32ull;
|
||
if (high_bits != ice->state.last_vbo_high_bits[i]) {
|
||
flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
|
||
PIPE_CONTROL_CS_STALL;
|
||
ice->state.last_vbo_high_bits[i] = high_bits;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (flush_flags) {
|
||
iris_emit_pipe_control_flush(batch,
|
||
"workaround: VF cache 32-bit key [VB]",
|
||
flush_flags);
|
||
}
|
||
#endif
|
||
|
||
const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
|
||
|
||
uint32_t *map =
|
||
iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
|
||
_iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
|
||
vb.DWordLength = (vb_dwords * count + 1) - 2;
|
||
}
|
||
map += 1;
|
||
|
||
const struct iris_vertex_element_state *cso_ve =
|
||
ice->state.cso_vertex_elements;
|
||
|
||
bound = dynamic_bound;
|
||
while (bound) {
|
||
const int i = u_bit_scan64(&bound);
|
||
|
||
uint32_t vb_stride[GENX(VERTEX_BUFFER_STATE_length)];
|
||
struct iris_bo *bo =
|
||
iris_resource_bo(genx->vertex_buffers[i].resource);
|
||
iris_pack_state(GENX(VERTEX_BUFFER_STATE), &vb_stride, vbs) {
|
||
vbs.BufferPitch = cso_ve->stride[i];
|
||
/* Unnecessary except to defeat the genxml nonzero checker */
|
||
vbs.MOCS = iris_mocs(bo, &screen->isl_dev,
|
||
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
|
||
}
|
||
for (unsigned d = 0; d < vb_dwords; d++)
|
||
map[d] = genx->vertex_buffers[i].state[d] | vb_stride[d];
|
||
|
||
map += vb_dwords;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
|
||
struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
|
||
const unsigned entries = MAX2(cso->count, 1);
|
||
if (!(ice->state.vs_needs_sgvs_element ||
|
||
ice->state.vs_uses_derived_draw_params ||
|
||
ice->state.vs_needs_edge_flag)) {
|
||
iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
|
||
(1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
|
||
} else {
|
||
uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
|
||
const unsigned dyn_count = cso->count +
|
||
ice->state.vs_needs_sgvs_element +
|
||
ice->state.vs_uses_derived_draw_params;
|
||
|
||
iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
|
||
&dynamic_ves, ve) {
|
||
ve.DWordLength =
|
||
1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
|
||
}
|
||
memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
|
||
(cso->count - ice->state.vs_needs_edge_flag) *
|
||
GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
|
||
uint32_t *ve_pack_dest =
|
||
&dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
|
||
GENX(VERTEX_ELEMENT_STATE_length)];
|
||
|
||
if (ice->state.vs_needs_sgvs_element) {
|
||
uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
|
||
VFCOMP_STORE_SRC : VFCOMP_STORE_0;
|
||
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
|
||
ve.Valid = true;
|
||
ve.VertexBufferIndex =
|
||
util_bitcount64(ice->state.bound_vertex_buffers);
|
||
ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
|
||
ve.Component0Control = base_ctrl;
|
||
ve.Component1Control = base_ctrl;
|
||
ve.Component2Control = VFCOMP_STORE_0;
|
||
ve.Component3Control = VFCOMP_STORE_0;
|
||
}
|
||
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
|
||
}
|
||
if (ice->state.vs_uses_derived_draw_params) {
|
||
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
|
||
ve.Valid = true;
|
||
ve.VertexBufferIndex =
|
||
util_bitcount64(ice->state.bound_vertex_buffers) +
|
||
ice->state.vs_uses_draw_params;
|
||
ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
|
||
ve.Component0Control = VFCOMP_STORE_SRC;
|
||
ve.Component1Control = VFCOMP_STORE_SRC;
|
||
ve.Component2Control = VFCOMP_STORE_0;
|
||
ve.Component3Control = VFCOMP_STORE_0;
|
||
}
|
||
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
|
||
}
|
||
if (ice->state.vs_needs_edge_flag) {
|
||
for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
|
||
ve_pack_dest[i] = cso->edgeflag_ve[i];
|
||
}
|
||
|
||
iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
|
||
(1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
|
||
}
|
||
|
||
if (!ice->state.vs_needs_edge_flag) {
|
||
iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
|
||
entries * GENX(3DSTATE_VF_INSTANCING_length));
|
||
} else {
|
||
assert(cso->count > 0);
|
||
const unsigned edgeflag_index = cso->count - 1;
|
||
uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
|
||
memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
|
||
GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
|
||
|
||
uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
|
||
edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
|
||
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
|
||
vi.VertexElementIndex = edgeflag_index +
|
||
ice->state.vs_needs_sgvs_element +
|
||
ice->state.vs_uses_derived_draw_params;
|
||
}
|
||
for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
|
||
vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
|
||
|
||
iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
|
||
entries * GENX(3DSTATE_VF_INSTANCING_length));
|
||
}
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_VF_SGVS) {
|
||
const struct iris_vs_data *vs_data =
|
||
iris_vs_data(ice->shaders.prog[MESA_SHADER_VERTEX]);
|
||
struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
|
||
if (vs_data->uses_vertexid) {
|
||
sgv.VertexIDEnable = true;
|
||
sgv.VertexIDComponentNumber = 2;
|
||
sgv.VertexIDElementOffset =
|
||
cso->count - ice->state.vs_needs_edge_flag;
|
||
}
|
||
|
||
if (vs_data->uses_instanceid) {
|
||
sgv.InstanceIDEnable = true;
|
||
sgv.InstanceIDComponentNumber = 3;
|
||
sgv.InstanceIDElementOffset =
|
||
cso->count - ice->state.vs_needs_edge_flag;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_VF_STATISTICS) {
|
||
iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
|
||
vf.StatisticsEnable = true;
|
||
}
|
||
}
|
||
|
||
if (dirty & IRIS_DIRTY_VF) {
|
||
#if INTEL_WA_16012775297_GFX_VER
|
||
/* Emit dummy VF statistics before each 3DSTATE_VF. */
|
||
if (intel_needs_workaround(batch->screen->devinfo, 16012775297) &&
|
||
(dirty & IRIS_DIRTY_VF_STATISTICS) == 0) {
|
||
iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
|
||
vfs.StatisticsEnable = true;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
|
||
#if GFX_VERx10 >= 125
|
||
vf.GeometryDistributionEnable = screen->driconf.enable_vf_distribution;
|
||
#endif
|
||
if (draw->primitive_restart) {
|
||
vf.IndexedDrawCutIndexEnable = true;
|
||
vf.CutIndex = draw->restart_index;
|
||
}
|
||
}
|
||
}
|
||
|
||
#if GFX_VERx10 >= 125
|
||
if (dirty & IRIS_DIRTY_VFG) {
|
||
iris_emit_cmd(batch, GENX(3DSTATE_VFG), vfg) {
|
||
/* Gfx12.5: If 3DSTATE_TE: TE Enable == 1 then RR_STRICT else RR_FREE */
|
||
vfg.DistributionMode =
|
||
#if GFX_VER < 20
|
||
ice->shaders.prog[MESA_SHADER_TESS_EVAL] == NULL ? RR_FREE :
|
||
#endif
|
||
RR_STRICT;
|
||
if (intel_needs_workaround(batch->screen->devinfo, 14019166699) &&
|
||
program_uses_primitive_id)
|
||
vfg.DistributionGranularity = InstanceLevelGranularity;
|
||
else
|
||
vfg.DistributionGranularity = BatchLevelGranularity;
|
||
#if INTEL_WA_14014851047_GFX_VER
|
||
vfg.GranularityThresholdDisable =
|
||
intel_needs_workaround(batch->screen->devinfo, 14014851047);
|
||
#endif
|
||
vfg.ListCutIndexEnable = draw->primitive_restart;
|
||
/* 192 vertices for TRILIST_ADJ */
|
||
vfg.ListNBatchSizeScale = 0;
|
||
/* Batch size of 384 vertices */
|
||
vfg.List3BatchSizeScale = 2;
|
||
/* Batch size of 128 vertices */
|
||
vfg.List2BatchSizeScale = 1;
|
||
/* Batch size of 128 vertices */
|
||
vfg.List1BatchSizeScale = 2;
|
||
/* Batch size of 256 vertices for STRIP topologies */
|
||
vfg.StripBatchSizeScale = 3;
|
||
/* 192 control points for PATCHLIST_3 */
|
||
vfg.PatchBatchSizeScale = 1;
|
||
/* 192 control points for PATCHLIST_3 */
|
||
vfg.PatchBatchSizeMultiplier = 31;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
#if GFX_VER == 8
|
||
if (dirty & IRIS_DIRTY_PMA_FIX) {
|
||
bool enable = want_pma_fix(ice);
|
||
genX(update_pma_fix)(ice, batch, enable);
|
||
}
|
||
#endif
|
||
|
||
if (ice->state.current_hash_scale != 1)
|
||
genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
|
||
|
||
#if GFX_VER >= 12
|
||
genX(invalidate_aux_map_state)(batch);
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
flush_vbos(struct iris_context *ice, struct iris_batch *batch)
|
||
{
|
||
struct iris_genx_state *genx = ice->state.genx;
|
||
uint64_t bound = ice->state.bound_vertex_buffers;
|
||
while (bound) {
|
||
const int i = u_bit_scan64(&bound);
|
||
struct iris_bo *bo = iris_resource_bo(genx->vertex_buffers[i].resource);
|
||
iris_emit_buffer_barrier_for(batch, bo, IRIS_DOMAIN_VF_READ);
|
||
}
|
||
}
|
||
|
||
static bool
|
||
point_or_line_list(enum mesa_prim prim_type)
|
||
{
|
||
switch (prim_type) {
|
||
case MESA_PRIM_POINTS:
|
||
case MESA_PRIM_LINES:
|
||
case MESA_PRIM_LINE_STRIP:
|
||
case MESA_PRIM_LINES_ADJACENCY:
|
||
case MESA_PRIM_LINE_STRIP_ADJACENCY:
|
||
case MESA_PRIM_LINE_LOOP:
|
||
return true;
|
||
default:
|
||
return false;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
void
|
||
genX(emit_breakpoint)(struct iris_batch *batch, bool emit_before_draw)
|
||
{
|
||
struct iris_context *ice = batch->ice;
|
||
uint32_t draw_count = emit_before_draw ?
|
||
p_atomic_inc_return(&ice->draw_call_count) :
|
||
p_atomic_read(&ice->draw_call_count);
|
||
|
||
if (((draw_count == intel_debug_bkp_before_draw_count &&
|
||
emit_before_draw) ||
|
||
(draw_count == intel_debug_bkp_after_draw_count &&
|
||
!emit_before_draw))) {
|
||
iris_emit_cmd(batch, GENX(MI_SEMAPHORE_WAIT), sem) {
|
||
sem.WaitMode = PollingMode;
|
||
sem.CompareOperation = COMPARE_SAD_EQUAL_SDD;
|
||
sem.SemaphoreDataDword = 0x1;
|
||
sem.SemaphoreAddress = rw_bo(batch->screen->breakpoint_bo, 0,
|
||
IRIS_DOMAIN_OTHER_WRITE);
|
||
};
|
||
}
|
||
}
|
||
|
||
void
|
||
genX(emit_3dprimitive_was)(struct iris_batch *batch,
|
||
const struct pipe_draw_indirect_info *indirect,
|
||
uint32_t primitive_type,
|
||
uint32_t vertex_count)
|
||
{
|
||
UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
|
||
UNUSED const struct iris_context *ice = batch->ice;
|
||
|
||
#if INTEL_WA_22014412737_GFX_VER || INTEL_WA_16014538804_GFX_VER
|
||
if (intel_needs_workaround(devinfo, 22014412737) &&
|
||
(point_or_line_list(primitive_type) || indirect ||
|
||
(vertex_count == 1 || vertex_count == 2))) {
|
||
iris_emit_pipe_control_write(batch, "Wa_22014412737",
|
||
PIPE_CONTROL_WRITE_IMMEDIATE,
|
||
batch->screen->workaround_bo,
|
||
batch->screen->workaround_address.offset,
|
||
0ull);
|
||
batch->num_3d_primitives_emitted = 0;
|
||
} else if (intel_needs_workaround(devinfo, 16014538804)) {
|
||
batch->num_3d_primitives_emitted++;
|
||
|
||
/* Wa_16014538804 - Send empty/dummy pipe control after 3 3DPRIMITIVE. */
|
||
if (batch->num_3d_primitives_emitted == 3) {
|
||
iris_emit_pipe_control_flush(batch, "Wa_16014538804", 0);
|
||
batch->num_3d_primitives_emitted = 0;
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
|
||
void
|
||
genX(urb_workaround)(struct iris_batch *batch,
|
||
const struct intel_urb_config *urb_cfg)
|
||
{
|
||
#if INTEL_NEEDS_WA_16014912113
|
||
if (intel_urb_setup_changed(urb_cfg, &batch->ice->shaders.last_urb,
|
||
MESA_SHADER_TESS_EVAL) &&
|
||
batch->ice->shaders.last_urb.size[0] != 0) {
|
||
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
|
||
#if GFX_VER >= 12
|
||
iris_emit_cmd(batch, GENX(3DSTATE_URB_ALLOC_VS), urb) {
|
||
urb._3DCommandSubOpcode += i;
|
||
urb.VSURBEntryAllocationSize =
|
||
batch->ice->shaders.last_urb.size[i] - 1;
|
||
urb.VSURBStartingAddressSlice0 =
|
||
batch->ice->shaders.last_urb.start[i];
|
||
urb.VSURBStartingAddressSliceN =
|
||
batch->ice->shaders.last_urb.start[i];
|
||
urb.VSNumberofURBEntriesSlice0 = i == 0 ? 256 : 0;
|
||
urb.VSNumberofURBEntriesSliceN = i == 0 ? 256 : 0;
|
||
}
|
||
#else
|
||
iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
|
||
urb._3DCommandSubOpcode += i;
|
||
urb.VSURBStartingAddress =
|
||
batch->ice->shaders.last_urb.start[i];
|
||
urb.VSURBEntryAllocationSize =
|
||
batch->ice->shaders.last_urb.size[i] - 1;
|
||
urb.VSNumberofURBEntries = i == 0 ? 256 : 0;
|
||
}
|
||
#endif
|
||
}
|
||
iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
|
||
pc.HDCPipelineFlushEnable = true;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Update current urb config. */
|
||
memcpy(&batch->ice->shaders.last_urb, &batch->ice->shaders.urb.cfg,
|
||
sizeof(struct intel_urb_config));
|
||
}
|
||
|
||
static void
|
||
iris_emit_index_buffer(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
const struct pipe_draw_info *draw,
|
||
const struct pipe_draw_start_count_bias *sc)
|
||
{
|
||
unsigned offset;
|
||
|
||
if (draw->has_user_indices) {
|
||
unsigned start_offset = draw->index_size * sc->start;
|
||
|
||
u_upload_data_ref(ice->ctx.const_uploader, start_offset,
|
||
sc->count * draw->index_size, 4,
|
||
(char*)draw->index.user + start_offset,
|
||
&offset, &ice->state.last_res.index_buffer);
|
||
offset -= start_offset;
|
||
} else {
|
||
struct iris_resource *res = (void *) draw->index.resource;
|
||
res->bind_history |= PIPE_BIND_INDEX_BUFFER;
|
||
|
||
pipe_resource_reference(&ice->state.last_res.index_buffer,
|
||
draw->index.resource);
|
||
offset = 0;
|
||
|
||
iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_VF_READ);
|
||
}
|
||
|
||
struct iris_genx_state *genx = ice->state.genx;
|
||
struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
|
||
|
||
uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
|
||
iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
|
||
ib.IndexFormat = draw->index_size >> 1;
|
||
ib.MOCS = iris_mocs(bo, &batch->screen->isl_dev,
|
||
ISL_SURF_USAGE_INDEX_BUFFER_BIT);
|
||
ib.BufferSize = bo->size - offset;
|
||
ib.BufferStartingAddress = ro_bo(NULL, bo->address + offset);
|
||
#if GFX_VER >= 12
|
||
ib.L3BypassDisable = true;
|
||
#endif
|
||
}
|
||
|
||
if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
|
||
memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
|
||
iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
|
||
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_VF_READ);
|
||
}
|
||
|
||
#if GFX_VER < 11
|
||
/* The VF cache key only uses 32-bits, see vertex buffer comment above */
|
||
uint16_t high_bits = bo->address >> 32ull;
|
||
if (high_bits != ice->state.last_index_bo_high_bits) {
|
||
iris_emit_pipe_control_flush(batch,
|
||
"workaround: VF cache 32-bit key [IB]",
|
||
PIPE_CONTROL_VF_CACHE_INVALIDATE |
|
||
PIPE_CONTROL_CS_STALL);
|
||
ice->state.last_index_bo_high_bits = high_bits;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
|
||
static void
|
||
iris_upload_render_state(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
const struct pipe_draw_info *draw,
|
||
unsigned drawid_offset,
|
||
const struct pipe_draw_indirect_info *indirect,
|
||
const struct pipe_draw_start_count_bias *sc)
|
||
{
|
||
UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
|
||
bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
|
||
|
||
trace_intel_begin_draw(&batch->trace);
|
||
|
||
if (ice->state.dirty & IRIS_DIRTY_VERTEX_BUFFER_FLUSHES)
|
||
flush_vbos(ice, batch);
|
||
|
||
iris_batch_sync_region_start(batch);
|
||
|
||
/* Always pin the binder. If we're emitting new binding table pointers,
|
||
* we need it. If not, we're probably inheriting old tables via the
|
||
* context, and need it anyway. Since true zero-bindings cases are
|
||
* practically non-existent, just pin it and avoid last_res tracking.
|
||
*/
|
||
iris_use_pinned_bo(batch, ice->state.binder.bo, false,
|
||
IRIS_DOMAIN_NONE);
|
||
|
||
if (!batch->contains_draw) {
|
||
if (GFX_VER == 12) {
|
||
/* Re-emit constants when starting a new batch buffer in order to
|
||
* work around push constant corruption on context switch.
|
||
*
|
||
* XXX - Provide hardware spec quotation when available.
|
||
*/
|
||
ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_CONSTANTS_VS |
|
||
IRIS_STAGE_DIRTY_CONSTANTS_TCS |
|
||
IRIS_STAGE_DIRTY_CONSTANTS_TES |
|
||
IRIS_STAGE_DIRTY_CONSTANTS_GS |
|
||
IRIS_STAGE_DIRTY_CONSTANTS_FS);
|
||
}
|
||
batch->contains_draw = true;
|
||
}
|
||
|
||
if (!batch->contains_draw_with_next_seqno) {
|
||
iris_restore_render_saved_bos(ice, batch, draw);
|
||
batch->contains_draw_with_next_seqno = true;
|
||
}
|
||
|
||
/* Wa_1306463417 - Send HS state for every primitive on gfx11.
|
||
* Wa_16011107343 (same for gfx12)
|
||
* We implement this by setting TCS dirty on each draw.
|
||
*/
|
||
if ((INTEL_NEEDS_WA_1306463417 || INTEL_NEEDS_WA_16011107343) &&
|
||
ice->shaders.prog[MESA_SHADER_TESS_CTRL]) {
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TCS;
|
||
}
|
||
|
||
iris_upload_dirty_render_state(ice, batch, draw, false);
|
||
|
||
if (draw->index_size > 0)
|
||
iris_emit_index_buffer(ice, batch, draw, sc);
|
||
|
||
if (indirect) {
|
||
struct mi_builder b;
|
||
uint32_t mocs;
|
||
mi_builder_init(&b, batch->screen->devinfo, batch);
|
||
|
||
#define _3DPRIM_END_OFFSET 0x2420
|
||
#define _3DPRIM_START_VERTEX 0x2430
|
||
#define _3DPRIM_VERTEX_COUNT 0x2434
|
||
#define _3DPRIM_INSTANCE_COUNT 0x2438
|
||
#define _3DPRIM_START_INSTANCE 0x243C
|
||
#define _3DPRIM_BASE_VERTEX 0x2440
|
||
|
||
if (!indirect->count_from_stream_output) {
|
||
if (indirect->indirect_draw_count) {
|
||
use_predicate = true;
|
||
|
||
struct iris_bo *draw_count_bo =
|
||
iris_resource_bo(indirect->indirect_draw_count);
|
||
unsigned draw_count_offset =
|
||
indirect->indirect_draw_count_offset;
|
||
mocs = iris_mocs(draw_count_bo, &batch->screen->isl_dev, 0);
|
||
mi_builder_set_mocs(&b, mocs);
|
||
|
||
if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
|
||
/* comparison = draw id < draw count */
|
||
struct mi_value comparison =
|
||
mi_ult(&b, mi_imm(drawid_offset),
|
||
mi_mem32(ro_bo(draw_count_bo, draw_count_offset)));
|
||
|
||
/* predicate = comparison & conditional rendering predicate */
|
||
mi_store(&b, mi_reg32(MI_PREDICATE_RESULT),
|
||
mi_iand(&b, comparison, mi_reg32(CS_GPR(15))));
|
||
} else {
|
||
uint32_t mi_predicate;
|
||
|
||
/* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
|
||
mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(drawid_offset));
|
||
/* Upload the current draw count from the draw parameters buffer
|
||
* to MI_PREDICATE_SRC0. Zero the top 32-bits of
|
||
* MI_PREDICATE_SRC0.
|
||
*/
|
||
mi_store(&b, mi_reg64(MI_PREDICATE_SRC0),
|
||
mi_mem32(ro_bo(draw_count_bo, draw_count_offset)));
|
||
|
||
if (drawid_offset == 0) {
|
||
mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
|
||
MI_PREDICATE_COMBINEOP_SET |
|
||
MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
|
||
} else {
|
||
/* While draw_index < draw_count the predicate's result will be
|
||
* (draw_index == draw_count) ^ TRUE = TRUE
|
||
* When draw_index == draw_count the result is
|
||
* (TRUE) ^ TRUE = FALSE
|
||
* After this all results will be:
|
||
* (FALSE) ^ FALSE = FALSE
|
||
*/
|
||
mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
|
||
MI_PREDICATE_COMBINEOP_XOR |
|
||
MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
|
||
}
|
||
iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
|
||
}
|
||
}
|
||
struct iris_bo *bo = iris_resource_bo(indirect->buffer);
|
||
assert(bo);
|
||
|
||
mocs = iris_mocs(bo, &batch->screen->isl_dev, 0);
|
||
mi_builder_set_mocs(&b, mocs);
|
||
|
||
mi_store(&b, mi_reg32(_3DPRIM_VERTEX_COUNT),
|
||
mi_mem32(ro_bo(bo, indirect->offset + 0)));
|
||
mi_store(&b, mi_reg32(_3DPRIM_INSTANCE_COUNT),
|
||
mi_mem32(ro_bo(bo, indirect->offset + 4)));
|
||
mi_store(&b, mi_reg32(_3DPRIM_START_VERTEX),
|
||
mi_mem32(ro_bo(bo, indirect->offset + 8)));
|
||
if (draw->index_size) {
|
||
mi_store(&b, mi_reg32(_3DPRIM_BASE_VERTEX),
|
||
mi_mem32(ro_bo(bo, indirect->offset + 12)));
|
||
mi_store(&b, mi_reg32(_3DPRIM_START_INSTANCE),
|
||
mi_mem32(ro_bo(bo, indirect->offset + 16)));
|
||
} else {
|
||
mi_store(&b, mi_reg32(_3DPRIM_START_INSTANCE),
|
||
mi_mem32(ro_bo(bo, indirect->offset + 12)));
|
||
mi_store(&b, mi_reg32(_3DPRIM_BASE_VERTEX), mi_imm(0));
|
||
}
|
||
} else if (indirect->count_from_stream_output) {
|
||
struct iris_stream_output_target *so =
|
||
(void *) indirect->count_from_stream_output;
|
||
struct iris_bo *so_bo = iris_resource_bo(so->offset.res);
|
||
|
||
mocs = iris_mocs(so_bo, &batch->screen->isl_dev, 0);
|
||
mi_builder_set_mocs(&b, mocs);
|
||
|
||
iris_emit_buffer_barrier_for(batch, so_bo, IRIS_DOMAIN_OTHER_READ);
|
||
|
||
struct iris_address addr = ro_bo(so_bo, so->offset.offset);
|
||
struct mi_value offset =
|
||
mi_iadd_imm(&b, mi_mem32(addr), -so->base.buffer_offset);
|
||
mi_store(&b, mi_reg32(_3DPRIM_VERTEX_COUNT),
|
||
mi_udiv32_imm(&b, offset, so->stride));
|
||
mi_store(&b, mi_reg32(_3DPRIM_START_VERTEX), mi_imm(0));
|
||
mi_store(&b, mi_reg32(_3DPRIM_BASE_VERTEX), mi_imm(0));
|
||
mi_store(&b, mi_reg32(_3DPRIM_START_INSTANCE), mi_imm(0));
|
||
mi_store(&b, mi_reg32(_3DPRIM_INSTANCE_COUNT),
|
||
mi_imm(draw->instance_count));
|
||
}
|
||
}
|
||
|
||
iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_DRAW, draw, indirect, sc);
|
||
|
||
genX(maybe_emit_breakpoint)(batch, true);
|
||
|
||
iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
|
||
prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
|
||
prim.PredicateEnable = use_predicate;
|
||
#if GFX_VERx10 >= 125
|
||
prim.TBIMREnable = ice->state.use_tbimr;
|
||
#endif
|
||
if (indirect) {
|
||
prim.IndirectParameterEnable = true;
|
||
} else {
|
||
prim.StartInstanceLocation = draw->start_instance;
|
||
prim.InstanceCount = draw->instance_count;
|
||
prim.VertexCountPerInstance = sc->count;
|
||
|
||
prim.StartVertexLocation = sc->start;
|
||
|
||
if (draw->index_size) {
|
||
prim.BaseVertexLocation += sc->index_bias;
|
||
}
|
||
}
|
||
}
|
||
|
||
genX(emit_3dprimitive_was)(batch, indirect, ice->state.prim_mode, sc->count);
|
||
genX(maybe_emit_breakpoint)(batch, false);
|
||
|
||
iris_batch_sync_region_end(batch);
|
||
|
||
uint32_t count = (sc) ? sc->count : 0;
|
||
count *= draw->instance_count ? draw->instance_count : 1;
|
||
trace_intel_end_draw(&batch->trace, count, 0, 0);
|
||
}
|
||
|
||
static void
|
||
iris_upload_indirect_render_state(struct iris_context *ice,
|
||
const struct pipe_draw_info *draw,
|
||
const struct pipe_draw_indirect_info *indirect,
|
||
const struct pipe_draw_start_count_bias *sc)
|
||
{
|
||
#if GFX_VERx10 >= 125
|
||
assert(indirect);
|
||
|
||
struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
|
||
UNUSED struct iris_screen *screen = batch->screen;
|
||
UNUSED const struct intel_device_info *devinfo = screen->devinfo;
|
||
const bool use_predicate =
|
||
ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
|
||
|
||
trace_intel_begin_draw(&batch->trace);
|
||
|
||
if (ice->state.dirty & IRIS_DIRTY_VERTEX_BUFFER_FLUSHES)
|
||
flush_vbos(ice, batch);
|
||
|
||
iris_batch_sync_region_start(batch);
|
||
|
||
/* Always pin the binder. If we're emitting new binding table pointers,
|
||
* we need it. If not, we're probably inheriting old tables via the
|
||
* context, and need it anyway. Since true zero-bindings cases are
|
||
* practically non-existent, just pin it and avoid last_res tracking.
|
||
*/
|
||
iris_use_pinned_bo(batch, ice->state.binder.bo, false,
|
||
IRIS_DOMAIN_NONE);
|
||
|
||
if (!batch->contains_draw) {
|
||
/* Re-emit constants when starting a new batch buffer in order to
|
||
* work around push constant corruption on context switch.
|
||
*
|
||
* XXX - Provide hardware spec quotation when available.
|
||
*/
|
||
ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_CONSTANTS_VS |
|
||
IRIS_STAGE_DIRTY_CONSTANTS_TCS |
|
||
IRIS_STAGE_DIRTY_CONSTANTS_TES |
|
||
IRIS_STAGE_DIRTY_CONSTANTS_GS |
|
||
IRIS_STAGE_DIRTY_CONSTANTS_FS);
|
||
batch->contains_draw = true;
|
||
}
|
||
|
||
if (!batch->contains_draw_with_next_seqno) {
|
||
iris_restore_render_saved_bos(ice, batch, draw);
|
||
batch->contains_draw_with_next_seqno = true;
|
||
}
|
||
|
||
/* Wa_1306463417 - Send HS state for every primitive on gfx11.
|
||
* Wa_16011107343 (same for gfx12)
|
||
* We implement this by setting TCS dirty on each draw.
|
||
*/
|
||
if ((INTEL_NEEDS_WA_1306463417 || INTEL_NEEDS_WA_16011107343) &&
|
||
ice->shaders.prog[MESA_SHADER_TESS_CTRL]) {
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TCS;
|
||
}
|
||
|
||
iris_upload_dirty_render_state(ice, batch, draw, false);
|
||
|
||
if (draw->index_size > 0)
|
||
iris_emit_index_buffer(ice, batch, draw, sc);
|
||
|
||
iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_DRAW, draw, indirect, sc);
|
||
|
||
genX(maybe_emit_breakpoint)(batch, true);
|
||
|
||
iris_emit_cmd(batch, GENX(EXECUTE_INDIRECT_DRAW), ind) {
|
||
ind.ArgumentFormat =
|
||
draw->index_size > 0 ? XI_DRAWINDEXED : XI_DRAW;
|
||
ind.PredicateEnable = use_predicate;
|
||
ind.TBIMREnabled = ice->state.use_tbimr;
|
||
ind.MaxCount = indirect->draw_count;
|
||
|
||
if (indirect->buffer) {
|
||
struct iris_bo *bo = iris_resource_bo(indirect->buffer);
|
||
ind.ArgumentBufferStartAddress = ro_bo(bo, indirect->offset);
|
||
ind.MOCS = iris_mocs(bo, &screen->isl_dev, 0);
|
||
} else {
|
||
ind.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
|
||
}
|
||
|
||
if (indirect->indirect_draw_count) {
|
||
struct iris_bo *draw_count_bo =
|
||
iris_resource_bo(indirect->indirect_draw_count);
|
||
ind.CountBufferIndirectEnable = true;
|
||
ind.CountBufferAddress =
|
||
ro_bo(draw_count_bo, indirect->indirect_draw_count_offset);
|
||
}
|
||
}
|
||
|
||
genX(emit_3dprimitive_was)(batch, indirect, ice->state.prim_mode, sc->count);
|
||
genX(maybe_emit_breakpoint)(batch, false);
|
||
|
||
iris_batch_sync_region_end(batch);
|
||
|
||
uint32_t count = (sc) ? sc->count : 0;
|
||
count *= draw->instance_count ? draw->instance_count : 1;
|
||
trace_intel_end_draw(&batch->trace, count, 0, 0);
|
||
#else
|
||
UNREACHABLE("Unsupported path");
|
||
#endif /* GFX_VERx10 >= 125 */
|
||
}
|
||
|
||
static void
|
||
iris_upload_indirect_shader_render_state(struct iris_context *ice,
|
||
const struct pipe_draw_info *draw,
|
||
const struct pipe_draw_indirect_info *indirect,
|
||
const struct pipe_draw_start_count_bias *sc)
|
||
{
|
||
assert(indirect);
|
||
|
||
struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
|
||
UNUSED struct iris_screen *screen = batch->screen;
|
||
UNUSED const struct intel_device_info *devinfo = screen->devinfo;
|
||
|
||
if (ice->state.dirty & IRIS_DIRTY_VERTEX_BUFFER_FLUSHES)
|
||
flush_vbos(ice, batch);
|
||
|
||
iris_batch_sync_region_start(batch);
|
||
|
||
/* Always pin the binder. If we're emitting new binding table pointers,
|
||
* we need it. If not, we're probably inheriting old tables via the
|
||
* context, and need it anyway. Since true zero-bindings cases are
|
||
* practically non-existent, just pin it and avoid last_res tracking.
|
||
*/
|
||
iris_use_pinned_bo(batch, ice->state.binder.bo, false,
|
||
IRIS_DOMAIN_NONE);
|
||
|
||
if (!batch->contains_draw) {
|
||
if (GFX_VER == 12) {
|
||
/* Re-emit constants when starting a new batch buffer in order to
|
||
* work around push constant corruption on context switch.
|
||
*
|
||
* XXX - Provide hardware spec quotation when available.
|
||
*/
|
||
ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_CONSTANTS_VS |
|
||
IRIS_STAGE_DIRTY_CONSTANTS_TCS |
|
||
IRIS_STAGE_DIRTY_CONSTANTS_TES |
|
||
IRIS_STAGE_DIRTY_CONSTANTS_GS |
|
||
IRIS_STAGE_DIRTY_CONSTANTS_FS);
|
||
}
|
||
batch->contains_draw = true;
|
||
}
|
||
|
||
if (!batch->contains_draw_with_next_seqno) {
|
||
iris_restore_render_saved_bos(ice, batch, draw);
|
||
batch->contains_draw_with_next_seqno = true;
|
||
}
|
||
|
||
if (draw->index_size > 0)
|
||
iris_emit_index_buffer(ice, batch, draw, sc);
|
||
|
||
/* Make sure we have enough space to keep all the commands in the single BO
|
||
* (because of the jumps)
|
||
*/
|
||
iris_require_command_space(batch, 2000);
|
||
|
||
#ifndef NDEBUG
|
||
struct iris_bo *command_bo = batch->bo;
|
||
#endif
|
||
|
||
/* Jump point to generate more draw if we run out of space in the ring
|
||
* buffer.
|
||
*/
|
||
uint64_t gen_addr = iris_batch_current_address_u64(batch);
|
||
|
||
iris_handle_always_flush_cache(batch);
|
||
|
||
#if GFX_VER == 9
|
||
iris_emit_pipe_control_flush(batch, "before generation",
|
||
PIPE_CONTROL_VF_CACHE_INVALIDATE);
|
||
#endif
|
||
|
||
struct iris_address params_addr;
|
||
struct iris_gen_indirect_params *params =
|
||
genX(emit_indirect_generate)(batch, draw, indirect, sc,
|
||
¶ms_addr);
|
||
|
||
iris_emit_pipe_control_flush(batch, "after generation flush",
|
||
((ice->state.vs_uses_draw_params ||
|
||
ice->state.vs_uses_derived_draw_params) ?
|
||
PIPE_CONTROL_VF_CACHE_INVALIDATE : 0) |
|
||
PIPE_CONTROL_STALL_AT_SCOREBOARD |
|
||
PIPE_CONTROL_DATA_CACHE_FLUSH |
|
||
PIPE_CONTROL_CS_STALL);
|
||
|
||
trace_intel_begin_draw(&batch->trace);
|
||
|
||
/* Always pin the binder. If we're emitting new binding table pointers,
|
||
* we need it. If not, we're probably inheriting old tables via the
|
||
* context, and need it anyway. Since true zero-bindings cases are
|
||
* practically non-existent, just pin it and avoid last_res tracking.
|
||
*/
|
||
iris_use_pinned_bo(batch, ice->state.binder.bo, false,
|
||
IRIS_DOMAIN_NONE);
|
||
|
||
/* Wa_1306463417 - Send HS state for every primitive on gfx11.
|
||
* Wa_16011107343 (same for gfx12)
|
||
* We implement this by setting TCS dirty on each draw.
|
||
*/
|
||
if ((INTEL_NEEDS_WA_1306463417 || INTEL_NEEDS_WA_16011107343) &&
|
||
ice->shaders.prog[MESA_SHADER_TESS_CTRL]) {
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TCS;
|
||
}
|
||
|
||
iris_upload_dirty_render_state(ice, batch, draw, true);
|
||
|
||
iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_DRAW, draw, indirect, sc);
|
||
|
||
genX(maybe_emit_breakpoint)(batch, true);
|
||
|
||
#if GFX_VER >= 12
|
||
iris_emit_cmd(batch, GENX(MI_ARB_CHECK), arb) {
|
||
arb.PreParserDisableMask = true;
|
||
arb.PreParserDisable = true;
|
||
}
|
||
#endif
|
||
|
||
iris_emit_cmd(batch, GENX(MI_BATCH_BUFFER_START), bbs) {
|
||
bbs.AddressSpaceIndicator = ASI_PPGTT;
|
||
bbs.BatchBufferStartAddress = (struct iris_address) {
|
||
.bo = ice->draw.generation.ring_bo,
|
||
};
|
||
}
|
||
|
||
/* Run the ring buffer one more time with the next set of commands */
|
||
uint64_t inc_addr = iris_batch_current_address_u64(batch);
|
||
{
|
||
iris_emit_pipe_control_flush(batch,
|
||
"post generated draws wait",
|
||
PIPE_CONTROL_STALL_AT_SCOREBOARD |
|
||
PIPE_CONTROL_CS_STALL);
|
||
|
||
struct mi_builder b;
|
||
mi_builder_init(&b, batch->screen->devinfo, batch);
|
||
|
||
struct iris_address draw_base_addr = iris_address_add(
|
||
params_addr,
|
||
offsetof(struct iris_gen_indirect_params, draw_base));
|
||
|
||
const uint32_t mocs =
|
||
iris_mocs(draw_base_addr.bo, &screen->isl_dev, 0);
|
||
mi_builder_set_mocs(&b, mocs);
|
||
|
||
mi_store(&b, mi_mem32(draw_base_addr),
|
||
mi_iadd(&b, mi_mem32(draw_base_addr),
|
||
mi_imm(params->ring_count)));
|
||
|
||
iris_emit_pipe_control_flush(batch,
|
||
"post generation base increment",
|
||
PIPE_CONTROL_CS_STALL |
|
||
PIPE_CONTROL_CONST_CACHE_INVALIDATE);
|
||
|
||
iris_emit_cmd(batch, GENX(MI_BATCH_BUFFER_START), bbs) {
|
||
bbs.AddressSpaceIndicator = ASI_PPGTT;
|
||
bbs.BatchBufferStartAddress = (struct iris_address) {
|
||
.offset = gen_addr,
|
||
};
|
||
}
|
||
}
|
||
|
||
/* Exit of the ring buffer */
|
||
uint64_t end_addr = iris_batch_current_address_u64(batch);
|
||
|
||
#ifndef NDEBUG
|
||
assert(command_bo == batch->bo);
|
||
#endif
|
||
|
||
genX(emit_3dprimitive_was)(batch, indirect, ice->state.prim_mode, sc->count);
|
||
genX(maybe_emit_breakpoint)(batch, false);
|
||
|
||
iris_emit_pipe_control_flush(batch,
|
||
"post generated draws wait",
|
||
PIPE_CONTROL_STALL_AT_SCOREBOARD |
|
||
PIPE_CONTROL_CS_STALL);
|
||
|
||
params->gen_addr = inc_addr;
|
||
params->end_addr = end_addr;
|
||
|
||
iris_batch_sync_region_end(batch);
|
||
|
||
uint32_t count = (sc) ? sc->count : 0;
|
||
count *= draw->instance_count ? draw->instance_count : 1;
|
||
trace_intel_end_draw(&batch->trace, count, 0, 0);
|
||
}
|
||
|
||
static void
|
||
iris_load_indirect_location(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
const struct pipe_grid_info *grid)
|
||
{
|
||
#define GPGPU_DISPATCHDIMX 0x2500
|
||
#define GPGPU_DISPATCHDIMY 0x2504
|
||
#define GPGPU_DISPATCHDIMZ 0x2508
|
||
|
||
assert(grid->indirect);
|
||
|
||
struct iris_state_ref *grid_size = &ice->state.grid_size;
|
||
struct iris_bo *bo = iris_resource_bo(grid_size->res);
|
||
struct mi_builder b;
|
||
mi_builder_init(&b, batch->screen->devinfo, batch);
|
||
struct mi_value size_x = mi_mem32(ro_bo(bo, grid_size->offset + 0));
|
||
struct mi_value size_y = mi_mem32(ro_bo(bo, grid_size->offset + 4));
|
||
struct mi_value size_z = mi_mem32(ro_bo(bo, grid_size->offset + 8));
|
||
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMX), size_x);
|
||
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMY), size_y);
|
||
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
|
||
}
|
||
|
||
static bool iris_emit_indirect_dispatch_supported(const struct intel_device_info *devinfo)
|
||
{
|
||
// TODO: Swizzling X and Y workgroup sizes is not supported in execute indirect dispatch
|
||
return devinfo->has_indirect_unroll;
|
||
}
|
||
|
||
#if GFX_VERx10 >= 125
|
||
|
||
static void iris_emit_execute_indirect_dispatch(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
const struct pipe_grid_info *grid,
|
||
const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd)
|
||
{
|
||
const struct iris_screen *screen = batch->screen;
|
||
struct iris_compiled_shader *shader =
|
||
ice->shaders.prog[MESA_SHADER_COMPUTE];
|
||
const struct iris_cs_data *cs_data = iris_cs_data(shader);
|
||
const struct intel_cs_dispatch_info dispatch =
|
||
iris_get_cs_dispatch_info(screen->devinfo, shader, grid->block);
|
||
struct iris_bo *indirect = iris_resource_bo(grid->indirect);
|
||
const int dispatch_size = dispatch.simd_size / 16;
|
||
|
||
struct GENX(COMPUTE_WALKER_BODY) body = {};
|
||
body.SIMDSize = dispatch_size;
|
||
body.MessageSIMD = dispatch_size;
|
||
body.GenerateLocalID = cs_data->generate_local_id != 0;
|
||
body.EmitLocal = cs_data->generate_local_id;
|
||
body.WalkOrder = cs_data->walk_order;
|
||
body.TileLayout = cs_data->walk_order == INTEL_WALK_ORDER_YXZ ?
|
||
TileY32bpe : Linear;
|
||
body.LocalXMaximum = grid->block[0] - 1;
|
||
body.LocalYMaximum = grid->block[1] - 1;
|
||
body.LocalZMaximum = grid->block[2] - 1;
|
||
body.ExecutionMask = dispatch.right_mask;
|
||
body.PostSync.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
|
||
body.InterfaceDescriptor = idd;
|
||
/* HSD 14016252163: Use of Morton walk order (and batching using a batch
|
||
* size of 4) is expected to increase sampler cache hit rates by
|
||
* increasing sample address locality within a subslice.
|
||
*/
|
||
#if GFX_VER >= 30
|
||
body.DispatchWalkOrder =
|
||
cs_data->uses_sampler ? MortonWalk : LinearWalk;
|
||
body.ThreadGroupBatchSize =
|
||
cs_data->uses_sampler ? TG_BATCH_4 : TG_BATCH_1;
|
||
#endif
|
||
|
||
struct iris_address indirect_bo = ro_bo(indirect, grid->indirect_offset);
|
||
iris_emit_cmd(batch, GENX(EXECUTE_INDIRECT_DISPATCH), ind) {
|
||
ind.PredicateEnable =
|
||
ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
|
||
ind.MaxCount = 1;
|
||
ind.body = body;
|
||
ind.ArgumentBufferStartAddress = indirect_bo;
|
||
ind.MOCS =
|
||
iris_mocs(indirect_bo.bo, &screen->isl_dev, 0);
|
||
}
|
||
}
|
||
|
||
static void
|
||
iris_upload_compute_walker(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
const struct pipe_grid_info *grid)
|
||
{
|
||
const uint64_t stage_dirty = ice->state.stage_dirty;
|
||
struct iris_screen *screen = batch->screen;
|
||
const struct intel_device_info *devinfo = screen->devinfo;
|
||
struct iris_binder *binder = &ice->state.binder;
|
||
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
|
||
struct iris_compiled_shader *shader =
|
||
ice->shaders.prog[MESA_SHADER_COMPUTE];
|
||
const struct iris_cs_data *cs_data = iris_cs_data(shader);
|
||
const struct intel_cs_dispatch_info dispatch =
|
||
iris_get_cs_dispatch_info(devinfo, shader, grid->block);
|
||
uint32_t total_shared = shader->total_shared + grid->variable_shared_mem;
|
||
|
||
trace_intel_begin_compute(&batch->trace);
|
||
|
||
if (stage_dirty & IRIS_STAGE_DIRTY_CS) {
|
||
iris_emit_cmd(batch, GENX(CFE_STATE), cfe) {
|
||
cfe.MaximumNumberofThreads =
|
||
devinfo->max_cs_threads * devinfo->subslice_total;
|
||
uint32_t scratch_addr = pin_scratch_space(ice, batch, shader,
|
||
MESA_SHADER_COMPUTE);
|
||
cfe.ScratchSpaceBuffer = scratch_addr >> SCRATCH_SPACE_BUFFER_SHIFT;
|
||
}
|
||
}
|
||
|
||
/* Not need with VRT enabled */
|
||
#if GFX_VERx10 < 300
|
||
uint8_t pixel_async_compute_thread_limit, z_pass_async_compute_thread_limit,
|
||
np_z_async_throttle_settings;
|
||
bool slm_or_barrier_enabled = total_shared != 0 || cs_data->uses_barrier;
|
||
|
||
intel_compute_engine_async_threads_limit(devinfo, dispatch.threads,
|
||
slm_or_barrier_enabled,
|
||
&pixel_async_compute_thread_limit,
|
||
&z_pass_async_compute_thread_limit,
|
||
&np_z_async_throttle_settings);
|
||
|
||
if (ice->state.pixel_async_compute_thread_limit != pixel_async_compute_thread_limit ||
|
||
ice->state.z_pass_async_compute_thread_limit != z_pass_async_compute_thread_limit ||
|
||
ice->state.np_z_async_throttle_settings != np_z_async_throttle_settings) {
|
||
|
||
batch->ice->state.pixel_async_compute_thread_limit = pixel_async_compute_thread_limit;
|
||
batch->ice->state.z_pass_async_compute_thread_limit = z_pass_async_compute_thread_limit;
|
||
batch->ice->state.np_z_async_throttle_settings = np_z_async_throttle_settings;
|
||
|
||
iris_emit_cmd(batch, GENX(STATE_COMPUTE_MODE), cm) {
|
||
#if GFX_VER >= 20
|
||
cm.AsyncComputeThreadLimit = pixel_async_compute_thread_limit;
|
||
cm.ZPassAsyncComputeThreadLimit = z_pass_async_compute_thread_limit;
|
||
cm.ZAsyncThrottlesettings = np_z_async_throttle_settings;
|
||
cm.AsyncComputeThreadLimitMask = 0x7;
|
||
cm.ZPassAsyncComputeThreadLimitMask = 0x7;
|
||
cm.ZAsyncThrottlesettingsMask = 0x3;
|
||
#else
|
||
cm.PixelAsyncComputeThreadLimit = pixel_async_compute_thread_limit;
|
||
cm.ZPassAsyncComputeThreadLimit = z_pass_async_compute_thread_limit;
|
||
cm.PixelAsyncComputeThreadLimitMask = 0x7;
|
||
cm.ZPassAsyncComputeThreadLimitMask = 0x7;
|
||
if (intel_device_info_is_mtl_or_arl(devinfo)) {
|
||
cm.ZAsyncThrottlesettings = np_z_async_throttle_settings;
|
||
cm.ZAsyncThrottlesettingsMask = 0x3;
|
||
}
|
||
#endif
|
||
}
|
||
}
|
||
#endif /* GFX_VERx10 < 300 */
|
||
|
||
struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {};
|
||
idd.KernelStartPointer =
|
||
KSP(shader) + iris_cs_data_prog_offset(cs_data, dispatch.simd_size);
|
||
idd.NumberofThreadsinGPGPUThreadGroup = dispatch.threads;
|
||
idd.ThreadGroupDispatchSize =
|
||
intel_compute_threads_group_dispatch_size(dispatch.threads);
|
||
idd.SharedLocalMemorySize =
|
||
intel_compute_slm_encode_size(GFX_VER, total_shared);
|
||
idd.PreferredSLMAllocationSize =
|
||
intel_compute_preferred_slm_calc_encode_size(devinfo,
|
||
total_shared,
|
||
dispatch.group_size,
|
||
dispatch.simd_size);
|
||
idd.SamplerStatePointer = shs->sampler_table.offset;
|
||
idd.SamplerCount = encode_sampler_count(shader),
|
||
idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
|
||
/* Typically set to 0 to avoid prefetching on every thread dispatch. */
|
||
idd.BindingTableEntryCount = devinfo->verx10 == 125 ?
|
||
0 : MIN2(shader->bt.size_bytes / 4, 31);
|
||
idd.NumberOfBarriers = cs_data->uses_barrier;
|
||
#if GFX_VER >= 30
|
||
idd.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
|
||
#endif
|
||
|
||
iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_COMPUTE, NULL, NULL, NULL);
|
||
|
||
if (iris_emit_indirect_dispatch_supported(devinfo) && grid->indirect) {
|
||
iris_emit_execute_indirect_dispatch(ice, batch, grid, idd);
|
||
} else {
|
||
if (grid->indirect)
|
||
iris_load_indirect_location(ice, batch, grid);
|
||
|
||
iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_COMPUTE, NULL, NULL, NULL);
|
||
|
||
ice->utrace.last_compute_walker =
|
||
iris_emit_dwords(batch, GENX(COMPUTE_WALKER_length));
|
||
|
||
struct GENX(COMPUTE_WALKER_BODY) body = {
|
||
.SIMDSize = dispatch.simd_size / 16,
|
||
.MessageSIMD = dispatch.simd_size / 16,
|
||
.LocalXMaximum = grid->block[0] - 1,
|
||
.LocalYMaximum = grid->block[1] - 1,
|
||
.LocalZMaximum = grid->block[2] - 1,
|
||
.ThreadGroupIDXDimension = grid->grid[0],
|
||
.ThreadGroupIDYDimension = grid->grid[1],
|
||
.ThreadGroupIDZDimension = grid->grid[2],
|
||
.ExecutionMask = dispatch.right_mask,
|
||
.PostSync.MOCS = iris_mocs(NULL, &screen->isl_dev, 0),
|
||
.InterfaceDescriptor = idd,
|
||
|
||
#if GFX_VERx10 >= 125
|
||
.GenerateLocalID = cs_data->generate_local_id != 0,
|
||
.EmitLocal = cs_data->generate_local_id,
|
||
.WalkOrder = cs_data->walk_order,
|
||
.TileLayout = cs_data->walk_order == INTEL_WALK_ORDER_YXZ ?
|
||
TileY32bpe : Linear,
|
||
#endif
|
||
#if GFX_VER >= 30
|
||
/* HSD 14016252163 */
|
||
.DispatchWalkOrder = cs_data->uses_sampler ? MortonWalk : LinearWalk,
|
||
.ThreadGroupBatchSize = cs_data->uses_sampler ? TG_BATCH_4 : TG_BATCH_1,
|
||
#endif
|
||
};
|
||
|
||
_iris_pack_command(batch, GENX(COMPUTE_WALKER),
|
||
ice->utrace.last_compute_walker, cw) {
|
||
cw.IndirectParameterEnable = grid->indirect;
|
||
cw.body = body;
|
||
assert(iris_cs_push_const_total_size(shader, dispatch.threads) == 0);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* TDOD: Add INTEL_NEEDS_WA_14025112257 check once HSD is propogated for all
|
||
* other impacted platforms.
|
||
*/
|
||
if (screen->devinfo->ver >= 20 && batch->name == IRIS_BATCH_COMPUTE) {
|
||
iris_emit_pipe_control_flush(batch, "WA_14025112257",
|
||
PIPE_CONTROL_STATE_CACHE_INVALIDATE);
|
||
}
|
||
|
||
trace_intel_end_compute(&batch->trace, grid->grid[0], grid->grid[1], grid->grid[2], 0);
|
||
}
|
||
|
||
#else /* #if GFX_VERx10 >= 125 */
|
||
|
||
static void
|
||
iris_upload_gpgpu_walker(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
const struct pipe_grid_info *grid)
|
||
{
|
||
const uint64_t stage_dirty = ice->state.stage_dirty;
|
||
struct iris_screen *screen = batch->screen;
|
||
const struct intel_device_info *devinfo = screen->devinfo;
|
||
struct iris_binder *binder = &ice->state.binder;
|
||
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
|
||
struct iris_uncompiled_shader *ish =
|
||
ice->shaders.uncompiled[MESA_SHADER_COMPUTE];
|
||
struct iris_compiled_shader *shader =
|
||
ice->shaders.prog[MESA_SHADER_COMPUTE];
|
||
struct iris_cs_data *cs_data = iris_cs_data(shader);
|
||
const struct intel_cs_dispatch_info dispatch =
|
||
iris_get_cs_dispatch_info(screen->devinfo, shader, grid->block);
|
||
|
||
trace_intel_begin_compute(&batch->trace);
|
||
|
||
if ((stage_dirty & IRIS_STAGE_DIRTY_CS) ||
|
||
cs_data->local_size[0] == 0 /* Variable local group size */) {
|
||
/* The MEDIA_VFE_STATE documentation for Gfx8+ says:
|
||
*
|
||
* "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
|
||
* the only bits that are changed are scoreboard related: Scoreboard
|
||
* Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
|
||
* these scoreboard related states, a MEDIA_STATE_FLUSH is
|
||
* sufficient."
|
||
*/
|
||
iris_emit_pipe_control_flush(batch,
|
||
"workaround: stall before MEDIA_VFE_STATE",
|
||
PIPE_CONTROL_CS_STALL);
|
||
|
||
iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
|
||
if (shader->total_scratch) {
|
||
uint32_t scratch_addr =
|
||
pin_scratch_space(ice, batch, shader, MESA_SHADER_COMPUTE);
|
||
|
||
vfe.PerThreadScratchSpace = ffs(shader->total_scratch) - 11;
|
||
vfe.ScratchSpaceBasePointer =
|
||
rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE);
|
||
}
|
||
|
||
vfe.MaximumNumberofThreads =
|
||
devinfo->max_cs_threads * devinfo->subslice_total - 1;
|
||
#if GFX_VER < 11
|
||
vfe.ResetGatewayTimer =
|
||
Resettingrelativetimerandlatchingtheglobaltimestamp;
|
||
#endif
|
||
#if GFX_VER == 8
|
||
vfe.BypassGatewayControl = true;
|
||
#endif
|
||
vfe.NumberofURBEntries = 2;
|
||
vfe.URBEntryAllocationSize = 2;
|
||
|
||
vfe.CURBEAllocationSize =
|
||
align(cs_data->push.per_thread.regs * dispatch.threads +
|
||
cs_data->push.cross_thread.regs, 2);
|
||
}
|
||
}
|
||
|
||
/* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
|
||
if ((stage_dirty & IRIS_STAGE_DIRTY_CS) ||
|
||
(GFX_VER == 12 && !batch->contains_draw) ||
|
||
cs_data->local_size[0] == 0 /* Variable local group size */) {
|
||
uint32_t curbe_data_offset = 0;
|
||
assert(cs_data->push.cross_thread.dwords == 0 &&
|
||
cs_data->push.per_thread.dwords == 1 &&
|
||
cs_data->first_param_is_builtin_subgroup_id);
|
||
const unsigned push_const_size =
|
||
iris_cs_push_const_total_size(shader, dispatch.threads);
|
||
uint32_t *curbe_data_map =
|
||
stream_state(batch, ice->state.dynamic_uploader,
|
||
&ice->state.last_res.cs_thread_ids,
|
||
align(push_const_size, 64), 64,
|
||
&curbe_data_offset);
|
||
assert(curbe_data_map);
|
||
memset(curbe_data_map, 0x5a, align(push_const_size, 64));
|
||
iris_fill_cs_push_const_buffer(screen, shader, dispatch.threads,
|
||
curbe_data_map);
|
||
|
||
iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
|
||
curbe.CURBETotalDataLength = align(push_const_size, 64);
|
||
curbe.CURBEDataStartAddress = curbe_data_offset;
|
||
}
|
||
}
|
||
|
||
if (stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_CS |
|
||
IRIS_STAGE_DIRTY_BINDINGS_CS |
|
||
IRIS_STAGE_DIRTY_CONSTANTS_CS |
|
||
IRIS_STAGE_DIRTY_CS)) {
|
||
uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
|
||
|
||
iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
|
||
idd.SharedLocalMemorySize =
|
||
intel_compute_slm_encode_size(GFX_VER, ish->kernel_shared_size + grid->variable_shared_mem);
|
||
idd.KernelStartPointer =
|
||
KSP(shader) + iris_cs_data_prog_offset(cs_data, dispatch.simd_size);
|
||
idd.SamplerStatePointer = shs->sampler_table.offset;
|
||
idd.BindingTablePointer =
|
||
binder->bt_offset[MESA_SHADER_COMPUTE] >> IRIS_BT_OFFSET_SHIFT;
|
||
idd.NumberofThreadsinGPGPUThreadGroup = dispatch.threads;
|
||
}
|
||
|
||
for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
|
||
desc[i] |= ((uint32_t *) shader->derived_data)[i];
|
||
|
||
iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
|
||
load.InterfaceDescriptorTotalLength =
|
||
GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
|
||
load.InterfaceDescriptorDataStartAddress =
|
||
emit_state(batch, ice->state.dynamic_uploader,
|
||
&ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
|
||
}
|
||
}
|
||
|
||
if (grid->indirect)
|
||
iris_load_indirect_location(ice, batch, grid);
|
||
|
||
iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_COMPUTE, NULL, NULL, NULL);
|
||
|
||
iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
|
||
ggw.IndirectParameterEnable = grid->indirect != NULL;
|
||
ggw.SIMDSize = dispatch.simd_size / 16;
|
||
ggw.ThreadDepthCounterMaximum = 0;
|
||
ggw.ThreadHeightCounterMaximum = 0;
|
||
ggw.ThreadWidthCounterMaximum = dispatch.threads - 1;
|
||
ggw.ThreadGroupIDXDimension = grid->grid[0];
|
||
ggw.ThreadGroupIDYDimension = grid->grid[1];
|
||
ggw.ThreadGroupIDZDimension = grid->grid[2];
|
||
ggw.RightExecutionMask = dispatch.right_mask;
|
||
ggw.BottomExecutionMask = 0xffffffff;
|
||
}
|
||
|
||
iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
|
||
|
||
trace_intel_end_compute(&batch->trace, grid->grid[0], grid->grid[1], grid->grid[2], 0);
|
||
}
|
||
|
||
#endif /* #if GFX_VERx10 >= 125 */
|
||
|
||
static void
|
||
iris_use_global_bindings(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
const struct pipe_grid_info *grid)
|
||
{
|
||
for (unsigned i = 0; i < IRIS_MAX_GLOBAL_BINDINGS; i++) {
|
||
struct pipe_resource *res = ice->state.global_bindings[i];
|
||
if (!res)
|
||
break;
|
||
|
||
iris_use_pinned_bo(batch, iris_resource_bo(res),
|
||
true, IRIS_DOMAIN_NONE);
|
||
}
|
||
|
||
for (unsigned i = 0; i < grid->num_globals; i++) {
|
||
struct iris_resource *res = (void *) grid->globals[i];
|
||
iris_use_pinned_bo(batch, res->bo, true, IRIS_DOMAIN_NONE);
|
||
util_range_add(&res->base.b, &res->valid_buffer_range,
|
||
0, res->base.b.width0);
|
||
}
|
||
}
|
||
|
||
static void
|
||
iris_upload_compute_state(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
const struct pipe_grid_info *grid)
|
||
{
|
||
struct iris_screen *screen = batch->screen;
|
||
const uint64_t stage_dirty = ice->state.stage_dirty;
|
||
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
|
||
struct iris_compiled_shader *shader =
|
||
ice->shaders.prog[MESA_SHADER_COMPUTE];
|
||
struct iris_border_color_pool *border_color_pool =
|
||
iris_bufmgr_get_border_color_pool(screen->bufmgr);
|
||
|
||
iris_batch_sync_region_start(batch);
|
||
|
||
/* Always pin the binder. If we're emitting new binding table pointers,
|
||
* we need it. If not, we're probably inheriting old tables via the
|
||
* context, and need it anyway. Since true zero-bindings cases are
|
||
* practically non-existent, just pin it and avoid last_res tracking.
|
||
*/
|
||
iris_use_pinned_bo(batch, ice->state.binder.bo, false, IRIS_DOMAIN_NONE);
|
||
|
||
if ((stage_dirty & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
|
||
shs->sysvals_need_upload)
|
||
upload_sysvals(ice, MESA_SHADER_COMPUTE, grid);
|
||
|
||
if (stage_dirty & IRIS_STAGE_DIRTY_BINDINGS_CS)
|
||
iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
|
||
|
||
if (stage_dirty & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS)
|
||
iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
|
||
|
||
iris_use_optional_res(batch, shs->sampler_table.res, false,
|
||
IRIS_DOMAIN_NONE);
|
||
iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false,
|
||
IRIS_DOMAIN_NONE);
|
||
|
||
if (ice->state.need_border_colors)
|
||
iris_use_pinned_bo(batch, border_color_pool->bo, false,
|
||
IRIS_DOMAIN_NONE);
|
||
|
||
iris_use_global_bindings(ice, batch, grid);
|
||
|
||
#if GFX_VER >= 12
|
||
genX(invalidate_aux_map_state)(batch);
|
||
#endif
|
||
|
||
#if GFX_VERx10 >= 125
|
||
iris_upload_compute_walker(ice, batch, grid);
|
||
#else
|
||
iris_upload_gpgpu_walker(ice, batch, grid);
|
||
#endif
|
||
|
||
if (!batch->contains_draw_with_next_seqno) {
|
||
iris_restore_compute_saved_bos(ice, batch, grid);
|
||
batch->contains_draw_with_next_seqno = batch->contains_draw = true;
|
||
}
|
||
|
||
iris_batch_sync_region_end(batch);
|
||
}
|
||
|
||
/**
|
||
* State module teardown.
|
||
*/
|
||
static void
|
||
iris_destroy_state(struct iris_context *ice)
|
||
{
|
||
struct iris_genx_state *genx = ice->state.genx;
|
||
|
||
pipe_resource_reference(&ice->state.pixel_hashing_tables, NULL);
|
||
|
||
pipe_resource_reference(&ice->draw.draw_params.res, NULL);
|
||
pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL);
|
||
pipe_resource_reference(&ice->draw.generation.params.res, NULL);
|
||
pipe_resource_reference(&ice->draw.generation.vertices.res, NULL);
|
||
|
||
/* Loop over all VBOs, including ones for draw parameters */
|
||
for (unsigned i = 0; i < ARRAY_SIZE(genx->vertex_buffers); i++) {
|
||
pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
|
||
}
|
||
|
||
free(ice->state.genx);
|
||
|
||
for (int i = 0; i < 4; i++) {
|
||
pipe_so_target_reference(&ice->state.so_target[i], NULL);
|
||
}
|
||
|
||
util_unreference_framebuffer_state(&ice->state.framebuffer);
|
||
|
||
for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
|
||
struct iris_shader_state *shs = &ice->state.shaders[stage];
|
||
pipe_resource_reference(&shs->sampler_table.res, NULL);
|
||
for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
|
||
pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
|
||
pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
|
||
}
|
||
for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
|
||
pipe_resource_reference(&shs->image[i].base.resource, NULL);
|
||
pipe_resource_reference(&shs->image[i].surface_state.ref.res, NULL);
|
||
free(shs->image[i].surface_state.cpu);
|
||
}
|
||
for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
|
||
pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
|
||
pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
|
||
}
|
||
for (int i = 0; i < IRIS_MAX_TEXTURES; i++) {
|
||
pipe_sampler_view_reference((struct pipe_sampler_view **)
|
||
&shs->textures[i], NULL);
|
||
}
|
||
}
|
||
|
||
pipe_resource_reference(&ice->state.grid_size.res, NULL);
|
||
pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
|
||
|
||
pipe_resource_reference(&ice->state.null_fb.res, NULL);
|
||
pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
|
||
|
||
pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
|
||
pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
|
||
pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
|
||
pipe_resource_reference(&ice->state.last_res.scissor, NULL);
|
||
pipe_resource_reference(&ice->state.last_res.blend, NULL);
|
||
pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
|
||
pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
|
||
pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
|
||
}
|
||
|
||
/* ------------------------------------------------------------------- */
|
||
|
||
static void
|
||
iris_rebind_buffer(struct iris_context *ice,
|
||
struct iris_resource *res)
|
||
{
|
||
struct pipe_context *ctx = &ice->ctx;
|
||
struct iris_genx_state *genx = ice->state.genx;
|
||
|
||
assert(res->base.b.target == PIPE_BUFFER);
|
||
|
||
/* Buffers can't be framebuffer attachments, nor display related,
|
||
* and we don't have upstream Clover support.
|
||
*/
|
||
assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
|
||
PIPE_BIND_RENDER_TARGET |
|
||
PIPE_BIND_BLENDABLE |
|
||
PIPE_BIND_DISPLAY_TARGET |
|
||
PIPE_BIND_CURSOR |
|
||
PIPE_BIND_GLOBAL)));
|
||
|
||
if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
|
||
uint64_t bound_vbs = ice->state.bound_vertex_buffers;
|
||
while (bound_vbs) {
|
||
const int i = u_bit_scan64(&bound_vbs);
|
||
struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
|
||
|
||
/* Update the CPU struct */
|
||
STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
|
||
STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
|
||
uint64_t *addr = (uint64_t *) &state->state[1];
|
||
struct iris_bo *bo = iris_resource_bo(state->resource);
|
||
|
||
if (*addr != bo->address + state->offset) {
|
||
*addr = bo->address + state->offset;
|
||
ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS |
|
||
IRIS_DIRTY_VERTEX_BUFFER_FLUSHES;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
|
||
* the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
|
||
*
|
||
* There is also no need to handle these:
|
||
* - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
|
||
* - PIPE_BIND_QUERY_BUFFER (no persistent state references)
|
||
*/
|
||
|
||
if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
|
||
uint32_t *so_buffers = genx->so_buffers;
|
||
for (unsigned i = 0; i < 4; i++,
|
||
so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
|
||
|
||
/* There are no other fields in bits 127:64 */
|
||
uint64_t *addr = (uint64_t *) &so_buffers[2];
|
||
STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_SurfaceBaseAddress_start) == 66);
|
||
STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_SurfaceBaseAddress_bits) == 46);
|
||
|
||
struct pipe_stream_output_target *tgt = ice->state.so_target[i];
|
||
if (tgt) {
|
||
struct iris_bo *bo = iris_resource_bo(tgt->buffer);
|
||
if (*addr != bo->address + tgt->buffer_offset) {
|
||
*addr = bo->address + tgt->buffer_offset;
|
||
ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
|
||
struct iris_shader_state *shs = &ice->state.shaders[s];
|
||
|
||
if (!(res->bind_stages & (1 << s)))
|
||
continue;
|
||
|
||
if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
|
||
/* Skip constant buffer 0, it's for regular uniforms, not UBOs */
|
||
uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
|
||
while (bound_cbufs) {
|
||
const int i = u_bit_scan(&bound_cbufs);
|
||
struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
|
||
struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
|
||
|
||
if (res->bo == iris_resource_bo(cbuf->buffer)) {
|
||
pipe_resource_reference(&surf_state->res, NULL);
|
||
shs->dirty_cbufs |= 1u << i;
|
||
ice->state.dirty |= (IRIS_DIRTY_RENDER_MISC_BUFFER_FLUSHES |
|
||
IRIS_DIRTY_COMPUTE_MISC_BUFFER_FLUSHES);
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << s;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
|
||
uint32_t bound_ssbos = shs->bound_ssbos;
|
||
while (bound_ssbos) {
|
||
const int i = u_bit_scan(&bound_ssbos);
|
||
struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
|
||
|
||
if (res->bo == iris_resource_bo(ssbo->buffer)) {
|
||
struct pipe_shader_buffer buf = {
|
||
.buffer = &res->base.b,
|
||
.buffer_offset = ssbo->buffer_offset,
|
||
.buffer_size = ssbo->buffer_size,
|
||
};
|
||
iris_set_shader_buffers(ctx, s, i, 1, &buf,
|
||
(shs->writable_ssbos >> i) & 1);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
|
||
int i;
|
||
BITSET_FOREACH_SET(i, shs->bound_sampler_views, IRIS_MAX_TEXTURES) {
|
||
struct iris_sampler_view *isv = shs->textures[i];
|
||
struct iris_bo *bo = isv->res->bo;
|
||
|
||
if (update_surface_state_addrs(ice->state.surface_uploader,
|
||
&isv->surface_state, bo)) {
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
|
||
uint64_t bound_image_views = shs->bound_image_views;
|
||
while (bound_image_views) {
|
||
const int i = u_bit_scan64(&bound_image_views);
|
||
struct iris_image_view *iv = &shs->image[i];
|
||
struct iris_bo *bo = iris_resource_bo(iv->base.resource);
|
||
|
||
if (update_surface_state_addrs(ice->state.surface_uploader,
|
||
&iv->surface_state, bo)) {
|
||
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* ------------------------------------------------------------------- */
|
||
|
||
/**
|
||
* Introduce a batch synchronization boundary, and update its cache coherency
|
||
* status to reflect the execution of a PIPE_CONTROL command with the
|
||
* specified flags.
|
||
*/
|
||
static void
|
||
batch_mark_sync_for_pipe_control(struct iris_batch *batch, uint32_t flags)
|
||
{
|
||
const struct intel_device_info *devinfo = batch->screen->devinfo;
|
||
|
||
iris_batch_sync_boundary(batch);
|
||
|
||
if ((flags & PIPE_CONTROL_CS_STALL)) {
|
||
if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
|
||
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
|
||
|
||
if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
|
||
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
|
||
|
||
if ((flags & PIPE_CONTROL_TILE_CACHE_FLUSH)) {
|
||
/* A tile cache flush makes any C/Z data in L3 visible to memory. */
|
||
const unsigned c = IRIS_DOMAIN_RENDER_WRITE;
|
||
const unsigned z = IRIS_DOMAIN_DEPTH_WRITE;
|
||
batch->coherent_seqnos[c][c] = batch->l3_coherent_seqnos[c];
|
||
batch->coherent_seqnos[z][z] = batch->l3_coherent_seqnos[z];
|
||
}
|
||
|
||
if (flags & (PIPE_CONTROL_FLUSH_HDC | PIPE_CONTROL_DATA_CACHE_FLUSH)) {
|
||
/* HDC and DC flushes both flush the data cache out to L3 */
|
||
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_DATA_WRITE);
|
||
}
|
||
|
||
if ((flags & PIPE_CONTROL_DATA_CACHE_FLUSH)) {
|
||
/* A DC flush also flushes L3 data cache lines out to memory. */
|
||
const unsigned i = IRIS_DOMAIN_DATA_WRITE;
|
||
batch->coherent_seqnos[i][i] = batch->l3_coherent_seqnos[i];
|
||
}
|
||
|
||
if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
|
||
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
|
||
|
||
if ((flags & (PIPE_CONTROL_CACHE_FLUSH_BITS |
|
||
PIPE_CONTROL_STALL_AT_SCOREBOARD))) {
|
||
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_VF_READ);
|
||
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_SAMPLER_READ);
|
||
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_PULL_CONSTANT_READ);
|
||
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_READ);
|
||
}
|
||
}
|
||
|
||
if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
|
||
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
|
||
|
||
if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
|
||
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
|
||
|
||
if (flags & (PIPE_CONTROL_FLUSH_HDC | PIPE_CONTROL_DATA_CACHE_FLUSH))
|
||
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_DATA_WRITE);
|
||
|
||
if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
|
||
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
|
||
|
||
if ((flags & PIPE_CONTROL_VF_CACHE_INVALIDATE))
|
||
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_VF_READ);
|
||
|
||
if ((flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE))
|
||
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_SAMPLER_READ);
|
||
|
||
/* Technically, to invalidate IRIS_DOMAIN_PULL_CONSTANT_READ, we need
|
||
* both "Constant Cache Invalidate" and either "Texture Cache Invalidate"
|
||
* or "Data Cache Flush" set, depending on the setting of
|
||
* iris_indirect_ubos_use_sampler().
|
||
*
|
||
* However, "Data Cache Flush" and "Constant Cache Invalidate" will never
|
||
* appear in the same PIPE_CONTROL command, because one is bottom-of-pipe
|
||
* while the other is top-of-pipe. Because we only look at one flush at
|
||
* a time, we won't see both together.
|
||
*
|
||
* To deal with this, we mark it as invalidated when the constant cache
|
||
* is invalidated, and trust the callers to also flush the other related
|
||
* cache correctly at the same time.
|
||
*/
|
||
if ((flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE))
|
||
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_PULL_CONSTANT_READ);
|
||
|
||
/* IRIS_DOMAIN_OTHER_READ no longer uses any caches. */
|
||
|
||
if ((flags & PIPE_CONTROL_L3_RO_INVALIDATE_BITS) == PIPE_CONTROL_L3_RO_INVALIDATE_BITS) {
|
||
/* If we just invalidated the read-only lines of L3, then writes from non-L3-coherent
|
||
* domains will now be visible to those L3 clients.
|
||
*/
|
||
for (unsigned i = 0; i < NUM_IRIS_DOMAINS; i++) {
|
||
if (!iris_domain_is_l3_coherent(devinfo, i))
|
||
batch->l3_coherent_seqnos[i] = batch->coherent_seqnos[i][i];
|
||
}
|
||
}
|
||
}
|
||
|
||
static unsigned
|
||
flags_to_post_sync_op(uint32_t flags)
|
||
{
|
||
if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
|
||
return WriteImmediateData;
|
||
|
||
if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
|
||
return WritePSDepthCount;
|
||
|
||
if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
|
||
return WriteTimestamp;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* Do the given flags have a Post Sync or LRI Post Sync operation?
|
||
*/
|
||
static enum pipe_control_flags
|
||
get_post_sync_flags(enum pipe_control_flags flags)
|
||
{
|
||
flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
|
||
PIPE_CONTROL_WRITE_DEPTH_COUNT |
|
||
PIPE_CONTROL_WRITE_TIMESTAMP |
|
||
PIPE_CONTROL_LRI_POST_SYNC_OP;
|
||
|
||
/* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
|
||
* "LRI Post Sync Operation". So more than one bit set would be illegal.
|
||
*/
|
||
assert(util_bitcount(flags) <= 1);
|
||
|
||
return flags;
|
||
}
|
||
|
||
#define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
|
||
|
||
/**
|
||
* Emit a series of PIPE_CONTROL commands, taking into account any
|
||
* workarounds necessary to actually accomplish the caller's request.
|
||
*
|
||
* Unless otherwise noted, spec quotations in this function come from:
|
||
*
|
||
* Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
|
||
* Restrictions for PIPE_CONTROL.
|
||
*
|
||
* You should not use this function directly. Use the helpers in
|
||
* iris_pipe_control.c instead, which may split the pipe control further.
|
||
*/
|
||
static void
|
||
iris_emit_raw_pipe_control(struct iris_batch *batch,
|
||
const char *reason,
|
||
uint32_t flags,
|
||
struct iris_bo *bo,
|
||
uint32_t offset,
|
||
uint64_t imm)
|
||
{
|
||
UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
|
||
enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
|
||
enum pipe_control_flags non_lri_post_sync_flags =
|
||
post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
|
||
|
||
#if GFX_VER >= 12
|
||
if (batch->name == IRIS_BATCH_BLITTER) {
|
||
batch_mark_sync_for_pipe_control(batch, flags);
|
||
iris_batch_sync_region_start(batch);
|
||
|
||
assert(!(flags & PIPE_CONTROL_WRITE_DEPTH_COUNT));
|
||
|
||
/* Wa_16018063123 - emit fast color dummy blit before MI_FLUSH_DW. */
|
||
if (INTEL_WA_16018063123_GFX_VER)
|
||
batch_emit_fast_color_dummy_blit(batch);
|
||
|
||
/* The blitter doesn't actually use PIPE_CONTROL; rather it uses the
|
||
* MI_FLUSH_DW command. However, all of our code is set up to flush
|
||
* via emitting a pipe control, so we just translate it at this point,
|
||
* even if it is a bit hacky.
|
||
*/
|
||
iris_emit_cmd(batch, GENX(MI_FLUSH_DW), fd) {
|
||
fd.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
|
||
fd.ImmediateData = imm;
|
||
fd.PostSyncOperation = flags_to_post_sync_op(flags);
|
||
#if GFX_VERx10 >= 125
|
||
/* TODO: This may not always be necessary */
|
||
fd.FlushCCS = true;
|
||
#endif
|
||
}
|
||
iris_batch_sync_region_end(batch);
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
#if GFX_VER >= 12
|
||
/* BSpec 47112 (xe), 56551 (xe2): Instruction_PIPE_CONTROL (ComputeCS):
|
||
* SW must follow below programming restrictions when programming
|
||
* PIPE_CONTROL command:
|
||
* "Command Streamer Stall Enable" must be always set.
|
||
*/
|
||
if (batch->name == IRIS_BATCH_COMPUTE)
|
||
flags |= PIPE_CONTROL_CS_STALL;
|
||
#endif
|
||
|
||
/* The "L3 Read Only Cache Invalidation Bit" docs say it "controls the
|
||
* invalidation of the Geometry streams cached in L3 cache at the top
|
||
* of the pipe". In other words, index & vertex data that gets cached
|
||
* in L3 when VERTEX_BUFFER_STATE::L3BypassDisable is set.
|
||
*
|
||
* Normally, invalidating L1/L2 read-only caches also invalidate their
|
||
* related L3 cachelines, but this isn't the case for the VF cache.
|
||
* Emulate it by setting the L3 Read Only bit when doing a VF invalidate.
|
||
*/
|
||
if (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)
|
||
flags |= PIPE_CONTROL_L3_READ_ONLY_CACHE_INVALIDATE;
|
||
|
||
/* Recursive PIPE_CONTROL workarounds --------------------------------
|
||
* (http://knowyourmeme.com/memes/xzibit-yo-dawg)
|
||
*
|
||
* We do these first because we want to look at the original operation,
|
||
* rather than any workarounds we set.
|
||
*/
|
||
if (GFX_VER == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
|
||
/* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
|
||
* lists several workarounds:
|
||
*
|
||
* "Project: SKL, KBL, BXT
|
||
*
|
||
* If the VF Cache Invalidation Enable is set to a 1 in a
|
||
* PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
|
||
* sets to 0, with the VF Cache Invalidation Enable set to 0
|
||
* needs to be sent prior to the PIPE_CONTROL with VF Cache
|
||
* Invalidation Enable set to a 1."
|
||
*/
|
||
iris_emit_raw_pipe_control(batch,
|
||
"workaround: recursive VF cache invalidate",
|
||
0, NULL, 0, 0);
|
||
}
|
||
|
||
if (GFX_VER == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
|
||
/* Project: SKL / Argument: LRI Post Sync Operation [23]
|
||
*
|
||
* "PIPECONTROL command with “Command Streamer Stall Enable” must be
|
||
* programmed prior to programming a PIPECONTROL command with "LRI
|
||
* Post Sync Operation" in GPGPU mode of operation (i.e when
|
||
* PIPELINE_SELECT command is set to GPGPU mode of operation)."
|
||
*
|
||
* The same text exists a few rows below for Post Sync Op.
|
||
*/
|
||
iris_emit_raw_pipe_control(batch,
|
||
"workaround: CS stall before gpgpu post-sync",
|
||
PIPE_CONTROL_CS_STALL, bo, offset, imm);
|
||
}
|
||
|
||
/* "Flush Types" workarounds ---------------------------------------------
|
||
* We do these now because they may add post-sync operations or CS stalls.
|
||
*/
|
||
|
||
if (GFX_VER < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
|
||
/* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
|
||
*
|
||
* "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
|
||
* 'Write PS Depth Count' or 'Write Timestamp'."
|
||
*/
|
||
if (!bo) {
|
||
flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
|
||
post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
|
||
non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
|
||
bo = batch->screen->workaround_address.bo;
|
||
offset = batch->screen->workaround_address.offset;
|
||
}
|
||
}
|
||
|
||
if (flags & PIPE_CONTROL_DEPTH_STALL) {
|
||
/* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
|
||
*
|
||
* "This bit must be DISABLED for operations other than writing
|
||
* PS_DEPTH_COUNT."
|
||
*
|
||
* This seems like nonsense. An Ivybridge workaround requires us to
|
||
* emit a PIPE_CONTROL with a depth stall and write immediate post-sync
|
||
* operation. Gfx8+ requires us to emit depth stalls and depth cache
|
||
* flushes together. So, it's hard to imagine this means anything other
|
||
* than "we originally intended this to be used for PS_DEPTH_COUNT".
|
||
*
|
||
* We ignore the supposed restriction and do nothing.
|
||
*/
|
||
}
|
||
|
||
if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
|
||
PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
|
||
/* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
|
||
*
|
||
* "This bit must be DISABLED for End-of-pipe (Read) fences,
|
||
* PS_DEPTH_COUNT or TIMESTAMP queries."
|
||
*
|
||
* TODO: Implement end-of-pipe checking.
|
||
*/
|
||
assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
|
||
PIPE_CONTROL_WRITE_TIMESTAMP)));
|
||
}
|
||
|
||
if (GFX_VER < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
|
||
/* From the PIPE_CONTROL instruction table, bit 1:
|
||
*
|
||
* "This bit is ignored if Depth Stall Enable is set.
|
||
* Further, the render cache is not flushed even if Write Cache
|
||
* Flush Enable bit is set."
|
||
*
|
||
* We assert that the caller doesn't do this combination, to try and
|
||
* prevent mistakes. It shouldn't hurt the GPU, though.
|
||
*
|
||
* We skip this check on Gfx11+ as the "Stall at Pixel Scoreboard"
|
||
* and "Render Target Flush" combo is explicitly required for BTI
|
||
* update workarounds.
|
||
*/
|
||
assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
|
||
PIPE_CONTROL_RENDER_TARGET_FLUSH)));
|
||
}
|
||
|
||
/* PIPE_CONTROL page workarounds ------------------------------------- */
|
||
|
||
if (GFX_VER <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
|
||
/* From the PIPE_CONTROL page itself:
|
||
*
|
||
* "IVB, HSW, BDW
|
||
* Restriction: Pipe_control with CS-stall bit set must be issued
|
||
* before a pipe-control command that has the State Cache
|
||
* Invalidate bit set."
|
||
*/
|
||
flags |= PIPE_CONTROL_CS_STALL;
|
||
}
|
||
|
||
if (flags & PIPE_CONTROL_FLUSH_LLC) {
|
||
/* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
|
||
*
|
||
* "Project: ALL
|
||
* SW must always program Post-Sync Operation to "Write Immediate
|
||
* Data" when Flush LLC is set."
|
||
*
|
||
* For now, we just require the caller to do it.
|
||
*/
|
||
assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
|
||
}
|
||
|
||
/* Emulate a HDC flush with a full Data Cache Flush on older hardware which
|
||
* doesn't support the new lightweight flush.
|
||
*/
|
||
#if GFX_VER < 12
|
||
if (flags & PIPE_CONTROL_FLUSH_HDC)
|
||
flags |= PIPE_CONTROL_DATA_CACHE_FLUSH;
|
||
#endif
|
||
|
||
/* "Post-Sync Operation" workarounds -------------------------------- */
|
||
|
||
/* Project: All / Argument: Global Snapshot Count Reset [19]
|
||
*
|
||
* "This bit must not be exercised on any product.
|
||
* Requires stall bit ([20] of DW1) set."
|
||
*
|
||
* We don't use this, so we just assert that it isn't used. The
|
||
* PIPE_CONTROL instruction page indicates that they intended this
|
||
* as a debug feature and don't think it is useful in production,
|
||
* but it may actually be usable, should we ever want to.
|
||
*/
|
||
assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
|
||
|
||
if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
|
||
PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
|
||
/* Project: All / Arguments:
|
||
*
|
||
* - Generic Media State Clear [16]
|
||
* - Indirect State Pointers Disable [16]
|
||
*
|
||
* "Requires stall bit ([20] of DW1) set."
|
||
*
|
||
* Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
|
||
* State Clear) says:
|
||
*
|
||
* "PIPECONTROL command with “Command Streamer Stall Enable” must be
|
||
* programmed prior to programming a PIPECONTROL command with "Media
|
||
* State Clear" set in GPGPU mode of operation"
|
||
*
|
||
* This is a subset of the earlier rule, so there's nothing to do.
|
||
*/
|
||
flags |= PIPE_CONTROL_CS_STALL;
|
||
}
|
||
|
||
if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
|
||
/* Project: All / Argument: Store Data Index
|
||
*
|
||
* "Post-Sync Operation ([15:14] of DW1) must be set to something other
|
||
* than '0'."
|
||
*
|
||
* For now, we just assert that the caller does this. We might want to
|
||
* automatically add a write to the workaround BO...
|
||
*/
|
||
assert(non_lri_post_sync_flags != 0);
|
||
}
|
||
|
||
if (flags & PIPE_CONTROL_SYNC_GFDT) {
|
||
/* Project: All / Argument: Sync GFDT
|
||
*
|
||
* "Post-Sync Operation ([15:14] of DW1) must be set to something other
|
||
* than '0' or 0x2520[13] must be set."
|
||
*
|
||
* For now, we just assert that the caller does this.
|
||
*/
|
||
assert(non_lri_post_sync_flags != 0);
|
||
}
|
||
|
||
if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
|
||
/* Project: IVB+ / Argument: TLB inv
|
||
*
|
||
* "Requires stall bit ([20] of DW1) set."
|
||
*
|
||
* Also, from the PIPE_CONTROL instruction table:
|
||
*
|
||
* "Project: SKL+
|
||
* Post Sync Operation or CS stall must be set to ensure a TLB
|
||
* invalidation occurs. Otherwise no cycle will occur to the TLB
|
||
* cache to invalidate."
|
||
*
|
||
* This is not a subset of the earlier rule, so there's nothing to do.
|
||
*/
|
||
flags |= PIPE_CONTROL_CS_STALL;
|
||
}
|
||
|
||
if (GFX_VER == 9 && devinfo->gt == 4) {
|
||
/* TODO: The big Skylake GT4 post sync op workaround */
|
||
}
|
||
|
||
/* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
|
||
|
||
if (IS_COMPUTE_PIPELINE(batch)) {
|
||
if (GFX_VER >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
|
||
/* SKL PRMs, Volume 7: 3D-Media-GPGPU, Programming Restrictions for
|
||
* PIPE_CONTROL, Flush Types:
|
||
* "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
|
||
* For newer platforms this is documented in the PIPE_CONTROL
|
||
* instruction page.
|
||
*/
|
||
flags |= PIPE_CONTROL_CS_STALL;
|
||
}
|
||
|
||
if (GFX_VER == 8 && (post_sync_flags ||
|
||
(flags & (PIPE_CONTROL_NOTIFY_ENABLE |
|
||
PIPE_CONTROL_DEPTH_STALL |
|
||
PIPE_CONTROL_RENDER_TARGET_FLUSH |
|
||
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
|
||
PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
|
||
/* Project: BDW / Arguments:
|
||
*
|
||
* - LRI Post Sync Operation [23]
|
||
* - Post Sync Op [15:14]
|
||
* - Notify En [8]
|
||
* - Depth Stall [13]
|
||
* - Render Target Cache Flush [12]
|
||
* - Depth Cache Flush [0]
|
||
* - DC Flush Enable [5]
|
||
*
|
||
* "Requires stall bit ([20] of DW) set for all GPGPU and Media
|
||
* Workloads."
|
||
*/
|
||
flags |= PIPE_CONTROL_CS_STALL;
|
||
|
||
/* Also, from the PIPE_CONTROL instruction table, bit 20:
|
||
*
|
||
* "Project: BDW
|
||
* This bit must be always set when PIPE_CONTROL command is
|
||
* programmed by GPGPU and MEDIA workloads, except for the cases
|
||
* when only Read Only Cache Invalidation bits are set (State
|
||
* Cache Invalidation Enable, Instruction cache Invalidation
|
||
* Enable, Texture Cache Invalidation Enable, Constant Cache
|
||
* Invalidation Enable). This is to WA FFDOP CG issue, this WA
|
||
* need not implemented when FF_DOP_CG is disable via "Fixed
|
||
* Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
|
||
*
|
||
* It sounds like we could avoid CS stalls in some cases, but we
|
||
* don't currently bother. This list isn't exactly the list above,
|
||
* either...
|
||
*/
|
||
}
|
||
}
|
||
|
||
/* "Stall" workarounds ----------------------------------------------
|
||
* These have to come after the earlier ones because we may have added
|
||
* some additional CS stalls above.
|
||
*/
|
||
|
||
if (GFX_VER < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
|
||
/* Project: PRE-SKL, VLV, CHV
|
||
*
|
||
* "[All Stepping][All SKUs]:
|
||
*
|
||
* One of the following must also be set:
|
||
*
|
||
* - Render Target Cache Flush Enable ([12] of DW1)
|
||
* - Depth Cache Flush Enable ([0] of DW1)
|
||
* - Stall at Pixel Scoreboard ([1] of DW1)
|
||
* - Depth Stall ([13] of DW1)
|
||
* - Post-Sync Operation ([13] of DW1)
|
||
* - DC Flush Enable ([5] of DW1)"
|
||
*
|
||
* If we don't already have one of those bits set, we choose to add
|
||
* "Stall at Pixel Scoreboard". Some of the other bits require a
|
||
* CS stall as a workaround (see above), which would send us into
|
||
* an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
|
||
* appears to be safe, so we choose that.
|
||
*/
|
||
const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
|
||
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
|
||
PIPE_CONTROL_WRITE_IMMEDIATE |
|
||
PIPE_CONTROL_WRITE_DEPTH_COUNT |
|
||
PIPE_CONTROL_WRITE_TIMESTAMP |
|
||
PIPE_CONTROL_STALL_AT_SCOREBOARD |
|
||
PIPE_CONTROL_DEPTH_STALL |
|
||
PIPE_CONTROL_DATA_CACHE_FLUSH;
|
||
if (!(flags & wa_bits))
|
||
flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
|
||
}
|
||
|
||
if (INTEL_NEEDS_WA_1409600907 && (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH)) {
|
||
/* Wa_1409600907:
|
||
*
|
||
* "PIPE_CONTROL with Depth Stall Enable bit must be set
|
||
* with any PIPE_CONTROL with Depth Flush Enable bit set.
|
||
*/
|
||
flags |= PIPE_CONTROL_DEPTH_STALL;
|
||
}
|
||
|
||
#if INTEL_WA_1607156449_GFX_VER || INTEL_NEEDS_WA_18040903259
|
||
/* Wa_1607156449: For COMPUTE Workload - Any PIPE_CONTROL command with
|
||
* POST_SYNC Operation Enabled MUST be preceded by a PIPE_CONTROL with
|
||
* CS_STALL Bit set (with No POST_SYNC ENABLED)
|
||
*
|
||
* Wa_18040903259 says that timestamp are incorrect (not doing the CS Stall
|
||
* prior to writing the timestamp) with a command like this:
|
||
*
|
||
* PIPE_CONTROL(CS Stall, Post Sync = Timestamp)
|
||
*
|
||
* should be turned into :
|
||
*
|
||
* PIPE_CONTROL(CS Stall)
|
||
* PIPE_CONTROL(CS Stall, Post Sync = Timestamp)
|
||
*
|
||
* Also : "This WA needs to be applied only when we have done a Compute
|
||
* Walker and there is a request for a Timestamp."
|
||
*
|
||
* At the moment it's unclear whether all other parameters should go in the
|
||
* first or second PIPE_CONTROL. It seems logical that it should go to the
|
||
* first so that the timestamp accounts for all the associated flushes.
|
||
*/
|
||
if ((intel_needs_workaround(devinfo, 1607156449) ||
|
||
intel_needs_workaround(devinfo, 18040903259)) &&
|
||
IS_COMPUTE_PIPELINE(batch) &&
|
||
(flags & (PIPE_CONTROL_WRITE_TIMESTAMP |
|
||
PIPE_CONTROL_WRITE_IMMEDIATE))) {
|
||
iris_emit_raw_pipe_control(batch,
|
||
"workaround: Wa_1607156449/Wa_18040903259",
|
||
(flags & ~(PIPE_CONTROL_WRITE_TIMESTAMP |
|
||
PIPE_CONTROL_WRITE_IMMEDIATE)),
|
||
NULL, 0, 0);
|
||
flags &= (PIPE_CONTROL_CS_STALL |
|
||
PIPE_CONTROL_WRITE_IMMEDIATE |
|
||
PIPE_CONTROL_WRITE_TIMESTAMP);
|
||
}
|
||
#endif
|
||
|
||
batch_mark_sync_for_pipe_control(batch, flags);
|
||
|
||
#if INTEL_NEEDS_WA_14010840176
|
||
/* "If the intention of “constant cache invalidate” is
|
||
* to invalidate the L1 cache (which can cache constants), use “HDC
|
||
* pipeline flush” instead of Constant Cache invalidate command."
|
||
*
|
||
* "If L3 invalidate is needed, the w/a should be to set state invalidate
|
||
* in the pipe control command, in addition to the HDC pipeline flush."
|
||
*/
|
||
if (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) {
|
||
flags &= ~PIPE_CONTROL_CONST_CACHE_INVALIDATE;
|
||
flags |= PIPE_CONTROL_FLUSH_HDC | PIPE_CONTROL_STATE_CACHE_INVALIDATE;
|
||
}
|
||
#endif
|
||
|
||
/* Emit --------------------------------------------------------------- */
|
||
|
||
if (INTEL_DEBUG(DEBUG_PIPE_CONTROL)) {
|
||
fprintf(stderr,
|
||
" PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
|
||
(flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
|
||
(flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
|
||
(flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
|
||
(flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
|
||
(flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
|
||
(flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
|
||
(flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
|
||
(flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
|
||
(flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
|
||
(flags & PIPE_CONTROL_TILE_CACHE_FLUSH) ? "Tile " : "",
|
||
(flags & PIPE_CONTROL_L3_FABRIC_FLUSH) ? "L3Fabric " : "",
|
||
(flags & PIPE_CONTROL_CCS_CACHE_FLUSH) ? "CCS " : "",
|
||
(flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
|
||
(flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
|
||
(flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
|
||
(flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
|
||
(flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
|
||
(flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
|
||
(flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
|
||
"SnapRes" : "",
|
||
(flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
|
||
"ISPDis" : "",
|
||
(flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
|
||
(flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
|
||
(flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
|
||
(flags & PIPE_CONTROL_FLUSH_HDC) ? "HDC " : "",
|
||
(flags & PIPE_CONTROL_PSS_STALL_SYNC) ? "PSS " : "",
|
||
(flags & PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH) ? "UntypedDataPortCache " : "",
|
||
imm, reason);
|
||
}
|
||
|
||
iris_batch_sync_region_start(batch);
|
||
|
||
const bool trace_pc =
|
||
(flags & (PIPE_CONTROL_CACHE_FLUSH_BITS | PIPE_CONTROL_CACHE_INVALIDATE_BITS)) != 0;
|
||
|
||
if (trace_pc)
|
||
trace_intel_begin_stall(&batch->trace);
|
||
|
||
iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
|
||
#if GFX_VERx10 >= 125
|
||
pc.PSSStallSyncEnable = flags & PIPE_CONTROL_PSS_STALL_SYNC;
|
||
#endif
|
||
#if GFX_VER == 12
|
||
pc.TileCacheFlushEnable = flags & PIPE_CONTROL_TILE_CACHE_FLUSH;
|
||
pc.L3FabricFlush = flags & PIPE_CONTROL_L3_FABRIC_FLUSH;
|
||
#endif
|
||
#if GFX_VER > 11
|
||
pc.HDCPipelineFlushEnable = flags & PIPE_CONTROL_FLUSH_HDC;
|
||
#endif
|
||
#if GFX_VERx10 >= 125
|
||
pc.UntypedDataPortCacheFlushEnable =
|
||
(flags & (PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
|
||
PIPE_CONTROL_FLUSH_HDC |
|
||
PIPE_CONTROL_DATA_CACHE_FLUSH)) &&
|
||
IS_COMPUTE_PIPELINE(batch);
|
||
pc.HDCPipelineFlushEnable |= pc.UntypedDataPortCacheFlushEnable;
|
||
pc.CCSFlushEnable |= flags & PIPE_CONTROL_CCS_CACHE_FLUSH;
|
||
#endif
|
||
pc.LRIPostSyncOperation = NoLRIOperation;
|
||
pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
|
||
pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
|
||
pc.StoreDataIndex = 0;
|
||
pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
|
||
#if GFX_VERx10 < 125
|
||
pc.GlobalSnapshotCountReset =
|
||
flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
|
||
#endif
|
||
pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
|
||
#if GFX_VERx10 < 200
|
||
pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
|
||
#endif
|
||
pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
|
||
pc.RenderTargetCacheFlushEnable =
|
||
flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
|
||
pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
|
||
pc.StateCacheInvalidationEnable =
|
||
flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
|
||
#if GFX_VER >= 12
|
||
pc.L3ReadOnlyCacheInvalidationEnable =
|
||
flags & PIPE_CONTROL_L3_READ_ONLY_CACHE_INVALIDATE;
|
||
#endif
|
||
pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
|
||
pc.ConstantCacheInvalidationEnable =
|
||
flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
|
||
pc.PostSyncOperation = flags_to_post_sync_op(flags);
|
||
pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
|
||
pc.InstructionCacheInvalidateEnable =
|
||
flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
|
||
pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
|
||
pc.IndirectStatePointersDisable =
|
||
flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
|
||
pc.TextureCacheInvalidationEnable =
|
||
flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
|
||
pc.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
|
||
pc.ImmediateData = imm;
|
||
}
|
||
|
||
if (trace_pc) {
|
||
trace_intel_end_stall(&batch->trace, flags,
|
||
iris_utrace_pipe_flush_bit_to_ds_stall_flag,
|
||
reason,0,0,0);
|
||
}
|
||
|
||
iris_batch_sync_region_end(batch);
|
||
}
|
||
|
||
#if GFX_VER == 9
|
||
/**
|
||
* Preemption on Gfx9 has to be enabled or disabled in various cases.
|
||
*
|
||
* See these workarounds for preemption:
|
||
* - WaDisableMidObjectPreemptionForGSLineStripAdj
|
||
* - WaDisableMidObjectPreemptionForTrifanOrPolygon
|
||
* - WaDisableMidObjectPreemptionForLineLoop
|
||
* - WA#0798
|
||
*
|
||
* We don't put this in the vtable because it's only used on Gfx9.
|
||
*/
|
||
void
|
||
gfx9_toggle_preemption(struct iris_context *ice,
|
||
struct iris_batch *batch,
|
||
const struct pipe_draw_info *draw)
|
||
{
|
||
struct iris_genx_state *genx = ice->state.genx;
|
||
bool object_preemption = true;
|
||
|
||
/* WaDisableMidObjectPreemptionForGSLineStripAdj
|
||
*
|
||
* "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
|
||
* and GS is enabled."
|
||
*/
|
||
if (draw->mode == MESA_PRIM_LINE_STRIP_ADJACENCY &&
|
||
ice->shaders.prog[MESA_SHADER_GEOMETRY])
|
||
object_preemption = false;
|
||
|
||
/* WaDisableMidObjectPreemptionForTrifanOrPolygon
|
||
*
|
||
* "TriFan miscompare in Execlist Preemption test. Cut index that is
|
||
* on a previous context. End the previous, the resume another context
|
||
* with a tri-fan or polygon, and the vertex count is corrupted. If we
|
||
* prempt again we will cause corruption.
|
||
*
|
||
* WA: Disable mid-draw preemption when draw-call has a tri-fan."
|
||
*/
|
||
if (draw->mode == MESA_PRIM_TRIANGLE_FAN)
|
||
object_preemption = false;
|
||
|
||
/* WaDisableMidObjectPreemptionForLineLoop
|
||
*
|
||
* "VF Stats Counters Missing a vertex when preemption enabled.
|
||
*
|
||
* WA: Disable mid-draw preemption when the draw uses a lineloop
|
||
* topology."
|
||
*/
|
||
if (draw->mode == MESA_PRIM_LINE_LOOP)
|
||
object_preemption = false;
|
||
|
||
/* WA#0798
|
||
*
|
||
* "VF is corrupting GAFS data when preempted on an instance boundary
|
||
* and replayed with instancing enabled.
|
||
*
|
||
* WA: Disable preemption when using instanceing."
|
||
*/
|
||
if (draw->instance_count > 1)
|
||
object_preemption = false;
|
||
|
||
if (genx->object_preemption != object_preemption) {
|
||
iris_enable_obj_preemption(batch, object_preemption);
|
||
genx->object_preemption = object_preemption;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
static void
|
||
iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
|
||
{
|
||
struct iris_genx_state *genx = ice->state.genx;
|
||
|
||
#if INTEL_NEEDS_WA_1808121037
|
||
genx->depth_reg_mode = IRIS_DEPTH_REG_MODE_UNKNOWN;
|
||
#endif
|
||
|
||
memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
|
||
}
|
||
|
||
static void
|
||
iris_emit_mi_report_perf_count(struct iris_batch *batch,
|
||
struct iris_bo *bo,
|
||
uint32_t offset_in_bytes,
|
||
uint32_t report_id)
|
||
{
|
||
iris_batch_sync_region_start(batch);
|
||
iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
|
||
mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes,
|
||
IRIS_DOMAIN_OTHER_WRITE);
|
||
mi_rpc.ReportID = report_id;
|
||
}
|
||
iris_batch_sync_region_end(batch);
|
||
}
|
||
|
||
/**
|
||
* Update the pixel hashing modes that determine the balancing of PS threads
|
||
* across subslices and slices.
|
||
*
|
||
* \param width Width bound of the rendering area (already scaled down if \p
|
||
* scale is greater than 1).
|
||
* \param height Height bound of the rendering area (already scaled down if \p
|
||
* scale is greater than 1).
|
||
* \param scale The number of framebuffer samples that could potentially be
|
||
* affected by an individual channel of the PS thread. This is
|
||
* typically one for single-sampled rendering, but for operations
|
||
* like CCS resolves and fast clears a single PS invocation may
|
||
* update a huge number of pixels, in which case a finer
|
||
* balancing is desirable in order to maximally utilize the
|
||
* bandwidth available. UINT_MAX can be used as shorthand for
|
||
* "finest hashing mode available".
|
||
*/
|
||
void
|
||
genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
|
||
unsigned width, unsigned height, unsigned scale)
|
||
{
|
||
#if GFX_VER == 9
|
||
const struct intel_device_info *devinfo = batch->screen->devinfo;
|
||
const unsigned slice_hashing[] = {
|
||
/* Because all Gfx9 platforms with more than one slice require
|
||
* three-way subslice hashing, a single "normal" 16x16 slice hashing
|
||
* block is guaranteed to suffer from substantial imbalance, with one
|
||
* subslice receiving twice as much work as the other two in the
|
||
* slice.
|
||
*
|
||
* The performance impact of that would be particularly severe when
|
||
* three-way hashing is also in use for slice balancing (which is the
|
||
* case for all Gfx9 GT4 platforms), because one of the slices
|
||
* receives one every three 16x16 blocks in either direction, which
|
||
* is roughly the periodicity of the underlying subslice imbalance
|
||
* pattern ("roughly" because in reality the hardware's
|
||
* implementation of three-way hashing doesn't do exact modulo 3
|
||
* arithmetic, which somewhat decreases the magnitude of this effect
|
||
* in practice). This leads to a systematic subslice imbalance
|
||
* within that slice regardless of the size of the primitive. The
|
||
* 32x32 hashing mode guarantees that the subslice imbalance within a
|
||
* single slice hashing block is minimal, largely eliminating this
|
||
* effect.
|
||
*/
|
||
_32x32,
|
||
/* Finest slice hashing mode available. */
|
||
NORMAL
|
||
};
|
||
const unsigned subslice_hashing[] = {
|
||
/* 16x16 would provide a slight cache locality benefit especially
|
||
* visible in the sampler L1 cache efficiency of low-bandwidth
|
||
* non-LLC platforms, but it comes at the cost of greater subslice
|
||
* imbalance for primitives of dimensions approximately intermediate
|
||
* between 16x4 and 16x16.
|
||
*/
|
||
_16x4,
|
||
/* Finest subslice hashing mode available. */
|
||
_8x4
|
||
};
|
||
/* Dimensions of the smallest hashing block of a given hashing mode. If
|
||
* the rendering area is smaller than this there can't possibly be any
|
||
* benefit from switching to this mode, so we optimize out the
|
||
* transition.
|
||
*/
|
||
const unsigned min_size[][2] = {
|
||
{ 16, 4 },
|
||
{ 8, 4 }
|
||
};
|
||
const unsigned idx = scale > 1;
|
||
|
||
if (width > min_size[idx][0] || height > min_size[idx][1]) {
|
||
iris_emit_raw_pipe_control(batch,
|
||
"workaround: CS stall before GT_MODE LRI",
|
||
PIPE_CONTROL_STALL_AT_SCOREBOARD |
|
||
PIPE_CONTROL_CS_STALL,
|
||
NULL, 0, 0);
|
||
|
||
iris_emit_reg(batch, GENX(GT_MODE), reg) {
|
||
reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
|
||
reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
|
||
reg.SubsliceHashing = subslice_hashing[idx];
|
||
reg.SubsliceHashingMask = -1;
|
||
};
|
||
|
||
ice->state.current_hash_scale = scale;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
iris_set_frontend_noop(struct pipe_context *ctx, bool enable)
|
||
{
|
||
struct iris_context *ice = (struct iris_context *) ctx;
|
||
|
||
if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_RENDER], enable)) {
|
||
ice->state.dirty |= IRIS_ALL_DIRTY_FOR_RENDER;
|
||
ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_RENDER;
|
||
}
|
||
|
||
if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_COMPUTE], enable)) {
|
||
ice->state.dirty |= IRIS_ALL_DIRTY_FOR_COMPUTE;
|
||
ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_COMPUTE;
|
||
}
|
||
}
|
||
|
||
void
|
||
genX(init_screen_state)(struct iris_screen *screen)
|
||
{
|
||
assert(screen->devinfo->verx10 == GFX_VERx10);
|
||
screen->vtbl.destroy_state = iris_destroy_state;
|
||
screen->vtbl.init_render_context = iris_init_render_context;
|
||
screen->vtbl.init_compute_context = iris_init_compute_context;
|
||
screen->vtbl.init_copy_context = iris_init_copy_context;
|
||
screen->vtbl.upload_render_state = iris_upload_render_state;
|
||
screen->vtbl.upload_indirect_render_state = iris_upload_indirect_render_state;
|
||
screen->vtbl.upload_indirect_shader_render_state = iris_upload_indirect_shader_render_state;
|
||
screen->vtbl.update_binder_address = iris_update_binder_address;
|
||
screen->vtbl.upload_compute_state = iris_upload_compute_state;
|
||
screen->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
|
||
screen->vtbl.rewrite_compute_walker_pc = iris_rewrite_compute_walker_pc;
|
||
screen->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
|
||
screen->vtbl.rebind_buffer = iris_rebind_buffer;
|
||
screen->vtbl.load_register_reg32 = iris_load_register_reg32;
|
||
screen->vtbl.load_register_reg64 = iris_load_register_reg64;
|
||
screen->vtbl.load_register_imm32 = iris_load_register_imm32;
|
||
screen->vtbl.load_register_imm64 = iris_load_register_imm64;
|
||
screen->vtbl.load_register_mem32 = iris_load_register_mem32;
|
||
screen->vtbl.load_register_mem64 = iris_load_register_mem64;
|
||
screen->vtbl.store_register_mem32 = iris_store_register_mem32;
|
||
screen->vtbl.store_register_mem64 = iris_store_register_mem64;
|
||
screen->vtbl.store_data_imm32 = iris_store_data_imm32;
|
||
screen->vtbl.store_data_imm64 = iris_store_data_imm64;
|
||
screen->vtbl.copy_mem_mem = iris_copy_mem_mem;
|
||
screen->vtbl.derived_program_state_size = iris_derived_program_state_size;
|
||
screen->vtbl.store_derived_program_state = iris_store_derived_program_state;
|
||
screen->vtbl.create_so_decl_list = iris_create_so_decl_list;
|
||
screen->vtbl.populate_vs_key = iris_populate_vs_key;
|
||
screen->vtbl.populate_tcs_key = iris_populate_tcs_key;
|
||
screen->vtbl.populate_tes_key = iris_populate_tes_key;
|
||
screen->vtbl.populate_gs_key = iris_populate_gs_key;
|
||
screen->vtbl.populate_fs_key = iris_populate_fs_key;
|
||
screen->vtbl.populate_cs_key = iris_populate_cs_key;
|
||
screen->vtbl.lost_genx_state = iris_lost_genx_state;
|
||
screen->vtbl.disable_rhwo_optimization = iris_disable_rhwo_optimization;
|
||
}
|
||
|
||
void
|
||
genX(init_state)(struct iris_context *ice)
|
||
{
|
||
struct pipe_context *ctx = &ice->ctx;
|
||
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
|
||
|
||
ctx->create_blend_state = iris_create_blend_state;
|
||
ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
|
||
ctx->create_rasterizer_state = iris_create_rasterizer_state;
|
||
ctx->create_sampler_state = iris_create_sampler_state;
|
||
ctx->create_sampler_view = iris_create_sampler_view;
|
||
ctx->create_surface = iris_create_surface;
|
||
ctx->create_vertex_elements_state = iris_create_vertex_elements;
|
||
ctx->bind_blend_state = iris_bind_blend_state;
|
||
ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
|
||
ctx->bind_sampler_states = iris_bind_sampler_states;
|
||
ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
|
||
ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
|
||
ctx->delete_blend_state = iris_delete_state;
|
||
ctx->delete_depth_stencil_alpha_state = iris_delete_state;
|
||
ctx->delete_rasterizer_state = iris_delete_state;
|
||
ctx->delete_sampler_state = iris_delete_state;
|
||
ctx->delete_vertex_elements_state = iris_delete_state;
|
||
ctx->set_blend_color = iris_set_blend_color;
|
||
ctx->set_clip_state = iris_set_clip_state;
|
||
ctx->set_constant_buffer = iris_set_constant_buffer;
|
||
ctx->set_shader_buffers = iris_set_shader_buffers;
|
||
ctx->set_shader_images = iris_set_shader_images;
|
||
ctx->set_sampler_views = iris_set_sampler_views;
|
||
ctx->set_global_binding = iris_set_global_binding;
|
||
ctx->set_tess_state = iris_set_tess_state;
|
||
ctx->set_patch_vertices = iris_set_patch_vertices;
|
||
ctx->set_framebuffer_state = iris_set_framebuffer_state;
|
||
ctx->set_polygon_stipple = iris_set_polygon_stipple;
|
||
ctx->set_sample_mask = iris_set_sample_mask;
|
||
ctx->set_scissor_states = iris_set_scissor_states;
|
||
ctx->set_stencil_ref = iris_set_stencil_ref;
|
||
ctx->set_vertex_buffers = iris_set_vertex_buffers;
|
||
ctx->set_viewport_states = iris_set_viewport_states;
|
||
ctx->sampler_view_destroy = iris_sampler_view_destroy;
|
||
ctx->sampler_view_release = u_default_sampler_view_release;
|
||
ctx->resource_release = u_default_resource_release;
|
||
ctx->surface_destroy = iris_surface_destroy;
|
||
ctx->draw_vbo = iris_draw_vbo;
|
||
ctx->launch_grid = iris_launch_grid;
|
||
ctx->create_stream_output_target = iris_create_stream_output_target;
|
||
ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
|
||
ctx->set_stream_output_targets = iris_set_stream_output_targets;
|
||
ctx->set_frontend_noop = iris_set_frontend_noop;
|
||
|
||
ice->state.dirty = ~0ull;
|
||
ice->state.stage_dirty = ~0ull;
|
||
|
||
ice->state.statistics_counters_enabled = true;
|
||
|
||
ice->state.sample_mask = 0xffff;
|
||
ice->state.num_viewports = 1;
|
||
ice->state.prim_mode = MESA_PRIM_COUNT;
|
||
ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
|
||
ice->draw.derived_params.drawid = -1;
|
||
|
||
#if GFX_VERx10 >= 120
|
||
ice->state.genx->object_preemption = true;
|
||
#endif
|
||
|
||
/* Make a 1x1x1 null surface for unbound textures */
|
||
void *null_surf_map =
|
||
upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
|
||
4 * GENX(RENDER_SURFACE_STATE_length), 64);
|
||
isl_null_fill_state(&screen->isl_dev, null_surf_map,
|
||
.size = isl_extent3d(1, 1, 1));
|
||
ice->state.unbound_tex.offset +=
|
||
iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
|
||
|
||
/* Default all scissor rectangles to be empty regions. */
|
||
for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
|
||
ice->state.scissors[i] = (struct iris_scissor_state) {
|
||
.minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
|
||
};
|
||
}
|
||
}
|