mesa/src/gallium/drivers/iris/iris_state.c

10791 lines
399 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* @file iris_state.c
*
* ============================= GENXML CODE =============================
* [This file is compiled once per generation.]
* =======================================================================
*
* This is the main state upload code.
*
* Gallium uses Constant State Objects, or CSOs, for most state. Large,
* complex, or highly reusable state can be created once, and bound and
* rebound multiple times. This is modeled with the pipe->create_*_state()
* and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
* streamed out on the fly, via pipe->set_*_state() hooks.
*
* OpenGL involves frequently mutating context state, which is mirrored in
* core Mesa by highly mutable data structures. However, most applications
* typically draw the same things over and over - from frame to frame, most
* of the same objects are still visible and need to be redrawn. So, rather
* than inventing new state all the time, applications usually mutate to swap
* between known states that we've seen before.
*
* Gallium isolates us from this mutation by tracking API state, and
* distilling it into a set of Constant State Objects, or CSOs. Large,
* complex, or typically reusable state can be created once, then reused
* multiple times. Drivers can create and store their own associated data.
* This create/bind model corresponds to the pipe->create_*_state() and
* pipe->bind_*_state() driver hooks.
*
* Some state is cheap to create, or expected to be highly dynamic. Rather
* than creating and caching piles of CSOs for these, Gallium simply streams
* them out, via the pipe->set_*_state() driver hooks.
*
* To reduce draw time overhead, we try to compute as much state at create
* time as possible. Wherever possible, we translate the Gallium pipe state
* to 3DSTATE commands, and store those commands in the CSO. At draw time,
* we can simply memcpy them into a batch buffer.
*
* No hardware matches the abstraction perfectly, so some commands require
* information from multiple CSOs. In this case, we can store two copies
* of the packet (one in each CSO), and simply | together their DWords at
* draw time. Sometimes the second set is trivial (one or two fields), so
* we simply pack it at draw time.
*
* There are two main components in the file below. First, the CSO hooks
* create/bind/track state. The second are the draw-time upload functions,
* iris_upload_render_state() and iris_upload_compute_state(), which read
* the context state and emit the commands into the actual batch.
*/
#include <stdio.h>
#include <errno.h>
#ifdef HAVE_VALGRIND
#include <valgrind.h>
#include <memcheck.h>
#define VG(x) x
#else
#define VG(x)
#endif
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#include "pipe/p_screen.h"
#include "util/u_dual_blend.h"
#include "util/u_inlines.h"
#include "util/format/u_format.h"
#include "util/u_framebuffer.h"
#include "util/u_transfer.h"
#include "util/u_upload_mgr.h"
#include "util/u_viewport.h"
#include "util/u_memory.h"
#include "util/u_trace_gallium.h"
#include "nir.h"
#include "intel/common/intel_aux_map.h"
#include "intel/common/intel_compute_slm.h"
#include "intel/common/intel_l3_config.h"
#include "intel/common/intel_sample_positions.h"
#include "intel/ds/intel_tracepoints.h"
#include "iris_batch.h"
#include "iris_context.h"
#include "iris_defines.h"
#include "iris_pipe.h"
#include "iris_resource.h"
#include "iris_utrace.h"
#include "iris_genx_macros.h"
#if GFX_VER >= 9
#include "intel/compiler/brw/brw_compiler.h"
#include "intel/common/intel_genX_state_brw.h"
#else
#include "intel/compiler/elk/elk_compiler.h"
#include "intel/common/intel_genX_state_elk.h"
#endif
#include "intel/common/intel_common.h"
#include "intel/common/intel_guardband.h"
#include "intel/common/intel_pixel_hash.h"
#include "intel/common/intel_tiled_render.h"
/**
* Statically assert that PIPE_* enums match the hardware packets.
* (As long as they match, we don't need to translate them.)
*/
UNUSED static void pipe_asserts()
{
#define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
/* pipe_logicop happens to match the hardware. */
PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
/* pipe_blend_func happens to match the hardware. */
PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
/* pipe_blend_func happens to match the hardware. */
PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
/* pipe_stencil_op happens to match the hardware. */
PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
/* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
#undef PIPE_ASSERT
}
static unsigned
translate_prim_type(enum mesa_prim prim, uint8_t verts_per_patch)
{
static const unsigned map[] = {
[MESA_PRIM_POINTS] = _3DPRIM_POINTLIST,
[MESA_PRIM_LINES] = _3DPRIM_LINELIST,
[MESA_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
[MESA_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
[MESA_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
[MESA_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[MESA_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[MESA_PRIM_QUADS] = _3DPRIM_QUADLIST,
[MESA_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
[MESA_PRIM_POLYGON] = _3DPRIM_POLYGON,
[MESA_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
[MESA_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
[MESA_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
[MESA_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
[MESA_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
};
return map[prim] + (prim == MESA_PRIM_PATCHES ? verts_per_patch : 0);
}
static unsigned
translate_compare_func(enum pipe_compare_func pipe_func)
{
static const unsigned map[] = {
[PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
[PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
[PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
[PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
[PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
[PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
[PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
[PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
};
return map[pipe_func];
}
static unsigned
translate_shadow_func(enum pipe_compare_func pipe_func)
{
/* Gallium specifies the result of shadow comparisons as:
*
* 1 if ref <op> texel,
* 0 otherwise.
*
* The hardware does:
*
* 0 if texel <op> ref,
* 1 otherwise.
*
* So we need to flip the operator and also negate.
*/
static const unsigned map[] = {
[PIPE_FUNC_NEVER] = PREFILTEROP_ALWAYS,
[PIPE_FUNC_LESS] = PREFILTEROP_LEQUAL,
[PIPE_FUNC_EQUAL] = PREFILTEROP_NOTEQUAL,
[PIPE_FUNC_LEQUAL] = PREFILTEROP_LESS,
[PIPE_FUNC_GREATER] = PREFILTEROP_GEQUAL,
[PIPE_FUNC_NOTEQUAL] = PREFILTEROP_EQUAL,
[PIPE_FUNC_GEQUAL] = PREFILTEROP_GREATER,
[PIPE_FUNC_ALWAYS] = PREFILTEROP_NEVER,
};
return map[pipe_func];
}
static unsigned
translate_cull_mode(unsigned pipe_face)
{
static const unsigned map[4] = {
[PIPE_FACE_NONE] = CULLMODE_NONE,
[PIPE_FACE_FRONT] = CULLMODE_FRONT,
[PIPE_FACE_BACK] = CULLMODE_BACK,
[PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
};
return map[pipe_face];
}
static unsigned
translate_fill_mode(unsigned pipe_polymode)
{
static const unsigned map[4] = {
[PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
[PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
[PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
[PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
};
return map[pipe_polymode];
}
static unsigned
translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
{
static const unsigned map[] = {
[PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
[PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
[PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
};
return map[pipe_mip];
}
static uint32_t
translate_wrap(unsigned pipe_wrap)
{
static const unsigned map[] = {
[PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
[PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
[PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
[PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
[PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
[PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
/* These are unsupported. */
[PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
[PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
};
return map[pipe_wrap];
}
#if GFX_VER > 8
static uint32_t
translate_tex_filter_mode(unsigned mode)
{
static const unsigned map[] = {
[PIPE_TEX_REDUCTION_WEIGHTED_AVERAGE] = STD_FILTER,
[PIPE_TEX_REDUCTION_MIN] = MINIMUM,
[PIPE_TEX_REDUCTION_MAX] = MAXIMUM,
};
return map[mode];
}
#endif
/**
* Allocate space for some indirect state.
*
* Return a pointer to the map (to fill it out) and a state ref (for
* referring to the state in GPU commands).
*/
static void *
upload_state(struct u_upload_mgr *uploader,
struct iris_state_ref *ref,
unsigned size,
unsigned alignment)
{
void *p = NULL;
u_upload_alloc_ref(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
return p;
}
/**
* Stream out temporary/short-lived state.
*
* This allocates space, pins the BO, and includes the BO address in the
* returned offset (which works because all state lives in 32-bit memory
* zones).
*/
static uint32_t *
stream_state(struct iris_batch *batch,
struct u_upload_mgr *uploader,
struct pipe_resource **out_res,
unsigned size,
unsigned alignment,
uint32_t *out_offset)
{
void *ptr = NULL;
u_upload_alloc_ref(uploader, 0, size, alignment, out_offset, out_res, &ptr);
struct iris_bo *bo = iris_resource_bo(*out_res);
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
iris_record_state_size(batch->state_sizes,
bo->address + *out_offset, size);
*out_offset += iris_bo_offset_from_base_address(bo);
return ptr;
}
/**
* stream_state() + memcpy.
*/
static uint32_t
emit_state(struct iris_batch *batch,
struct u_upload_mgr *uploader,
struct pipe_resource **out_res,
const void *data,
unsigned size,
unsigned alignment)
{
unsigned offset = 0;
uint32_t *map =
stream_state(batch, uploader, out_res, size, alignment, &offset);
if (map)
memcpy(map, data, size);
return offset;
}
/**
* Did field 'x' change between 'old_cso' and 'new_cso'?
*
* (If so, we may want to set some dirty flags.)
*/
#define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
#define cso_changed_memcmp(x) \
(!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
#define cso_changed_memcmp_elts(x, n) \
(!old_cso || memcmp(old_cso->x, new_cso->x, n * sizeof(old_cso->x[0])) != 0)
static void
flush_before_state_base_change(struct iris_batch *batch)
{
/* Wa_14014427904 - We need additional invalidate/flush when
* emitting NP state commands with ATS-M in compute mode.
*/
bool atsm_compute = intel_device_info_is_atsm(batch->screen->devinfo) &&
batch->name == IRIS_BATCH_COMPUTE;
uint32_t np_state_wa_bits =
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_STATE_CACHE_INVALIDATE |
PIPE_CONTROL_CONST_CACHE_INVALIDATE |
PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
PIPE_CONTROL_INSTRUCTION_INVALIDATE |
PIPE_CONTROL_FLUSH_HDC;
/* Flush before emitting STATE_BASE_ADDRESS.
*
* This isn't documented anywhere in the PRM. However, it seems to be
* necessary prior to changing the surface state base address. We've
* seen issues in Vulkan where we get GPU hangs when using multi-level
* command buffers which clear depth, reset state base address, and then
* go render stuff.
*
* Normally, in GL, we would trust the kernel to do sufficient stalls
* and flushes prior to executing our batch. However, it doesn't seem
* as if the kernel's flushing is always sufficient and we don't want to
* rely on it.
*
* We make this an end-of-pipe sync instead of a normal flush because we
* do not know the current status of the GPU. On Haswell at least,
* having a fast-clear operation in flight at the same time as a normal
* rendering operation can cause hangs. Since the kernel's flushing is
* insufficient, we need to ensure that any rendering operations from
* other processes are definitely complete before we try to do our own
* rendering. It's a bit of a big hammer but it appears to work.
*
* Render target cache flush before SBA is required by Wa_18039438632.
*/
iris_emit_end_of_pipe_sync(batch,
"change STATE_BASE_ADDRESS (flushes)",
atsm_compute ? np_state_wa_bits : 0 |
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DATA_CACHE_FLUSH);
}
static void
flush_after_state_base_change(struct iris_batch *batch)
{
const struct intel_device_info *devinfo = batch->screen->devinfo;
/* After re-setting the surface state base address, we have to do some
* cache flusing so that the sampler engine will pick up the new
* SURFACE_STATE objects and binding tables. From the Broadwell PRM,
* Shared Function > 3D Sampler > State > State Caching (page 96):
*
* Coherency with system memory in the state cache, like the texture
* cache is handled partially by software. It is expected that the
* command stream or shader will issue Cache Flush operation or
* Cache_Flush sampler message to ensure that the L1 cache remains
* coherent with system memory.
*
* [...]
*
* Whenever the value of the Dynamic_State_Base_Addr,
* Surface_State_Base_Addr are altered, the L1 state cache must be
* invalidated to ensure the new surface or sampler state is fetched
* from system memory.
*
* The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
* which, according the PIPE_CONTROL instruction documentation in the
* Broadwell PRM:
*
* Setting this bit is independent of any other bit in this packet.
* This bit controls the invalidation of the L1 and L2 state caches
* at the top of the pipe i.e. at the parsing time.
*
* Unfortunately, experimentation seems to indicate that state cache
* invalidation through a PIPE_CONTROL does nothing whatsoever in
* regards to surface state and binding tables. In stead, it seems that
* invalidating the texture cache is what is actually needed.
*
* XXX: As far as we have been able to determine through
* experimentation, shows that flush the texture cache appears to be
* sufficient. The theory here is that all of the sampling/rendering
* units cache the binding table in the texture cache. However, we have
* yet to be able to actually confirm this.
*
* Wa_16013000631:
*
* "DG2 128/256/512-A/B: S/W must program STATE_BASE_ADDRESS command twice
* or program pipe control with Instruction cache invalidate post
* STATE_BASE_ADDRESS command"
*/
iris_emit_end_of_pipe_sync(batch,
"change STATE_BASE_ADDRESS (invalidates)",
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
PIPE_CONTROL_CONST_CACHE_INVALIDATE |
PIPE_CONTROL_STATE_CACHE_INVALIDATE |
(intel_needs_workaround(devinfo, 16013000631) ?
PIPE_CONTROL_INSTRUCTION_INVALIDATE : 0));
}
static void
iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
uint32_t src)
{
struct mi_builder b;
mi_builder_init(&b, batch->screen->devinfo, batch);
mi_store(&b, mi_reg32(dst), mi_reg32(src));
}
static void
iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
uint32_t src)
{
struct mi_builder b;
mi_builder_init(&b, batch->screen->devinfo, batch);
mi_store(&b, mi_reg64(dst), mi_reg64(src));
}
static void
iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
uint32_t val)
{
struct mi_builder b;
mi_builder_init(&b, batch->screen->devinfo, batch);
mi_store(&b, mi_reg32(reg), mi_imm(val));
}
static void
iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
uint64_t val)
{
struct mi_builder b;
mi_builder_init(&b, batch->screen->devinfo, batch);
mi_store(&b, mi_reg64(reg), mi_imm(val));
}
/**
* Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
*/
static void
iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
struct iris_bo *bo, uint32_t offset)
{
iris_batch_sync_region_start(batch);
struct mi_builder b;
mi_builder_init(&b, batch->screen->devinfo, batch);
struct mi_value src = mi_mem32(ro_bo(bo, offset));
mi_store(&b, mi_reg32(reg), src);
iris_batch_sync_region_end(batch);
}
/**
* Load a 64-bit value from a buffer into a MMIO register via
* two MI_LOAD_REGISTER_MEM commands.
*/
static void
iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
struct iris_bo *bo, uint32_t offset)
{
iris_batch_sync_region_start(batch);
struct mi_builder b;
mi_builder_init(&b, batch->screen->devinfo, batch);
struct mi_value src = mi_mem64(ro_bo(bo, offset));
mi_store(&b, mi_reg64(reg), src);
iris_batch_sync_region_end(batch);
}
static void
iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
struct iris_bo *bo, uint32_t offset,
bool predicated)
{
iris_batch_sync_region_start(batch);
struct mi_builder b;
mi_builder_init(&b, batch->screen->devinfo, batch);
struct mi_value dst = mi_mem32(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
struct mi_value src = mi_reg32(reg);
if (predicated)
mi_store_if(&b, dst, src);
else
mi_store(&b, dst, src);
iris_batch_sync_region_end(batch);
}
static void
iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
struct iris_bo *bo, uint32_t offset,
bool predicated)
{
iris_batch_sync_region_start(batch);
struct mi_builder b;
mi_builder_init(&b, batch->screen->devinfo, batch);
struct mi_value dst = mi_mem64(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
struct mi_value src = mi_reg64(reg);
if (predicated)
mi_store_if(&b, dst, src);
else
mi_store(&b, dst, src);
iris_batch_sync_region_end(batch);
}
static void
iris_store_data_imm32(struct iris_batch *batch,
struct iris_bo *bo, uint32_t offset,
uint32_t imm)
{
iris_batch_sync_region_start(batch);
struct mi_builder b;
mi_builder_init(&b, batch->screen->devinfo, batch);
struct mi_value dst = mi_mem32(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
struct mi_value src = mi_imm(imm);
mi_store(&b, dst, src);
iris_batch_sync_region_end(batch);
}
static void
iris_store_data_imm64(struct iris_batch *batch,
struct iris_bo *bo, uint32_t offset,
uint64_t imm)
{
iris_batch_sync_region_start(batch);
struct mi_builder b;
mi_builder_init(&b, batch->screen->devinfo, batch);
struct mi_value dst = mi_mem64(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
struct mi_value src = mi_imm(imm);
mi_store(&b, dst, src);
iris_batch_sync_region_end(batch);
}
static void
iris_copy_mem_mem(struct iris_batch *batch,
struct iris_bo *dst_bo, uint32_t dst_offset,
struct iris_bo *src_bo, uint32_t src_offset,
unsigned bytes)
{
/* MI_COPY_MEM_MEM operates on DWords. */
assert(bytes % 4 == 0);
assert(dst_offset % 4 == 0);
assert(src_offset % 4 == 0);
iris_batch_sync_region_start(batch);
for (unsigned i = 0; i < bytes; i += 4) {
iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i,
IRIS_DOMAIN_OTHER_WRITE);
cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
}
}
iris_batch_sync_region_end(batch);
}
static void
iris_rewrite_compute_walker_pc(struct iris_batch *batch,
uint32_t *walker,
struct iris_bo *bo,
uint32_t offset)
{
#if GFX_VERx10 >= 125
struct iris_screen *screen = batch->screen;
struct iris_address addr = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
uint32_t dwords[GENX(COMPUTE_WALKER_length)];
_iris_pack_command(batch, GENX(COMPUTE_WALKER), dwords, cw) {
cw.body.PostSync.Operation = WriteTimestamp;
cw.body.PostSync.DestinationAddress = addr;
cw.body.PostSync.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
}
for (uint32_t i = 0; i < GENX(COMPUTE_WALKER_length); i++)
walker[i] |= dwords[i];
/*
* TDOD: Add INTEL_NEEDS_WA_14025112257 check once HSD is propogated for all
* other impacted platforms.
*/
if (screen->devinfo->ver >= 20 && batch->name == IRIS_BATCH_COMPUTE) {
iris_emit_pipe_control_flush(batch, "WA_14025112257",
PIPE_CONTROL_STATE_CACHE_INVALIDATE);
}
#else
UNREACHABLE("Unsupported");
#endif
}
static void
emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
{
/* Bspec 55860: Xe2+ no longer requires PIPELINE_SELECT */
#if GFX_VER < 20
#if GFX_VER >= 8 && GFX_VER < 10
/* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
*
* Software must clear the COLOR_CALC_STATE Valid field in
* 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
* with Pipeline Select set to GPGPU.
*
* The internal hardware docs recommend the same workaround for Gfx9
* hardware too.
*/
if (pipeline == GPGPU)
iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
#endif
#if GFX_VER >= 12
/* From Tigerlake PRM, Volume 2a, PIPELINE_SELECT:
*
* "Software must ensure Render Cache, Depth Cache and HDC Pipeline flush
* are flushed through a stalling PIPE_CONTROL command prior to
* programming of PIPELINE_SELECT command transitioning Pipeline Select
* from 3D to GPGPU/Media.
* Software must ensure HDC Pipeline flush and Generic Media State Clear
* is issued through a stalling PIPE_CONTROL command prior to programming
* of PIPELINE_SELECT command transitioning Pipeline Select from
* GPGPU/Media to 3D."
*
* Note: Issuing PIPE_CONTROL_MEDIA_STATE_CLEAR causes GPU hangs, probably
* because PIPE was not in MEDIA mode?!
*/
enum pipe_control_flags flags = PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_FLUSH_HDC;
if (pipeline == GPGPU && batch->name == IRIS_BATCH_RENDER) {
flags |= PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH;
} else {
flags |= PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH;
}
/* Wa_16013063087 - State Cache Invalidate must be issued prior to
* PIPELINE_SELECT when switching from 3D to Compute.
*
* SW must do this by programming of PIPECONTROL with “CS Stall” followed
* by a PIPECONTROL with State Cache Invalidate bit set.
*/
if (pipeline == GPGPU &&
intel_needs_workaround(batch->screen->devinfo, 16013063087))
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
iris_emit_pipe_control_flush(batch, "PIPELINE_SELECT flush", flags);
#else
/* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
* PIPELINE_SELECT [DevBWR+]":
*
* "Project: DEVSNB+
*
* Software must ensure all the write caches are flushed through a
* stalling PIPE_CONTROL command followed by another PIPE_CONTROL
* command to invalidate read only caches prior to programming
* MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
*/
iris_emit_pipe_control_flush(batch,
"workaround: PIPELINE_SELECT flushes (1/2)",
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DATA_CACHE_FLUSH |
PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
PIPE_CONTROL_CS_STALL);
iris_emit_pipe_control_flush(batch,
"workaround: PIPELINE_SELECT flushes (2/2)",
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
PIPE_CONTROL_CONST_CACHE_INVALIDATE |
PIPE_CONTROL_STATE_CACHE_INVALIDATE |
PIPE_CONTROL_INSTRUCTION_INVALIDATE);
#endif
iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
#if GFX_VER >= 9
sel.MaskBits = GFX_VER == 12 ? 0x13 : 0x3;
#if GFX_VER == 12
sel.MediaSamplerDOPClockGateEnable = true;
#endif /* if GFX_VER == 12 */
#endif /* if GFX_VER >= 9 */
sel.PipelineSelection = pipeline;
}
#endif /* if GFX_VER < 20 */
}
UNUSED static void
init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
{
#if GFX_VER == 9
/* Project: DevGLK
*
* "This chicken bit works around a hardware issue with barrier
* logic encountered when switching between GPGPU and 3D pipelines.
* To workaround the issue, this mode bit should be set after a
* pipeline is selected."
*/
iris_emit_reg(batch, GENX(SLICE_COMMON_ECO_CHICKEN1), reg) {
reg.GLKBarrierMode = value;
reg.GLKBarrierModeMask = 1;
}
#endif
}
static void
init_state_base_address(struct iris_batch *batch)
{
struct isl_device *isl_dev = &batch->screen->isl_dev;
uint32_t mocs = isl_mocs(isl_dev, 0, false);
flush_before_state_base_change(batch);
/* We program most base addresses once at context initialization time.
* Each base address points at a 4GB memory zone, and never needs to
* change. See iris_bufmgr.h for a description of the memory zones.
*
* The one exception is Surface State Base Address, which needs to be
* updated occasionally. See iris_binder.c for the details there.
*/
iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
sba.GeneralStateMOCS = mocs;
sba.StatelessDataPortAccessMOCS = mocs;
sba.DynamicStateMOCS = mocs;
sba.IndirectObjectMOCS = mocs;
sba.InstructionMOCS = mocs;
sba.SurfaceStateMOCS = mocs;
#if GFX_VER >= 9
sba.BindlessSurfaceStateMOCS = mocs;
#endif
sba.GeneralStateBaseAddressModifyEnable = true;
sba.DynamicStateBaseAddressModifyEnable = true;
sba.IndirectObjectBaseAddressModifyEnable = true;
sba.InstructionBaseAddressModifyEnable = true;
sba.GeneralStateBufferSizeModifyEnable = true;
sba.DynamicStateBufferSizeModifyEnable = true;
sba.SurfaceStateBaseAddressModifyEnable = true;
#if GFX_VER >= 11
sba.BindlessSamplerStateMOCS = mocs;
#endif
sba.IndirectObjectBufferSizeModifyEnable = true;
sba.InstructionBuffersizeModifyEnable = true;
sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
sba.SurfaceStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_BINDER_START);
sba.GeneralStateBufferSize = 0xfffff;
sba.IndirectObjectBufferSize = 0xfffff;
sba.InstructionBufferSize = 0xfffff;
sba.DynamicStateBufferSize = 0xfffff;
#if GFX_VERx10 >= 125
sba.L1CacheControl = L1CC_WB;
#endif
}
flush_after_state_base_change(batch);
}
static void
iris_emit_l3_config(struct iris_batch *batch,
const struct intel_l3_config *cfg)
{
#if GFX_VER < 20
assert(cfg || GFX_VER >= 12);
#if GFX_VER >= 12
#define L3_ALLOCATION_REG GENX(L3ALLOC)
#define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
#else
#define L3_ALLOCATION_REG GENX(L3CNTLREG)
#define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
#endif
iris_emit_reg(batch, L3_ALLOCATION_REG, reg) {
#if GFX_VER < 11
reg.SLMEnable = cfg->n[INTEL_L3P_SLM] > 0;
#endif
#if GFX_VER == 11
/* Wa_1406697149: Bit 9 "Error Detection Behavior Control" must be set
* in L3CNTLREG register. The default setting of the bit is not the
* desirable behavior.
*/
reg.ErrorDetectionBehaviorControl = true;
reg.UseFullWays = true;
#endif
if (GFX_VER < 12 || (cfg && cfg->n[INTEL_L3P_ALL] <= 126)) {
reg.URBAllocation = cfg->n[INTEL_L3P_URB];
reg.ROAllocation = cfg->n[INTEL_L3P_RO];
reg.DCAllocation = cfg->n[INTEL_L3P_DC];
reg.AllAllocation = cfg->n[INTEL_L3P_ALL];
} else {
assert(!cfg || !(cfg->n[INTEL_L3P_SLM] || cfg->n[INTEL_L3P_URB] ||
cfg->n[INTEL_L3P_DC] || cfg->n[INTEL_L3P_RO] ||
cfg->n[INTEL_L3P_IS] || cfg->n[INTEL_L3P_C] ||
cfg->n[INTEL_L3P_T] || cfg->n[INTEL_L3P_TC]));
#if GFX_VER >= 12
reg.L3FullWayAllocationEnable = true;
#endif
}
}
#endif /* GFX_VER < 20 */
}
void
genX(emit_urb_config)(struct iris_batch *batch,
bool has_tess_eval,
bool has_geometry)
{
struct iris_screen *screen = batch->screen;
struct iris_context *ice = batch->ice;
intel_get_urb_config(screen->devinfo,
screen->l3_config_3d,
has_tess_eval,
has_geometry,
&ice->shaders.urb.cfg,
&ice->shaders.urb.constrained);
genX(urb_workaround)(batch, &ice->shaders.urb.cfg);
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
#if GFX_VER >= 12
iris_emit_cmd(batch, GENX(3DSTATE_URB_ALLOC_VS), urb) {
urb._3DCommandSubOpcode += i;
urb.VSURBEntryAllocationSize = ice->shaders.urb.cfg.size[i] - 1;
urb.VSURBStartingAddressSlice0 = ice->shaders.urb.cfg.start[i];
urb.VSURBStartingAddressSliceN = ice->shaders.urb.cfg.start[i];
urb.VSNumberofURBEntriesSlice0 = ice->shaders.urb.cfg.entries[i];
urb.VSNumberofURBEntriesSliceN = ice->shaders.urb.cfg.entries[i];
}
#else
iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
urb._3DCommandSubOpcode += i;
urb.VSURBStartingAddress = ice->shaders.urb.cfg.start[i];
urb.VSURBEntryAllocationSize = ice->shaders.urb.cfg.size[i] - 1;
urb.VSNumberofURBEntries = ice->shaders.urb.cfg.entries[i];
}
#endif
}
}
#if GFX_VER == 9
static void
iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
{
/* A fixed function pipe flush is required before modifying this field */
iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
: "disable preemption",
PIPE_CONTROL_RENDER_TARGET_FLUSH);
/* enable object level preemption */
iris_emit_reg(batch, GENX(CS_CHICKEN1), reg) {
reg.ReplayMode = enable;
reg.ReplayModeMask = true;
}
}
#endif
static void
upload_pixel_hashing_tables(struct iris_batch *batch)
{
UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
UNUSED struct iris_context *ice = batch->ice;
assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
#if GFX_VER == 11
/* Gfx11 hardware has two pixel pipes at most. */
for (unsigned i = 2; i < ARRAY_SIZE(devinfo->ppipe_subslices); i++)
assert(devinfo->ppipe_subslices[i] == 0);
if (devinfo->ppipe_subslices[0] == devinfo->ppipe_subslices[1])
return;
unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
uint32_t hash_address;
struct pipe_resource *tmp = NULL;
uint32_t *map =
stream_state(batch, ice->state.dynamic_uploader, &tmp,
size, 64, &hash_address);
pipe_resource_reference(&tmp, NULL);
const bool flip = devinfo->ppipe_subslices[0] < devinfo->ppipe_subslices[1];
struct GENX(SLICE_HASH_TABLE) table;
intel_compute_pixel_hash_table_3way(16, 16, 3, 3, flip, table.Entry[0]);
GENX(SLICE_HASH_TABLE_pack)(NULL, map, &table);
iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
ptr.SliceHashStatePointerValid = true;
ptr.SliceHashTableStatePointer = hash_address;
}
iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
mode.SliceHashingTableEnable = true;
}
#elif GFX_VERx10 == 120
/* For each n calculate ppipes_of[n], equal to the number of pixel pipes
* present with n active dual subslices.
*/
unsigned ppipes_of[3] = {};
for (unsigned n = 0; n < ARRAY_SIZE(ppipes_of); n++) {
for (unsigned p = 0; p < 3; p++)
ppipes_of[n] += (devinfo->ppipe_subslices[p] == n);
}
/* Gfx12 has three pixel pipes. */
for (unsigned p = 3; p < ARRAY_SIZE(devinfo->ppipe_subslices); p++)
assert(devinfo->ppipe_subslices[p] == 0);
if (ppipes_of[2] == 3 || ppipes_of[0] == 2) {
/* All three pixel pipes have the maximum number of active dual
* subslices, or there is only one active pixel pipe: Nothing to do.
*/
return;
}
iris_emit_cmd(batch, GENX(3DSTATE_SUBSLICE_HASH_TABLE), p) {
p.SliceHashControl[0] = TABLE_0;
if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
intel_compute_pixel_hash_table_3way(8, 16, 2, 2, 0, p.TwoWayTableEntry[0]);
else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
intel_compute_pixel_hash_table_3way(8, 16, 3, 3, 0, p.TwoWayTableEntry[0]);
if (ppipes_of[2] == 2 && ppipes_of[1] == 1)
intel_compute_pixel_hash_table_3way(8, 16, 5, 4, 0, p.ThreeWayTableEntry[0]);
else if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
intel_compute_pixel_hash_table_3way(8, 16, 2, 2, 0, p.ThreeWayTableEntry[0]);
else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
intel_compute_pixel_hash_table_3way(8, 16, 3, 3, 0, p.ThreeWayTableEntry[0]);
else
UNREACHABLE("Illegal fusing.");
}
iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), p) {
p.SubsliceHashingTableEnable = true;
p.SubsliceHashingTableEnableMask = true;
}
#elif GFX_VERx10 == 125
struct pipe_screen *pscreen = &batch->screen->base;
const unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
const struct pipe_resource tmpl = {
.target = PIPE_BUFFER,
.format = PIPE_FORMAT_R8_UNORM,
.bind = PIPE_BIND_CUSTOM,
.usage = PIPE_USAGE_IMMUTABLE,
.flags = IRIS_RESOURCE_FLAG_DYNAMIC_MEMZONE,
.width0 = size,
.height0 = 1,
.depth0 = 1,
.array_size = 1
};
pipe_resource_reference(&ice->state.pixel_hashing_tables, NULL);
ice->state.pixel_hashing_tables = pscreen->resource_create(pscreen, &tmpl);
struct iris_resource *res = (struct iris_resource *)ice->state.pixel_hashing_tables;
struct pipe_transfer *transfer = NULL;
uint32_t *map = pipe_buffer_map_range(&ice->ctx, ice->state.pixel_hashing_tables,
0, size, PIPE_MAP_WRITE,
&transfer);
/* Calculate the set of present pixel pipes, and another set of
* present pixel pipes with 2 dual subslices enabled, the latter
* will appear on the hashing table with twice the frequency of
* pixel pipes with a single dual subslice present.
*/
uint32_t ppipe_mask1 = 0, ppipe_mask2 = 0;
for (unsigned p = 0; p < ARRAY_SIZE(devinfo->ppipe_subslices); p++) {
if (devinfo->ppipe_subslices[p])
ppipe_mask1 |= (1u << p);
if (devinfo->ppipe_subslices[p] > 1)
ppipe_mask2 |= (1u << p);
}
assert(ppipe_mask1);
struct GENX(SLICE_HASH_TABLE) table;
/* Note that the hardware expects an array with 7 tables, each
* table is intended to specify the pixel pipe hashing behavior for
* every possible slice count between 2 and 8, however that doesn't
* actually work, among other reasons due to hardware bugs that
* will cause the GPU to erroneously access the table at the wrong
* index in some cases, so in practice all 7 tables need to be
* initialized to the same value.
*/
for (unsigned i = 0; i < 7; i++)
intel_compute_pixel_hash_table_nway(16, 16, ppipe_mask1, ppipe_mask2,
table.Entry[i][0]);
GENX(SLICE_HASH_TABLE_pack)(NULL, map, &table);
pipe_buffer_unmap(&ice->ctx, transfer);
iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_NONE);
iris_record_state_size(batch->state_sizes, res->bo->address + res->offset, size);
iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
ptr.SliceHashStatePointerValid = true;
ptr.SliceHashTableStatePointer = iris_bo_offset_from_base_address(res->bo) +
res->offset;
}
iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
mode.SliceHashingTableEnable = true;
mode.SliceHashingTableEnableMask = true;
mode.CrossSliceHashingMode = (util_bitcount(ppipe_mask1) > 1 ?
hashing32x32 : NormalMode);
mode.CrossSliceHashingModeMask = -1;
}
#endif
}
static void
iris_alloc_push_constants(struct iris_batch *batch)
{
const struct intel_device_info *devinfo = batch->screen->devinfo;
/* For now, we set a static partitioning of the push constant area,
* assuming that all stages could be in use.
*
* TODO: Try lazily allocating the HS/DS/GS sections as needed, and
* see if that improves performance by offering more space to
* the VS/FS when those aren't in use. Also, try dynamically
* enabling/disabling it like i965 does. This would be more
* stalls and may not actually help; we don't know yet.
*/
/* Divide as equally as possible with any remainder given to FRAGMENT. */
const unsigned push_constant_kb = devinfo->max_constant_urb_size_kb;
const unsigned stage_size = push_constant_kb / 5;
const unsigned frag_size = push_constant_kb - 4 * stage_size;
for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
alloc._3DCommandSubOpcode = 18 + i;
alloc.ConstantBufferOffset = stage_size * i;
alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? frag_size : stage_size;
}
}
#if GFX_VERx10 == 125
/* DG2: Wa_22011440098
* MTL: Wa_18022330953
*
* In 3D mode, after programming push constant alloc command immediately
* program push constant command(ZERO length) without any commit between
* them.
*/
iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), c) {
/* Update empty push constants for all stages (bitmask = 11111b) */
c.ShaderUpdateEnable = 0x1f;
c.MOCS = iris_mocs(NULL, &batch->screen->isl_dev, 0);
}
#endif
}
#if GFX_VER >= 12
static void
init_aux_map_state(struct iris_batch *batch);
#endif
/* This updates a register. Caller should stall the pipeline as needed. */
static void
iris_disable_rhwo_optimization(struct iris_batch *batch, bool disable)
{
assert(batch->screen->devinfo->verx10 == 120);
#if GFX_VERx10 == 120
iris_emit_reg(batch, GENX(COMMON_SLICE_CHICKEN1), c1) {
c1.RCCRHWOOptimizationDisable = disable;
c1.RCCRHWOOptimizationDisableMask = true;
};
#endif
}
static void
state_system_mem_fence_address_emit(struct iris_batch *batch)
{
#if GFX_VERx10 >= 200
struct iris_screen *screen = batch->screen;
struct iris_address addr = { .bo = iris_bufmgr_get_mem_fence_bo(screen->bufmgr) };
iris_emit_cmd(batch, GENX(STATE_SYSTEM_MEM_FENCE_ADDRESS), mem_fence_addr) {
mem_fence_addr.SystemMemoryFenceAddress = addr;
}
#endif
}
/**
* Upload initial GPU state for any kind of context.
*
* These need to happen for both render and compute.
*/
static void
iris_init_common_context(struct iris_batch *batch)
{
#if GFX_VER == 11
iris_emit_reg(batch, GENX(SAMPLER_MODE), reg) {
reg.HeaderlessMessageforPreemptableContexts = 1;
reg.HeaderlessMessageforPreemptableContextsMask = 1;
}
/* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
iris_emit_reg(batch, GENX(HALF_SLICE_CHICKEN7), reg) {
reg.EnabledTexelOffsetPrecisionFix = 1;
reg.EnabledTexelOffsetPrecisionFixMask = 1;
}
#endif
/* Select 256B-aligned binding table mode on Icelake through Tigerlake,
* which gives us larger binding table pointers, at the cost of higher
* alignment requirements (bits 18:8 are valid instead of 15:5). When
* using this mode, we have to shift binding table pointers by 3 bits,
* as they're still stored in the same bit-location in the field.
*/
#if GFX_VER >= 11 && GFX_VERx10 < 125
iris_emit_reg(batch, GENX(GT_MODE), reg) {
reg.BindingTableAlignment = BTP_18_8;
reg.BindingTableAlignmentMask = true;
}
#endif
#if GFX_VERx10 == 125
/* Even though L3 partial write merging is supposed to be enabled
* by default on Gfx12.5 according to the hardware spec, i915
* appears to accidentally clear the enables during context
* initialization, so make sure to enable them here since partial
* write merging has a large impact on rendering performance.
*/
iris_emit_reg(batch, GENX(L3SQCREG5), reg) {
reg.L3CachePartialWriteMergeTimerInitialValue = 0x7f;
reg.CompressiblePartialWriteMergeEnable = true;
reg.CoherentPartialWriteMergeEnable = true;
reg.CrossTilePartialWriteMergeEnable = true;
}
#endif
state_system_mem_fence_address_emit(batch);
}
static void
toggle_protected(struct iris_batch *batch)
{
struct iris_context *ice;
if (batch->name == IRIS_BATCH_RENDER)
ice =container_of(batch, struct iris_context, batches[IRIS_BATCH_RENDER]);
else if (batch->name == IRIS_BATCH_COMPUTE)
ice = container_of(batch, struct iris_context, batches[IRIS_BATCH_COMPUTE]);
else
UNREACHABLE("unhandled batch");
if (!ice->protected)
return;
#if GFX_VER >= 12
iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
pc.CommandStreamerStallEnable = true;
pc.RenderTargetCacheFlushEnable = true;
pc.ProtectedMemoryDisable = true;
}
iris_emit_cmd(batch, GENX(MI_SET_APPID), appid) {
/* Default value for single session. */
appid.ProtectedMemoryApplicationID = 0xf;
appid.ProtectedMemoryApplicationIDType = DISPLAY_APP;
}
iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
pc.CommandStreamerStallEnable = true;
pc.RenderTargetCacheFlushEnable = true;
pc.ProtectedMemoryEnable = true;
}
#else
UNREACHABLE("Not supported");
#endif
}
#if GFX_VER >= 20
#define _3DSTATE_DRAWING_RECTANGLE GENX(3DSTATE_DRAWING_RECTANGLE_FAST)
#else
#define _3DSTATE_DRAWING_RECTANGLE GENX(3DSTATE_DRAWING_RECTANGLE)
#endif
/**
* Upload the initial GPU state for a render context.
*
* This sets some invariant state that needs to be programmed a particular
* way, but we never actually change.
*/
static void
iris_init_render_context(struct iris_batch *batch)
{
UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
iris_batch_sync_region_start(batch);
emit_pipeline_select(batch, _3D);
toggle_protected(batch);
iris_emit_l3_config(batch, batch->screen->l3_config_3d);
init_state_base_address(batch);
iris_init_common_context(batch);
#if GFX_VER >= 9
iris_emit_reg(batch, GENX(CS_DEBUG_MODE2), reg) {
reg.CONSTANT_BUFFERAddressOffsetDisable = true;
reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
}
#else
iris_emit_reg(batch, GENX(INSTPM), reg) {
reg.CONSTANT_BUFFERAddressOffsetDisable = true;
reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
}
#endif
#if GFX_VER == 9
iris_emit_reg(batch, GENX(CACHE_MODE_1), reg) {
reg.FloatBlendOptimizationEnable = true;
reg.FloatBlendOptimizationEnableMask = true;
reg.MSCRAWHazardAvoidanceBit = true;
reg.MSCRAWHazardAvoidanceBitMask = true;
reg.PartialResolveDisableInVC = true;
reg.PartialResolveDisableInVCMask = true;
}
if (devinfo->platform == INTEL_PLATFORM_GLK)
init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
#endif
#if GFX_VER == 11
iris_emit_reg(batch, GENX(TCCNTLREG), reg) {
reg.L3DataPartialWriteMergingEnable = true;
reg.ColorZPartialWriteMergingEnable = true;
reg.URBPartialWriteMergingEnable = true;
reg.TCDisable = true;
}
/* Hardware specification recommends disabling repacking for the
* compatibility with decompression mechanism in display controller.
*/
if (devinfo->disable_ccs_repack) {
iris_emit_reg(batch, GENX(CACHE_MODE_0), reg) {
reg.DisableRepackingforCompression = true;
reg.DisableRepackingforCompressionMask = true;
}
}
#endif
#if GFX_VER == 12
iris_emit_reg(batch, GENX(FF_MODE2), reg) {
/* On Alchemist, the FF_MODE2 docs for the GS timer say:
*
* "The timer value must be set to 224."
*
* and Wa_16011163337 indicates this is the case for all Gfx12 parts,
* and that this is necessary to avoid hanging the HS/DS units. It
* also clarifies that 224 is literally 0xE0 in the bits, not 7*32=224.
*
* The HS timer docs also have the same quote for Alchemist. I am
* unaware of a reason it needs to be set to 224 on Tigerlake, but
* we do so for consistency if nothing else.
*
* For the TDS timer value, the docs say:
*
* "For best performance, a value of 4 should be programmed."
*
* i915 also sets it this way on Tigerlake due to workarounds.
*
* The default VS timer appears to be 0, so we leave it at that.
*/
reg.GSTimerValue = 224;
reg.HSTimerValue = 224;
reg.TDSTimerValue = 4;
reg.VSTimerValue = 0;
}
#endif
#if INTEL_NEEDS_WA_1508744258
/* The suggested workaround is:
*
* Disable RHWO by setting 0x7010[14] by default except during resolve
* pass.
*
* We implement global disabling of the optimization here and we toggle it
* in iris_resolve_color.
*
* iris_init_compute_context is unmodified because we don't expect to
* access the RCC in the compute context. iris_mcs_partial_resolve is
* unmodified because that pass doesn't use a HW bit to perform the
* resolve (related HSDs specifically call out the RenderTargetResolveType
* field in the 3DSTATE_PS instruction).
*/
iris_disable_rhwo_optimization(batch, true);
#endif
#if GFX_VERx10 == 120
/* Wa_1806527549 says to disable the following HiZ optimization when the
* depth buffer is D16_UNORM. We've found the WA to help with more depth
* buffer configurations however, so we always disable it just to be safe.
*/
iris_emit_reg(batch, GENX(HIZ_CHICKEN), reg) {
reg.HZDepthTestLEGEOptimizationDisable = true;
reg.HZDepthTestLEGEOptimizationDisableMask = true;
}
#endif
#if GFX_VERx10 == 125
iris_emit_reg(batch, GENX(CHICKEN_RASTER_2), reg) {
reg.TBIMRBatchSizeOverride = true;
reg.TBIMROpenBatchEnable = true;
reg.TBIMRFastClip = true;
reg.TBIMRBatchSizeOverrideMask = true;
reg.TBIMROpenBatchEnableMask = true;
reg.TBIMRFastClipMask = true;
};
#endif
#if GFX_VER >= 20
iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), p) {
p.DX10OGLBorderModeforYCRCB = true;
p.DX10OGLBorderModeforYCRCBMask = true;
}
if (intel_device_info_is_bmg_g31(devinfo)) {
iris_emit_reg(batch, GENX(CACHE_MODE_0), reg) {
reg.MsaaFastClearEnabled = true;
reg.MsaaFastClearEnabledMask = true;
}
}
#endif
#if GFX_VER >= 30
iris_emit_cmd(batch, GENX(STATE_COMPUTE_MODE), cm) {
cm.EnableVariableRegisterSizeAllocationMask = 1;
cm.EnableVariableRegisterSizeAllocation = !INTEL_DEBUG(DEBUG_NO_VRT);
}
#endif
upload_pixel_hashing_tables(batch);
/* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
* changing it dynamically. We set it to the maximum size here, and
* instead include the render target dimensions in the viewport, so
* viewport extents clipping takes care of pruning stray geometry.
*/
iris_emit_cmd(batch, _3DSTATE_DRAWING_RECTANGLE, rect) {
rect.ClippedDrawingRectangleXMax = UINT16_MAX;
rect.ClippedDrawingRectangleYMax = UINT16_MAX;
}
/* Set the initial MSAA sample positions. */
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
INTEL_SAMPLE_POS_1X(pat._1xSample);
INTEL_SAMPLE_POS_2X(pat._2xSample);
INTEL_SAMPLE_POS_4X(pat._4xSample);
INTEL_SAMPLE_POS_8X(pat._8xSample);
#if GFX_VER >= 9
INTEL_SAMPLE_POS_16X(pat._16xSample);
#endif
}
/* Use the legacy AA line coverage computation. */
iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
/* Disable chromakeying (it's for media) */
iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
/* We want regular rendering, not special HiZ operations. */
iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
/* No polygon stippling offsets are necessary. */
/* TODO: may need to set an offset for origin-UL framebuffers */
iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
#if GFX_VERx10 >= 125
iris_emit_cmd(batch, GENX(3DSTATE_MESH_CONTROL), foo);
iris_emit_cmd(batch, GENX(3DSTATE_TASK_CONTROL), foo);
#endif
#if INTEL_NEEDS_WA_14019857787
iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), p) {
p.EnableOOOreadsinRCPB = true;
p.EnableOOOreadsinRCPBMask = true;
}
#endif
iris_alloc_push_constants(batch);
#if GFX_VER >= 12
init_aux_map_state(batch);
#endif
iris_batch_sync_region_end(batch);
}
static void
iris_init_compute_context(struct iris_batch *batch)
{
UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
iris_batch_sync_region_start(batch);
/* Wa_1607854226:
*
* Start with pipeline in 3D mode to set the STATE_BASE_ADDRESS.
*/
#if GFX_VERx10 == 120
emit_pipeline_select(batch, _3D);
#else
emit_pipeline_select(batch, GPGPU);
#endif
toggle_protected(batch);
iris_emit_l3_config(batch, batch->screen->l3_config_cs);
init_state_base_address(batch);
iris_init_common_context(batch);
#if GFX_VERx10 == 120
emit_pipeline_select(batch, GPGPU);
#endif
#if GFX_VER == 9
if (devinfo->platform == INTEL_PLATFORM_GLK)
init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
#endif
#if GFX_VER >= 12
init_aux_map_state(batch);
#endif
#if GFX_VERx10 >= 125
/* Wa_14015782607 - Issue pipe control with HDC_flush and
* untyped cache flush set to 1 when CCS has NP state update with
* STATE_COMPUTE_MODE.
*/
if (intel_needs_workaround(devinfo, 14015782607))
iris_emit_pipe_control_flush(batch, "Wa_14015782607",
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
PIPE_CONTROL_FLUSH_HDC);
/* Wa_14014427904/22013045878 - We need additional invalidate/flush when
* emitting NP state commands with ATS-M in compute mode.
*/
if (intel_device_info_is_atsm(devinfo))
iris_emit_pipe_control_flush(batch, "Wa_14014427904/22013045878",
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_STATE_CACHE_INVALIDATE |
PIPE_CONTROL_CONST_CACHE_INVALIDATE |
PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
PIPE_CONTROL_INSTRUCTION_INVALIDATE |
PIPE_CONTROL_FLUSH_HDC);
uint8_t pixel_async_compute_thread_limit, z_pass_async_compute_thread_limit,
np_z_async_throttle_settings;
intel_compute_engine_async_threads_limit(devinfo, 0, false,
&pixel_async_compute_thread_limit,
&z_pass_async_compute_thread_limit,
&np_z_async_throttle_settings);
batch->ice->state.pixel_async_compute_thread_limit = pixel_async_compute_thread_limit;
batch->ice->state.z_pass_async_compute_thread_limit = z_pass_async_compute_thread_limit;
batch->ice->state.np_z_async_throttle_settings = np_z_async_throttle_settings;
iris_emit_cmd(batch, GENX(STATE_COMPUTE_MODE), cm) {
#if GFX_VER >= 30
cm.EnableVariableRegisterSizeAllocationMask = 1;
cm.EnableVariableRegisterSizeAllocation = !INTEL_DEBUG(DEBUG_NO_VRT);
#endif
#if GFX_VER >= 20
cm.AsyncComputeThreadLimit = pixel_async_compute_thread_limit;
cm.ZPassAsyncComputeThreadLimit = z_pass_async_compute_thread_limit;
cm.ZAsyncThrottlesettings = np_z_async_throttle_settings;
cm.AsyncComputeThreadLimitMask = 0x7;
cm.ZPassAsyncComputeThreadLimitMask = 0x7;
cm.ZAsyncThrottlesettingsMask = 0x3;
#else
cm.PixelAsyncComputeThreadLimit = pixel_async_compute_thread_limit;
cm.ZPassAsyncComputeThreadLimit = z_pass_async_compute_thread_limit;
cm.PixelAsyncComputeThreadLimitMask = 0x7;
cm.ZPassAsyncComputeThreadLimitMask = 0x7;
if (intel_device_info_is_mtl_or_arl(devinfo)) {
cm.ZAsyncThrottlesettings = np_z_async_throttle_settings;
cm.ZAsyncThrottlesettingsMask = 0x3;
}
#endif
}
#endif
#if GFX_VERx10 >= 125
iris_emit_cmd(batch, GENX(CFE_STATE), cfe) {
cfe.MaximumNumberofThreads =
devinfo->max_cs_threads * devinfo->subslice_total;
}
#endif
iris_batch_sync_region_end(batch);
}
static void
iris_init_copy_context(struct iris_batch *batch)
{
iris_batch_sync_region_start(batch);
#if GFX_VER >= 12
init_aux_map_state(batch);
#endif
state_system_mem_fence_address_emit(batch);
iris_batch_sync_region_end(batch);
}
struct iris_vertex_buffer_state {
/** The VERTEX_BUFFER_STATE hardware structure. */
uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
/** The resource to source vertex data from. */
struct pipe_resource *resource;
int offset;
};
struct iris_depth_buffer_state {
/* Depth/HiZ/Stencil related hardware packets. */
#if GFX_VER < 20
uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
GENX(3DSTATE_STENCIL_BUFFER_length) +
GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
GENX(3DSTATE_CLEAR_PARAMS_length)];
#else
uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
GENX(3DSTATE_STENCIL_BUFFER_length) +
GENX(3DSTATE_HIER_DEPTH_BUFFER_length)];
#endif
};
#if INTEL_NEEDS_WA_1808121037
enum iris_depth_reg_mode {
IRIS_DEPTH_REG_MODE_HW_DEFAULT = 0,
IRIS_DEPTH_REG_MODE_D16_1X_MSAA,
IRIS_DEPTH_REG_MODE_UNKNOWN,
};
#endif
/**
* Generation-specific context state (ice->state.genx->...).
*
* Most state can go in iris_context directly, but these encode hardware
* packets which vary by generation.
*/
struct iris_genx_state {
struct iris_vertex_buffer_state vertex_buffers[33];
uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
struct iris_depth_buffer_state depth_buffer;
uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
#if GFX_VER == 8
bool pma_fix_enabled;
#endif
/* Is object level preemption enabled? */
bool object_preemption;
#if INTEL_NEEDS_WA_1808121037
enum iris_depth_reg_mode depth_reg_mode;
#endif
struct {
#if GFX_VER == 8
struct isl_image_param image_param[PIPE_MAX_SHADER_IMAGES];
#endif
} shaders[MESA_SHADER_STAGES];
};
/**
* The pipe->set_blend_color() driver hook.
*
* This corresponds to our COLOR_CALC_STATE.
*/
static void
iris_set_blend_color(struct pipe_context *ctx,
const struct pipe_blend_color *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
/* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
}
/**
* Gallium CSO for blend state (see pipe_blend_state).
*/
struct iris_blend_state {
/** Partial 3DSTATE_PS_BLEND */
uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
/** Partial BLEND_STATE */
uint32_t blend_state[GENX(BLEND_STATE_length) +
IRIS_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
bool alpha_to_coverage; /* for shader key */
/** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
uint8_t blend_enables;
/** Bitfield of whether color writes are enabled for RT[i] */
uint8_t color_write_enables;
/** Does RT[0] use dual color blending? */
bool dual_color_blending;
int ps_dst_blend_factor[IRIS_MAX_DRAW_BUFFERS];
int ps_dst_alpha_blend_factor[IRIS_MAX_DRAW_BUFFERS];
};
static enum pipe_blendfactor
fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
{
if (alpha_to_one) {
if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
return PIPE_BLENDFACTOR_ONE;
if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
return PIPE_BLENDFACTOR_ZERO;
}
return f;
}
/**
* The pipe->create_blend_state() driver hook.
*
* Translates a pipe_blend_state into iris_blend_state.
*/
static void *
iris_create_blend_state(struct pipe_context *ctx,
const struct pipe_blend_state *state)
{
struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
cso->blend_enables = 0;
cso->color_write_enables = 0;
STATIC_ASSERT(IRIS_MAX_DRAW_BUFFERS <= 8);
cso->alpha_to_coverage = state->alpha_to_coverage;
bool indep_alpha_blend = false;
for (int i = 0; i < IRIS_MAX_DRAW_BUFFERS; i++) {
const struct pipe_rt_blend_state *rt =
&state->rt[state->independent_blend_enable ? i : 0];
enum pipe_blendfactor src_rgb =
fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
enum pipe_blendfactor src_alpha =
fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
enum pipe_blendfactor dst_rgb =
fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
enum pipe_blendfactor dst_alpha =
fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
/* Stored separately in cso for dynamic emission. */
cso->ps_dst_blend_factor[i] = (int) dst_rgb;
cso->ps_dst_alpha_blend_factor[i] = (int) dst_alpha;
if (rt->rgb_func != rt->alpha_func ||
src_rgb != src_alpha || dst_rgb != dst_alpha)
indep_alpha_blend = true;
if (rt->blend_enable)
cso->blend_enables |= 1u << i;
if (rt->colormask)
cso->color_write_enables |= 1u << i;
iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
be.LogicOpEnable = state->logicop_enable;
be.LogicOpFunction = state->logicop_func;
be.PreBlendSourceOnlyClampEnable = false;
be.ColorClampRange = COLORCLAMP_RTFORMAT;
be.PreBlendColorClampEnable = true;
be.PostBlendColorClampEnable = true;
be.ColorBufferBlendEnable = rt->blend_enable;
be.ColorBlendFunction = rt->rgb_func;
be.AlphaBlendFunction = rt->alpha_func;
/* The casts prevent warnings about implicit enum type conversions. */
be.SourceBlendFactor = (int) src_rgb;
be.SourceAlphaBlendFactor = (int) src_alpha;
be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
#if GFX_VER >= 30
be.SimpleFloatBlendEnable = true;
#endif
}
blend_entry += GENX(BLEND_STATE_ENTRY_length);
}
iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
/* pb.HasWriteableRT is filled in at draw time.
* pb.AlphaTestEnable is filled in at draw time.
*
* pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
* setting it when dual color blending without an appropriate shader.
*/
pb.AlphaToCoverageEnable = state->alpha_to_coverage;
pb.IndependentAlphaBlendEnable = indep_alpha_blend;
/* The casts prevent warnings about implicit enum type conversions. */
pb.SourceBlendFactor =
(int) fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
pb.SourceAlphaBlendFactor =
(int) fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
}
iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
bs.AlphaToCoverageEnable = state->alpha_to_coverage;
bs.IndependentAlphaBlendEnable = indep_alpha_blend;
bs.AlphaToOneEnable = state->alpha_to_one;
bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage_dither;
bs.ColorDitherEnable = state->dither;
/* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
}
cso->dual_color_blending = util_blend_state_is_dual(state, 0);
return cso;
}
/**
* The pipe->bind_blend_state() driver hook.
*
* Bind a blending CSO and flag related dirty bits.
*/
static void
iris_bind_blend_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_blend_state *cso = state;
ice->state.cso_blend = cso;
ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
ice->state.stage_dirty |= ice->state.stage_dirty_for_nos[IRIS_NOS_BLEND];
if (GFX_VER == 8)
ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
}
/**
* Return true if the FS writes to any color outputs which are not disabled
* via color masking.
*/
static bool
has_writeable_rt(const struct iris_blend_state *cso_blend,
const struct shader_info *fs_info)
{
if (!fs_info)
return false;
unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
rt_outputs = (1 << IRIS_MAX_DRAW_BUFFERS) - 1;
return cso_blend->color_write_enables & rt_outputs;
}
/**
* Gallium CSO for depth, stencil, and alpha testing state.
*/
struct iris_depth_stencil_alpha_state {
/** Partial 3DSTATE_WM_DEPTH_STENCIL. */
uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
#if GFX_VER >= 12
uint32_t depth_bounds[GENX(3DSTATE_DEPTH_BOUNDS_length)];
#endif
/** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
unsigned alpha_enabled:1;
unsigned alpha_func:3; /**< PIPE_FUNC_x */
float alpha_ref_value; /**< reference value */
/** Outbound to resolve and cache set tracking. */
bool depth_writes_enabled;
bool stencil_writes_enabled;
/** Outbound to Gfx8-9 PMA stall equations */
bool depth_test_enabled;
/** Tracking state of DS writes for Wa_18019816803. */
bool ds_write_state;
};
/**
* The pipe->create_depth_stencil_alpha_state() driver hook.
*
* We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
* testing state since we need pieces of it in a variety of places.
*/
static void *
iris_create_zsa_state(struct pipe_context *ctx,
const struct pipe_depth_stencil_alpha_state *state)
{
struct iris_depth_stencil_alpha_state *cso =
malloc(sizeof(struct iris_depth_stencil_alpha_state));
bool two_sided_stencil = state->stencil[1].enabled;
bool depth_write_enabled = false;
bool stencil_write_enabled = false;
/* Depth writes enabled? */
if (state->depth_writemask &&
((!state->depth_enabled) ||
((state->depth_func != PIPE_FUNC_NEVER) &&
(state->depth_func != PIPE_FUNC_EQUAL))))
depth_write_enabled = true;
bool stencil_all_keep =
state->stencil[0].fail_op == PIPE_STENCIL_OP_KEEP &&
state->stencil[0].zfail_op == PIPE_STENCIL_OP_KEEP &&
state->stencil[0].zpass_op == PIPE_STENCIL_OP_KEEP &&
(!two_sided_stencil ||
(state->stencil[1].fail_op == PIPE_STENCIL_OP_KEEP &&
state->stencil[1].zfail_op == PIPE_STENCIL_OP_KEEP &&
state->stencil[1].zpass_op == PIPE_STENCIL_OP_KEEP));
bool stencil_mask_zero =
state->stencil[0].writemask == 0 ||
(!two_sided_stencil || state->stencil[1].writemask == 0);
bool stencil_func_never =
state->stencil[0].func == PIPE_FUNC_NEVER &&
state->stencil[0].fail_op == PIPE_STENCIL_OP_KEEP &&
(!two_sided_stencil ||
(state->stencil[1].func == PIPE_FUNC_NEVER &&
state->stencil[1].fail_op == PIPE_STENCIL_OP_KEEP));
/* Stencil writes enabled? */
if (state->stencil[0].writemask != 0 ||
((two_sided_stencil && state->stencil[1].writemask != 0) &&
(!stencil_all_keep &&
!stencil_mask_zero &&
!stencil_func_never)))
stencil_write_enabled = true;
cso->ds_write_state = depth_write_enabled || stencil_write_enabled;
cso->alpha_enabled = state->alpha_enabled;
cso->alpha_func = state->alpha_func;
cso->alpha_ref_value = state->alpha_ref_value;
cso->depth_writes_enabled = state->depth_writemask;
cso->depth_test_enabled = state->depth_enabled;
cso->stencil_writes_enabled =
state->stencil[0].writemask != 0 ||
(two_sided_stencil && state->stencil[1].writemask != 0);
/* gallium frontends need to optimize away EQUAL writes for us. */
assert(!(state->depth_func == PIPE_FUNC_EQUAL && state->depth_writemask));
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
wmds.StencilFailOp = state->stencil[0].fail_op;
wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
wmds.StencilTestFunction =
translate_compare_func(state->stencil[0].func);
wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
wmds.BackfaceStencilTestFunction =
translate_compare_func(state->stencil[1].func);
wmds.DepthTestFunction = translate_compare_func(state->depth_func);
wmds.DoubleSidedStencilEnable = two_sided_stencil;
wmds.StencilTestEnable = state->stencil[0].enabled;
wmds.StencilBufferWriteEnable =
state->stencil[0].writemask != 0 ||
(two_sided_stencil && state->stencil[1].writemask != 0);
wmds.DepthTestEnable = state->depth_enabled;
wmds.DepthBufferWriteEnable = state->depth_writemask;
wmds.StencilTestMask = state->stencil[0].valuemask;
wmds.StencilWriteMask = state->stencil[0].writemask;
wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
/* wmds.[Backface]StencilReferenceValue are merged later */
#if GFX_VER >= 12
wmds.StencilReferenceValueModifyDisable = true;
#endif
}
#if GFX_VER >= 12
iris_pack_command(GENX(3DSTATE_DEPTH_BOUNDS), cso->depth_bounds, depth_bounds) {
depth_bounds.DepthBoundsTestValueModifyDisable = false;
depth_bounds.DepthBoundsTestEnableModifyDisable = false;
depth_bounds.DepthBoundsTestEnable = state->depth_bounds_test;
depth_bounds.DepthBoundsTestMinValue = state->depth_bounds_min;
depth_bounds.DepthBoundsTestMaxValue = state->depth_bounds_max;
}
#endif
return cso;
}
/**
* The pipe->bind_depth_stencil_alpha_state() driver hook.
*
* Bind a depth/stencil/alpha CSO and flag related dirty bits.
*/
static void
iris_bind_zsa_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
struct iris_depth_stencil_alpha_state *new_cso = state;
if (new_cso) {
if (cso_changed(alpha_ref_value))
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
if (cso_changed(alpha_enabled))
ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
if (cso_changed(alpha_func))
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
if (cso_changed(depth_writes_enabled) || cso_changed(stencil_writes_enabled))
ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
/* State ds_write_enable changed, need to flag dirty DS. */
if (!old_cso || (ice->state.ds_write_state != new_cso->ds_write_state)) {
ice->state.dirty |= IRIS_DIRTY_DS_WRITE_ENABLE;
ice->state.ds_write_state = new_cso->ds_write_state;
}
#if GFX_VER >= 12
if (cso_changed(depth_bounds))
ice->state.dirty |= IRIS_DIRTY_DEPTH_BOUNDS;
#endif
}
ice->state.cso_zsa = new_cso;
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
ice->state.stage_dirty |=
ice->state.stage_dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
if (GFX_VER == 8)
ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
}
#if GFX_VER == 8
static bool
want_pma_fix(struct iris_context *ice)
{
const struct iris_fs_data *fs_data =
iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
const struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
const struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
const struct iris_blend_state *cso_blend = ice->state.cso_blend;
/* In very specific combinations of state, we can instruct Gfx8-9 hardware
* to avoid stalling at the pixel mask array. The state equations are
* documented in these places:
*
* - Gfx8 Depth PMA Fix: CACHE_MODE_1::NP_PMA_FIX_ENABLE
* - Gfx9 Stencil PMA Fix: CACHE_MODE_0::STC PMA Optimization Enable
*
* Both equations share some common elements:
*
* no_hiz_op =
* !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
* 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
* 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
* 3DSTATE_WM_HZ_OP::StencilBufferClear) &&
*
* killpixels =
* 3DSTATE_WM::ForceKillPix != ForceOff &&
* (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
* 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
* 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
* 3DSTATE_PS_BLEND::AlphaTestEnable ||
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
*
* (Technically the stencil PMA treats ForceKillPix differently,
* but I think this is a documentation oversight, and we don't
* ever use it in this way, so it doesn't matter).
*
* common_pma_fix =
* 3DSTATE_WM::ForceThreadDispatch != 1 &&
* 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0 &&
* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
* 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS &&
* 3DSTATE_PS_EXTRA::PixelShaderValid &&
* no_hiz_op
*
* These are always true:
*
* 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0
* 3DSTATE_PS_EXTRA::PixelShaderValid
*
* Also, we never use the normal drawing path for HiZ ops; these are true:
*
* !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
* 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
* 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
* 3DSTATE_WM_HZ_OP::StencilBufferClear)
*
* This happens sometimes:
*
* 3DSTATE_WM::ForceThreadDispatch != 1
*
* However, we choose to ignore it as it either agrees with the signal
* (dispatch was already enabled, so nothing out of the ordinary), or
* there are no framebuffer attachments (so no depth or HiZ anyway,
* meaning the PMA signal will already be disabled).
*/
if (!cso_fb->zsbuf.texture)
return false;
struct iris_resource *zres, *sres;
iris_get_depth_stencil_resources(cso_fb->zsbuf.texture, &zres, &sres);
/* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
* 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
*/
if (!zres || zres->aux.usage == ISL_AUX_USAGE_NONE)
return false;
/* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS */
if (fs_data->early_fragment_tests)
return false;
/* 3DSTATE_WM::ForceKillPix != ForceOff &&
* (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
* 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
* 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
* 3DSTATE_PS_BLEND::AlphaTestEnable ||
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
*/
bool killpixels = fs_data->uses_kill || fs_data->uses_omask ||
cso_blend->alpha_to_coverage || cso_zsa->alpha_enabled;
/* The Gfx8 depth PMA equation becomes:
*
* depth_writes =
* 3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable &&
* 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE
*
* stencil_writes =
* 3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
* 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE &&
* 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE
*
* Z_PMA_OPT =
* common_pma_fix &&
* 3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&
* ((killpixels && (depth_writes || stencil_writes)) ||
* 3DSTATE_PS_EXTRA::PixelShaderComputedDepthMode != PSCDEPTH_OFF)
*
*/
if (!cso_zsa->depth_test_enabled)
return false;
return fs_data->computed_depth_mode != PSCDEPTH_OFF ||
(killpixels && (cso_zsa->depth_writes_enabled ||
(sres && cso_zsa->stencil_writes_enabled)));
}
#endif
void
genX(update_pma_fix)(struct iris_context *ice,
struct iris_batch *batch,
bool enable)
{
#if GFX_VER == 8
struct iris_genx_state *genx = ice->state.genx;
if (genx->pma_fix_enabled == enable)
return;
genx->pma_fix_enabled = enable;
/* According to the Broadwell PIPE_CONTROL documentation, software should
* emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set
* prior to the LRI. If stencil buffer writes are enabled, then a Render
* Cache Flush is also necessary.
*
* The Gfx9 docs say to use a depth stall rather than a command streamer
* stall. However, the hardware seems to violently disagree. A full
* command streamer stall seems to be needed in both cases.
*/
iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_RENDER_TARGET_FLUSH);
iris_emit_reg(batch, GENX(CACHE_MODE_1), reg) {
reg.NPPMAFixEnable = enable;
reg.NPEarlyZFailsDisable = enable;
reg.NPPMAFixEnableMask = true;
reg.NPEarlyZFailsDisableMask = true;
}
/* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache
* Flush bits is often necessary. We do it regardless because it's easier.
* The render cache flush is also necessary if stencil writes are enabled.
*
* Again, the Gfx9 docs give a different set of flushes but the Broadwell
* flushes seem to work just as well.
*/
iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_RENDER_TARGET_FLUSH);
#endif
}
/**
* Gallium CSO for rasterizer state.
*/
struct iris_rasterizer_state {
uint32_t sf[GENX(3DSTATE_SF_length)];
uint32_t clip[GENX(3DSTATE_CLIP_length)];
uint32_t raster[GENX(3DSTATE_RASTER_length)];
uint32_t wm[GENX(3DSTATE_WM_length)];
uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
uint8_t num_clip_plane_consts;
bool clip_halfz; /* for CC_VIEWPORT */
bool depth_clip_near; /* for CC_VIEWPORT */
bool depth_clip_far; /* for CC_VIEWPORT */
bool flatshade; /* for shader state */
bool flatshade_first; /* for stream output */
bool light_twoside; /* for shader state */
bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
bool line_smooth;
bool line_stipple_enable;
bool poly_stipple_enable;
bool multisample;
bool force_persample_interp;
bool conservative_rasterization;
bool fill_mode_point;
bool fill_mode_line;
bool fill_mode_point_or_line;
enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
uint16_t sprite_coord_enable;
};
static float
get_line_width(const struct pipe_rasterizer_state *state)
{
float line_width = state->line_width;
/* From the OpenGL 4.4 spec:
*
* "The actual width of non-antialiased lines is determined by rounding
* the supplied width to the nearest integer, then clamping it to the
* implementation-dependent maximum non-antialiased line width."
*/
if (!state->multisample && !state->line_smooth)
line_width = roundf(state->line_width);
if (!state->multisample && state->line_smooth && line_width < 1.5f) {
/* For 1 pixel line thickness or less, the general anti-aliasing
* algorithm gives up, and a garbage line is generated. Setting a
* Line Width of 0.0 specifies the rasterization of the "thinnest"
* (one-pixel-wide), non-antialiased lines.
*
* Lines rendered with zero Line Width are rasterized using the
* "Grid Intersection Quantization" rules as specified by the
* "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
*/
line_width = 0.0f;
}
return line_width;
}
/**
* The pipe->create_rasterizer_state() driver hook.
*/
static void *
iris_create_rasterizer_state(struct pipe_context *ctx,
const struct pipe_rasterizer_state *state)
{
struct iris_rasterizer_state *cso =
malloc(sizeof(struct iris_rasterizer_state));
cso->multisample = state->multisample;
cso->force_persample_interp = state->force_persample_interp;
cso->clip_halfz = state->clip_halfz;
cso->depth_clip_near = state->depth_clip_near;
cso->depth_clip_far = state->depth_clip_far;
cso->flatshade = state->flatshade;
cso->flatshade_first = state->flatshade_first;
cso->light_twoside = state->light_twoside;
cso->rasterizer_discard = state->rasterizer_discard;
cso->half_pixel_center = state->half_pixel_center;
cso->sprite_coord_mode = state->sprite_coord_mode;
cso->sprite_coord_enable = state->sprite_coord_enable;
cso->line_smooth = state->line_smooth;
cso->line_stipple_enable = state->line_stipple_enable;
cso->poly_stipple_enable = state->poly_stipple_enable;
cso->conservative_rasterization =
state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
cso->fill_mode_point =
state->fill_front == PIPE_POLYGON_MODE_POINT ||
state->fill_back == PIPE_POLYGON_MODE_POINT;
cso->fill_mode_line =
state->fill_front == PIPE_POLYGON_MODE_LINE ||
state->fill_back == PIPE_POLYGON_MODE_LINE;
cso->fill_mode_point_or_line =
cso->fill_mode_point ||
cso->fill_mode_line;
if (state->clip_plane_enable != 0)
cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
else
cso->num_clip_plane_consts = 0;
float line_width = get_line_width(state);
iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
sf.StatisticsEnable = true;
sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
sf.LineEndCapAntialiasingRegionWidth =
state->line_smooth ? _10pixels : _05pixels;
sf.LastPixelEnable = state->line_last_pixel;
sf.LineWidth = line_width;
sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
!state->point_quad_rasterization;
sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
sf.PointWidth = CLAMP(state->point_size, 0.125f, 255.875f);
if (state->flatshade_first) {
sf.TriangleFanProvokingVertexSelect = 1;
} else {
sf.TriangleStripListProvokingVertexSelect = 2;
sf.TriangleFanProvokingVertexSelect = 2;
sf.LineStripListProvokingVertexSelect = 1;
}
}
iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
rr.CullMode = translate_cull_mode(state->cull_face);
rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
rr.DXMultisampleRasterizationEnable = state->multisample;
rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
rr.GlobalDepthOffsetEnablePoint = state->offset_point;
rr.GlobalDepthOffsetConstant = state->offset_units * 2;
rr.GlobalDepthOffsetScale = state->offset_scale;
rr.GlobalDepthOffsetClamp = state->offset_clamp;
rr.SmoothPointEnable = state->point_smooth;
rr.ScissorRectangleEnable = state->scissor;
#if GFX_VER >= 9
rr.ViewportZNearClipTestEnable = state->depth_clip_near;
rr.ViewportZFarClipTestEnable = state->depth_clip_far;
rr.ConservativeRasterizationEnable =
cso->conservative_rasterization;
#else
rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
#endif
}
iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
/* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
* the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
*/
cl.EarlyCullEnable = true;
cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
cl.ForceUserClipDistanceClipTestEnableBitmask = true;
cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
cl.GuardbandClipTestEnable = true;
cl.ClipEnable = true;
cl.MinimumPointWidth = 0.125;
cl.MaximumPointWidth = 255.875;
if (state->flatshade_first) {
cl.TriangleFanProvokingVertexSelect = 1;
} else {
cl.TriangleStripListProvokingVertexSelect = 2;
cl.TriangleFanProvokingVertexSelect = 2;
cl.LineStripListProvokingVertexSelect = 1;
}
}
iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
/* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
* filled in at draw time from the FS program.
*/
wm.LineAntialiasingRegionWidth = _10pixels;
wm.LineEndCapAntialiasingRegionWidth = _05pixels;
wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
wm.LineStippleEnable = state->line_stipple_enable;
wm.PolygonStippleEnable = state->poly_stipple_enable;
}
/* Remap from 0..255 back to 1..256 */
const unsigned line_stipple_factor = state->line_stipple_factor + 1;
iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
if (state->line_stipple_enable) {
line.LineStipplePattern = state->line_stipple_pattern;
line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
line.LineStippleRepeatCount = line_stipple_factor;
}
}
return cso;
}
/**
* The pipe->bind_rasterizer_state() driver hook.
*
* Bind a rasterizer CSO and flag related dirty bits.
*/
static void
iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
struct iris_rasterizer_state *new_cso = state;
if (new_cso) {
/* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
if (cso_changed_memcmp(line_stipple))
ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
if (cso_changed(half_pixel_center))
ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
ice->state.dirty |= IRIS_DIRTY_WM;
if (cso_changed(rasterizer_discard))
ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
if (cso_changed(flatshade_first))
ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
cso_changed(clip_halfz))
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
if (cso_changed(sprite_coord_enable) ||
cso_changed(sprite_coord_mode) ||
cso_changed(light_twoside))
ice->state.dirty |= IRIS_DIRTY_SBE;
if (cso_changed(conservative_rasterization))
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
}
ice->state.cso_rast = new_cso;
ice->state.dirty |= IRIS_DIRTY_RASTER;
ice->state.dirty |= IRIS_DIRTY_CLIP;
ice->state.stage_dirty |=
ice->state.stage_dirty_for_nos[IRIS_NOS_RASTERIZER];
}
/**
* Return true if the given wrap mode requires the border color to exist.
*
* (We can skip uploading it if the sampler isn't going to use it.)
*/
static bool
wrap_mode_needs_border_color(unsigned wrap_mode)
{
return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
}
/**
* Gallium CSO for sampler state.
*/
struct iris_sampler_state {
union pipe_color_union border_color;
bool needs_border_color;
uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
#if GFX_VERx10 == 125
/* Sampler state structure to use for 3D textures in order to
* implement Wa_14014414195.
*/
uint32_t sampler_state_3d[GENX(SAMPLER_STATE_length)];
#endif
};
static void
fill_sampler_state(uint32_t *sampler_state,
const struct pipe_sampler_state *state,
unsigned max_anisotropy)
{
float min_lod = state->min_lod;
unsigned mag_img_filter = state->mag_img_filter;
// XXX: explain this code ported from ilo...I don't get it at all...
if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
state->min_lod > 0.0f) {
min_lod = 0.0f;
mag_img_filter = state->min_img_filter;
}
#if GFX_VER > 8
uint32_t reduction_mode =
translate_tex_filter_mode(state->reduction_mode);
#endif
iris_pack_state(GENX(SAMPLER_STATE), sampler_state, samp) {
samp.TCXAddressControlMode = translate_wrap(state->wrap_s);
samp.TCYAddressControlMode = translate_wrap(state->wrap_t);
samp.TCZAddressControlMode = translate_wrap(state->wrap_r);
samp.CubeSurfaceControlMode = state->seamless_cube_map;
samp.NonnormalizedCoordinateEnable = state->unnormalized_coords;
samp.MinModeFilter = state->min_img_filter;
samp.MagModeFilter = mag_img_filter;
samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
samp.MaximumAnisotropy = RATIO21;
#if GFX_VER > 8
samp.ReductionType = reduction_mode;
samp.ReductionTypeEnable =
reduction_mode != PIPE_TEX_REDUCTION_WEIGHTED_AVERAGE;
#endif
if (max_anisotropy >= 2) {
if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
#if GFX_VER >= 30
samp.MinModeFilter = MAPFILTER_ANISOTROPIC_FAST;
#else
samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
#endif
samp.AnisotropicAlgorithm = EWAApproximation;
}
if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR) {
#if GFX_VER >= 30
samp.MagModeFilter = MAPFILTER_ANISOTROPIC_FAST;
#else
samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
#endif
}
samp.MaximumAnisotropy =
MIN2((max_anisotropy - 2) / 2, RATIO161);
}
/* Set address rounding bits if not using nearest filtering. */
if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
samp.UAddressMinFilterRoundingEnable = true;
samp.VAddressMinFilterRoundingEnable = true;
samp.RAddressMinFilterRoundingEnable = true;
}
if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
samp.UAddressMagFilterRoundingEnable = true;
samp.VAddressMagFilterRoundingEnable = true;
samp.RAddressMagFilterRoundingEnable = true;
}
if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
samp.ShadowFunction = translate_shadow_func(state->compare_func);
const float hw_max_lod = GFX_VER >= 7 ? 14 : 13;
samp.LODPreClampMode = CLAMP_MODE_OGL;
samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
/* .BorderColorPointer is filled in by iris_bind_sampler_states. */
}
}
/**
* The pipe->create_sampler_state() driver hook.
*
* We fill out SAMPLER_STATE (except for the border color pointer), and
* store that on the CPU. It doesn't make sense to upload it to a GPU
* buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
* all bound sampler states to be in contiguous memory.
*/
static void *
iris_create_sampler_state(struct pipe_context *ctx,
const struct pipe_sampler_state *state)
{
UNUSED struct iris_screen *screen = (void *)ctx->screen;
UNUSED const struct intel_device_info *devinfo = screen->devinfo;
struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
if (!cso)
return NULL;
STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
unsigned wrap_s = translate_wrap(state->wrap_s);
unsigned wrap_t = translate_wrap(state->wrap_t);
unsigned wrap_r = translate_wrap(state->wrap_r);
memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
wrap_mode_needs_border_color(wrap_t) ||
wrap_mode_needs_border_color(wrap_r);
fill_sampler_state(cso->sampler_state, state, state->max_anisotropy);
#if GFX_VERx10 == 125
/* Fill an extra sampler state structure with anisotropic filtering
* disabled used to implement Wa_14014414195.
*/
if (intel_needs_workaround(screen->devinfo, 14014414195))
fill_sampler_state(cso->sampler_state_3d, state, 0);
#endif
return cso;
}
/**
* The pipe->bind_sampler_states() driver hook.
*/
static void
iris_bind_sampler_states(struct pipe_context *ctx,
mesa_shader_stage stage,
unsigned start, unsigned count,
void **states)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_shader_state *shs = &ice->state.shaders[stage];
assert(start + count <= IRIS_MAX_SAMPLERS);
bool dirty = false;
for (int i = 0; i < count; i++) {
struct iris_sampler_state *state = states ? states[i] : NULL;
if (shs->samplers[start + i] != state) {
shs->samplers[start + i] = state;
dirty = true;
}
}
if (dirty)
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage;
}
/**
* Upload the sampler states into a contiguous area of GPU memory, for
* for 3DSTATE_SAMPLER_STATE_POINTERS_*.
*
* Also fill out the border color state pointers.
*/
static void
iris_upload_sampler_states(struct iris_context *ice, mesa_shader_stage stage)
{
struct iris_screen *screen = (struct iris_screen *) ice->ctx.screen;
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct iris_border_color_pool *border_color_pool =
iris_bufmgr_get_border_color_pool(screen->bufmgr);
/* We assume gallium frontends will call pipe->bind_sampler_states()
* if the program's number of textures changes.
*/
unsigned count = util_last_bit64(shader->bt.samplers_used_mask);
if (!count)
return;
/* Assemble the SAMPLER_STATEs into a contiguous table that lives
* in the dynamic state memory zone, so we can point to it via the
* 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
*/
unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
uint32_t *map =
upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
if (unlikely(!map))
return;
struct pipe_resource *res = shs->sampler_table.res;
struct iris_bo *bo = iris_resource_bo(res);
iris_record_state_size(ice->state.sizes,
bo->address + shs->sampler_table.offset, size);
shs->sampler_table.offset += iris_bo_offset_from_base_address(bo);
ice->state.need_border_colors &= ~(1 << stage);
for (int i = 0; i < count; i++) {
struct iris_sampler_state *state = shs->samplers[i];
struct iris_sampler_view *tex = shs->textures[i];
if (!state) {
memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
} else {
const uint32_t *sampler_state = state->sampler_state;
#if GFX_VERx10 == 125
if (intel_needs_workaround(screen->devinfo, 14014414195) &&
tex && tex->res->base.b.target == PIPE_TEXTURE_3D) {
sampler_state = state->sampler_state_3d;
}
#endif
if (!state->needs_border_color) {
memcpy(map, sampler_state, 4 * GENX(SAMPLER_STATE_length));
} else {
ice->state.need_border_colors |= 1 << stage;
/* We may need to swizzle the border color for format faking.
* A/LA formats are faked as R/RG with 000R or R00G swizzles.
* This means we need to move the border color's A channel into
* the R or G channels so that those read swizzles will move it
* back into A.
*/
union pipe_color_union *color = &state->border_color;
union pipe_color_union tmp;
if (tex) {
enum pipe_format internal_format = tex->res->internal_format;
if (util_format_is_alpha(internal_format)) {
unsigned char swz[4] = {
PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
};
util_format_apply_color_swizzle(&tmp, color, swz, true);
color = &tmp;
} else if (util_format_is_luminance_alpha(internal_format) &&
internal_format != PIPE_FORMAT_L8A8_SRGB) {
unsigned char swz[4] = {
PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
};
util_format_apply_color_swizzle(&tmp, color, swz, true);
color = &tmp;
}
}
/* Stream out the border color and merge the pointer. */
uint32_t offset = iris_upload_border_color(border_color_pool,
color);
uint32_t dynamic[GENX(SAMPLER_STATE_length)];
iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
dyns.BorderColorPointer = offset;
}
for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
map[j] = sampler_state[j] | dynamic[j];
}
}
map += GENX(SAMPLER_STATE_length);
}
}
static enum isl_channel_select
fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
{
switch (swz) {
case PIPE_SWIZZLE_X: return fmt->swizzle.r;
case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
case PIPE_SWIZZLE_W: return fmt->swizzle.a;
case PIPE_SWIZZLE_1: return ISL_CHANNEL_SELECT_ONE;
case PIPE_SWIZZLE_0: return ISL_CHANNEL_SELECT_ZERO;
default: UNREACHABLE("invalid swizzle");
}
}
static void
fill_buffer_surface_state(struct isl_device *isl_dev,
struct iris_resource *res,
void *map,
enum isl_format format,
struct isl_swizzle swizzle,
unsigned offset,
unsigned size,
isl_surf_usage_flags_t usage)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(format);
const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
/* The ARB_texture_buffer_specification says:
*
* "The number of texels in the buffer texture's texel array is given by
*
* floor(<buffer_size> / (<components> * sizeof(<base_type>)),
*
* where <buffer_size> is the size of the buffer object, in basic
* machine units and <components> and <base_type> are the element count
* and base data type for elements, as specified in Table X.1. The
* number of texels in the texel array is then clamped to the
* implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
*
* We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
* so that when ISL divides by stride to obtain the number of texels, that
* texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
*/
unsigned final_size =
MIN3(size, res->bo->size - res->offset - offset,
IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
isl_buffer_fill_state(isl_dev, map,
.address = res->bo->address + res->offset + offset,
.size_B = final_size,
.format = format,
.swizzle = swizzle,
.stride_B = cpp,
.usage = usage,
.mocs = iris_mocs(res->bo, isl_dev, usage));
}
#define SURFACE_STATE_ALIGNMENT 64
/**
* Allocate several contiguous SURFACE_STATE structures, one for each
* supported auxiliary surface mode. This only allocates the CPU-side
* copy, they will need to be uploaded later after they're filled in.
*/
static void
alloc_surface_states(struct iris_surface_state *surf_state,
unsigned aux_usages)
{
enum { surf_size = 4 * GENX(RENDER_SURFACE_STATE_length) };
/* If this changes, update this to explicitly align pointers */
STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
assert(aux_usages != 0);
/* In case we're re-allocating them... */
free(surf_state->cpu);
surf_state->aux_usages = aux_usages;
surf_state->num_states = util_bitcount(aux_usages);
surf_state->cpu = calloc(surf_state->num_states, surf_size);
surf_state->ref.offset = 0;
pipe_resource_reference(&surf_state->ref.res, NULL);
assert(surf_state->cpu);
}
/**
* Upload the CPU side SURFACE_STATEs into a GPU buffer.
*/
static void
upload_surface_states(struct u_upload_mgr *mgr,
struct iris_surface_state *surf_state)
{
const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
const unsigned bytes = surf_state->num_states * surf_size;
void *map =
upload_state(mgr, &surf_state->ref, bytes, SURFACE_STATE_ALIGNMENT);
surf_state->ref.offset +=
iris_bo_offset_from_base_address(iris_resource_bo(surf_state->ref.res));
if (map)
memcpy(map, surf_state->cpu, bytes);
}
/**
* Update resource addresses in a set of SURFACE_STATE descriptors,
* and re-upload them if necessary.
*/
static bool
update_surface_state_addrs(struct u_upload_mgr *mgr,
struct iris_surface_state *surf_state,
struct iris_bo *bo)
{
if (surf_state->bo_address == bo->address)
return false;
STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) % 64 == 0);
STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_bits) == 64);
uint64_t *ss_addr = (uint64_t *) &surf_state->cpu[GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) / 32];
/* First, update the CPU copies. We assume no other fields exist in
* the QWord containing Surface Base Address.
*/
for (unsigned i = 0; i < surf_state->num_states; i++) {
*ss_addr = *ss_addr - surf_state->bo_address + bo->address;
ss_addr = ((void *) ss_addr) + SURFACE_STATE_ALIGNMENT;
}
/* Next, upload the updated copies to a GPU buffer. */
upload_surface_states(mgr, surf_state);
surf_state->bo_address = bo->address;
return true;
}
/* We should only use this function when it's needed to fill out
* surf with information provided by the pipe_(image|sampler)_view.
* This is only necessary for CL extension cl_khr_image2d_from_buffer.
* This is the reason why ISL_SURF_DIM_2D is hardcoded on dim field.
*/
static void
fill_surf_for_tex2d_from_buffer(struct isl_device *isl_dev,
enum isl_format format,
unsigned width,
unsigned height,
unsigned row_stride,
isl_surf_usage_flags_t usage,
struct isl_surf *surf)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(format);
const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
const struct isl_surf_init_info init_info = {
.dim = ISL_SURF_DIM_2D,
.format = format,
.width = width,
.height = height,
.depth = 1,
.levels = 1,
.array_len = 1,
.samples = 1,
.min_alignment_B = 4,
.row_pitch_B = row_stride * cpp,
.usage = usage,
.tiling_flags = ISL_TILING_LINEAR_BIT,
};
const bool isl_surf_created_successfully =
isl_surf_init_s(isl_dev, surf, &init_info);
assert(isl_surf_created_successfully);
}
static void
fill_surface_state(struct isl_device *isl_dev,
void *map,
struct iris_resource *res,
struct isl_surf *surf,
struct isl_view *view,
unsigned aux_usage,
uint32_t extra_main_offset,
uint32_t tile_x_sa,
uint32_t tile_y_sa)
{
struct isl_surf_fill_state_info f = {
.surf = surf,
.view = view,
.mocs = iris_mocs(res->bo, isl_dev, view->usage),
.address = res->bo->address + res->offset + extra_main_offset,
.x_offset_sa = tile_x_sa,
.y_offset_sa = tile_y_sa,
};
if (aux_usage != ISL_AUX_USAGE_NONE) {
f.aux_surf = &res->aux.surf;
f.aux_usage = aux_usage;
f.clear_color = res->aux.clear_color;
if (aux_usage == ISL_AUX_USAGE_MC)
f.mc_format = iris_format_for_usage(isl_dev->info,
res->external_format,
surf->usage).fmt;
if (res->aux.bo)
f.aux_address = res->aux.bo->address + res->aux.offset;
if (res->aux.clear_color_bo) {
f.clear_address = res->aux.clear_color_bo->address +
res->aux.clear_color_offset;
f.use_clear_address = isl_dev->info->ver > 9;
}
}
isl_surf_fill_state_s(isl_dev, map, &f);
}
static void
fill_surface_states(struct isl_device *isl_dev,
struct iris_surface_state *surf_state,
struct iris_resource *res,
struct isl_surf *surf,
struct isl_view *view,
uint64_t extra_main_offset,
uint32_t tile_x_sa,
uint32_t tile_y_sa)
{
void *map = surf_state->cpu;
unsigned aux_modes = surf_state->aux_usages;
while (aux_modes) {
enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
fill_surface_state(isl_dev, map, res, surf, view, aux_usage,
extra_main_offset, tile_x_sa, tile_y_sa);
map += SURFACE_STATE_ALIGNMENT;
}
}
/**
* The pipe->create_sampler_view() driver hook.
*/
static struct pipe_sampler_view *
iris_create_sampler_view(struct pipe_context *ctx,
struct pipe_resource *tex,
const struct pipe_sampler_view *tmpl)
{
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
const struct intel_device_info *devinfo = screen->devinfo;
struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
if (!isv)
return NULL;
/* initialize base object */
isv->base = *tmpl;
isv->base.context = ctx;
isv->base.texture = NULL;
pipe_reference_init(&isv->base.reference, 1);
pipe_resource_reference(&isv->base.texture, tex);
if (util_format_is_depth_or_stencil(tmpl->format)) {
struct iris_resource *zres, *sres;
const struct util_format_description *desc =
util_format_description(tmpl->format);
iris_get_depth_stencil_resources(tex, &zres, &sres);
tex = util_format_has_depth(desc) ? &zres->base.b : &sres->base.b;
}
isv->res = (struct iris_resource *) tex;
isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
if (isv->base.target == PIPE_TEXTURE_CUBE ||
isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
usage |= ISL_SURF_USAGE_CUBE_BIT;
const struct iris_format_info fmt =
iris_format_for_usage(devinfo, tmpl->format, usage);
isv->clear_color = isv->res->aux.clear_color;
isv->view = (struct isl_view) {
.format = fmt.fmt,
.swizzle = (struct isl_swizzle) {
.r = fmt_swizzle(&fmt, tmpl->swizzle_r),
.g = fmt_swizzle(&fmt, tmpl->swizzle_g),
.b = fmt_swizzle(&fmt, tmpl->swizzle_b),
.a = fmt_swizzle(&fmt, tmpl->swizzle_a),
},
.usage = usage,
};
unsigned aux_usages = 0;
if ((isv->res->aux.usage == ISL_AUX_USAGE_CCS_D ||
isv->res->aux.usage == ISL_AUX_USAGE_CCS_E ||
isv->res->aux.usage == ISL_AUX_USAGE_FCV_CCS_E) &&
!isl_format_supports_ccs_e(devinfo, isv->view.format)) {
aux_usages = 1 << ISL_AUX_USAGE_NONE;
} else if (isl_aux_usage_has_hiz(isv->res->aux.usage) &&
!iris_sample_with_depth_aux(devinfo, isv->res)) {
aux_usages = 1 << ISL_AUX_USAGE_NONE;
} else {
aux_usages = 1 << ISL_AUX_USAGE_NONE |
1 << isv->res->aux.usage;
}
alloc_surface_states(&isv->surface_state, aux_usages);
isv->surface_state.bo_address = isv->res->bo->address;
/* Fill out SURFACE_STATE for this view. */
if (tmpl->target != PIPE_BUFFER) {
isv->view.base_level = tmpl->u.tex.first_level;
isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
if (tmpl->target == PIPE_TEXTURE_3D) {
isv->view.base_array_layer = 0;
isv->view.array_len = 1;
} else {
#if GFX_VER < 9
/* Hardware older than skylake ignores this value */
assert(tex->target != PIPE_TEXTURE_3D || !tmpl->u.tex.first_layer);
#endif
isv->view.base_array_layer = tmpl->u.tex.first_layer;
isv->view.array_len =
tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
}
fill_surface_states(&screen->isl_dev, &isv->surface_state, isv->res,
&isv->res->surf, &isv->view, 0, 0, 0);
} else if (isv->base.is_tex2d_from_buf) {
/* In case it's a 2d image created from a buffer, we should
* use fill_surface_states function with image parameters provided
* by the CL application
*/
isv->view.base_array_layer = 0;
isv->view.array_len = 1;
/* Create temp_surf and fill with values provided by CL application */
struct isl_surf temp_surf;
fill_surf_for_tex2d_from_buffer(&screen->isl_dev, fmt.fmt,
isv->base.u.tex2d_from_buf.width,
isv->base.u.tex2d_from_buf.height,
isv->base.u.tex2d_from_buf.row_stride,
usage,
&temp_surf);
fill_surface_states(&screen->isl_dev, &isv->surface_state, isv->res,
&temp_surf, &isv->view, 0, 0, 0);
} else {
fill_buffer_surface_state(&screen->isl_dev, isv->res,
isv->surface_state.cpu,
isv->view.format, isv->view.swizzle,
tmpl->u.buf.offset, tmpl->u.buf.size,
ISL_SURF_USAGE_TEXTURE_BIT);
}
return &isv->base;
}
static void
iris_sampler_view_destroy(struct pipe_context *ctx,
struct pipe_sampler_view *state)
{
struct iris_sampler_view *isv = (void *) state;
pipe_resource_reference(&state->texture, NULL);
pipe_resource_reference(&isv->surface_state.ref.res, NULL);
free(isv->surface_state.cpu);
free(isv);
}
/**
* The pipe->create_surface() driver hook.
*
* In Gallium nomenclature, "surfaces" are a view of a resource that
* can be bound as a render target or depth/stencil buffer.
*/
static struct pipe_surface *
iris_create_surface(struct pipe_context *ctx,
struct pipe_resource *tex,
const struct pipe_surface *tmpl)
{
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
const struct intel_device_info *devinfo = screen->devinfo;
isl_surf_usage_flags_t usage = 0;
if (util_format_is_depth_or_stencil(tmpl->format))
usage = ISL_SURF_USAGE_DEPTH_BIT;
else
usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
const struct iris_format_info fmt =
iris_format_for_usage(devinfo, tmpl->format, usage);
if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
!isl_format_supports_rendering(devinfo, fmt.fmt)) {
/* Framebuffer validation will reject this invalid case, but it
* hasn't had the opportunity yet. In the meantime, we need to
* avoid hitting ISL asserts about unsupported formats below.
*/
return NULL;
}
struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
struct iris_resource *res = (struct iris_resource *) tex;
if (!surf)
return NULL;
uint32_t array_len = tmpl->last_layer - tmpl->first_layer + 1;
struct isl_view *view = &surf->view;
*view = (struct isl_view) {
.format = fmt.fmt,
.base_level = tmpl->level,
.levels = 1,
.base_array_layer = tmpl->first_layer,
.array_len = array_len,
.swizzle = ISL_SWIZZLE_IDENTITY,
.usage = usage,
};
#if GFX_VER == 8
struct isl_view *read_view = &surf->read_view;
*read_view = (struct isl_view) {
.format = fmt.fmt,
.base_level = tmpl->level,
.levels = 1,
.base_array_layer = tmpl->first_layer,
.array_len = array_len,
.swizzle = ISL_SWIZZLE_IDENTITY,
.usage = ISL_SURF_USAGE_TEXTURE_BIT,
};
struct isl_surf read_surf = res->surf;
uint64_t read_surf_offset_B = 0;
uint32_t read_surf_tile_x_sa = 0, read_surf_tile_y_sa = 0;
if (tex->target == PIPE_TEXTURE_3D && array_len == 1) {
/* The minimum array element field of the surface state structure is
* ignored by the sampler unit for 3D textures on some hardware. If the
* render buffer is a single slice of a 3D texture, create a 2D texture
* covering that slice.
*
* TODO: This only handles the case where we're rendering to a single
* slice of an array texture. If we have layered rendering combined
* with non-coherent FB fetch and a non-zero base_array_layer, then
* we're going to run into problems.
*
* See https://gitlab.freedesktop.org/mesa/mesa/-/issues/4904
*/
isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
read_view->base_level,
0, read_view->base_array_layer,
&read_surf, &read_surf_offset_B,
&read_surf_tile_x_sa, &read_surf_tile_y_sa);
read_view->base_level = 0;
read_view->base_array_layer = 0;
assert(read_view->array_len == 1);
} else if (tex->target == PIPE_TEXTURE_1D_ARRAY) {
/* Convert 1D array textures to 2D arrays because shaders always provide
* the array index coordinate at the Z component to avoid recompiles
* when changing the texture target of the framebuffer.
*/
assert(read_surf.dim_layout == ISL_DIM_LAYOUT_GFX4_2D);
read_surf.dim = ISL_SURF_DIM_2D;
}
#endif
struct isl_surf isl_surf = res->surf;
uint64_t offset_B = 0;
uint32_t tile_x_el = 0, tile_y_el = 0;
if (isl_format_is_compressed(res->surf.format)) {
/* The resource has a compressed format, which is not renderable, but we
* have a renderable view format. We must be attempting to upload
* blocks of compressed data via an uncompressed view.
*
* In this case, we can assume there are no auxiliary surfaces, a single
* miplevel, and that the resource is single-sampled. Gallium may try
* and create an uncompressed view with multiple layers, however.
*/
assert(res->aux.surf.size_B == 0);
assert(res->surf.samples == 1);
assert(view->levels == 1);
bool ok = isl_surf_get_uncompressed_surf(&screen->isl_dev,
&res->surf, view,
&isl_surf, view, &offset_B,
&tile_x_el, &tile_y_el);
/* On Broadwell, HALIGN and VALIGN are specified in pixels and are
* hard-coded to align to exactly the block size of the compressed
* texture. This means that, when reinterpreted as a non-compressed
* texture, the tile offsets may be anything.
*
* We need them to be multiples of 4 to be usable in RENDER_SURFACE_STATE,
* so force the state tracker to take fallback paths if they're not.
*/
#if GFX_VER == 8
if (tile_x_el % 4 != 0 || tile_y_el % 4 != 0) {
ok = false;
}
#endif
if (!ok) {
free(surf);
return NULL;
}
}
surf->clear_color = res->aux.clear_color;
struct pipe_surface *psurf = &surf->base;
pipe_reference_init(&psurf->reference, 1);
pipe_resource_reference(&psurf->texture, tex);
psurf->context = ctx;
psurf->format = tmpl->format;
psurf->texture = tex;
psurf->first_layer = tmpl->first_layer;
psurf->last_layer = tmpl->last_layer;
psurf->level = tmpl->level;
/* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
ISL_SURF_USAGE_STENCIL_BIT))
return psurf;
/* Fill out a SURFACE_STATE for each possible auxiliary surface mode and
* return the pipe_surface.
*/
unsigned aux_usages = 0;
if ((res->aux.usage == ISL_AUX_USAGE_CCS_E ||
res->aux.usage == ISL_AUX_USAGE_FCV_CCS_E) &&
!isl_format_supports_ccs_e(devinfo, view->format)) {
aux_usages = 1 << ISL_AUX_USAGE_NONE;
} else {
aux_usages = 1 << ISL_AUX_USAGE_NONE |
1 << res->aux.usage;
}
alloc_surface_states(&surf->surface_state, aux_usages);
surf->surface_state.bo_address = res->bo->address;
fill_surface_states(&screen->isl_dev, &surf->surface_state, res,
&isl_surf, view, offset_B, tile_x_el, tile_y_el);
#if GFX_VER == 8
alloc_surface_states(&surf->surface_state_read, aux_usages);
surf->surface_state_read.bo_address = res->bo->address;
fill_surface_states(&screen->isl_dev, &surf->surface_state_read, res,
&read_surf, read_view, read_surf_offset_B,
read_surf_tile_x_sa, read_surf_tile_y_sa);
#endif
return psurf;
}
#if GFX_VER < 9
static void
fill_default_image_param(struct isl_image_param *param)
{
memset(param, 0, sizeof(*param));
/* Set the swizzling shifts to all-ones to effectively disable swizzling --
* See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
* detailed explanation of these parameters.
*/
param->swizzling[0] = 0xff;
param->swizzling[1] = 0xff;
}
static void
fill_buffer_image_param(struct isl_image_param *param,
enum pipe_format pfmt,
unsigned size)
{
const unsigned cpp = util_format_get_blocksize(pfmt);
fill_default_image_param(param);
param->size[0] = size / cpp;
param->stride[0] = cpp;
}
#else
#define isl_surf_fill_image_param(x, ...)
#define fill_default_image_param(x, ...)
#define fill_buffer_image_param(x, ...)
#endif
/**
* The pipe->set_shader_images() driver hook.
*/
static void
iris_set_shader_images(struct pipe_context *ctx,
mesa_shader_stage stage,
unsigned start_slot, unsigned count,
unsigned unbind_num_trailing_slots,
const struct pipe_image_view *p_images)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
struct iris_shader_state *shs = &ice->state.shaders[stage];
#if GFX_VER == 8
struct iris_genx_state *genx = ice->state.genx;
struct isl_image_param *image_params = genx->shaders[stage].image_param;
#endif
shs->bound_image_views &=
~u_bit_consecutive64(start_slot, count + unbind_num_trailing_slots);
for (unsigned i = 0; i < count; i++) {
struct iris_image_view *iv = &shs->image[start_slot + i];
if (p_images && p_images[i].resource) {
const struct pipe_image_view *img = &p_images[i];
struct iris_resource *res = (void *) img->resource;
util_copy_image_view(&iv->base, img);
shs->bound_image_views |= BITFIELD64_BIT(start_slot + i);
res->bind_history |= PIPE_BIND_SHADER_IMAGE;
res->bind_stages |= 1 << stage;
enum isl_format isl_fmt = iris_image_view_get_format(ice, img);
unsigned aux_usages = 1 << ISL_AUX_USAGE_NONE;
/* Gfx12+ supports render compression for images */
if (GFX_VER >= 12 && isl_aux_usage_has_ccs_e(res->aux.usage))
aux_usages |= 1 << ISL_AUX_USAGE_CCS_E;
alloc_surface_states(&iv->surface_state, aux_usages);
iv->surface_state.bo_address = res->bo->address;
if (res->base.b.target != PIPE_BUFFER) {
struct isl_view view = {
.format = isl_fmt,
.base_level = img->u.tex.level,
.levels = 1,
.base_array_layer = img->u.tex.first_layer,
.array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
.swizzle = ISL_SWIZZLE_IDENTITY,
.usage = ISL_SURF_USAGE_STORAGE_BIT,
};
/* If using untyped fallback. */
if (isl_fmt == ISL_FORMAT_RAW) {
fill_buffer_surface_state(&screen->isl_dev, res,
iv->surface_state.cpu,
isl_fmt, ISL_SWIZZLE_IDENTITY,
0, res->bo->size,
ISL_SURF_USAGE_STORAGE_BIT);
} else {
fill_surface_states(&screen->isl_dev, &iv->surface_state, res,
&res->surf, &view, 0, 0, 0);
}
isl_surf_fill_image_param(&screen->isl_dev,
&image_params[start_slot + i],
&res->surf, &view);
} else if (img->access & PIPE_IMAGE_ACCESS_TEX2D_FROM_BUFFER) {
/* In case it's a 2d image created from a buffer, we should
* use fill_surface_states function with image parameters provided
* by the CL application
*/
isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
struct isl_view view = {
.format = isl_fmt,
.base_level = 0,
.levels = 1,
.base_array_layer = 0,
.array_len = 1,
.swizzle = ISL_SWIZZLE_IDENTITY,
.usage = usage,
};
/* Create temp_surf and fill with values provided by CL application */
struct isl_surf temp_surf;
enum isl_format fmt = iris_image_view_get_format(ice, img);
fill_surf_for_tex2d_from_buffer(&screen->isl_dev, fmt,
img->u.tex2d_from_buf.width,
img->u.tex2d_from_buf.height,
img->u.tex2d_from_buf.row_stride,
usage,
&temp_surf);
fill_surface_states(&screen->isl_dev, &iv->surface_state, res,
&temp_surf, &view, 0, 0, 0);
isl_surf_fill_image_param(&screen->isl_dev,
&image_params[start_slot + i],
&temp_surf, &view);
} else {
util_range_add(&res->base.b, &res->valid_buffer_range, img->u.buf.offset,
img->u.buf.offset + img->u.buf.size);
fill_buffer_surface_state(&screen->isl_dev, res,
iv->surface_state.cpu,
isl_fmt, ISL_SWIZZLE_IDENTITY,
img->u.buf.offset, img->u.buf.size,
ISL_SURF_USAGE_STORAGE_BIT);
fill_buffer_image_param(&image_params[start_slot + i],
img->format, img->u.buf.size);
}
upload_surface_states(ice->state.surface_uploader, &iv->surface_state);
} else {
pipe_resource_reference(&iv->base.resource, NULL);
pipe_resource_reference(&iv->surface_state.ref.res, NULL);
fill_default_image_param(&image_params[start_slot + i]);
}
}
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
ice->state.dirty |=
stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
: IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
/* Broadwell also needs isl_image_params re-uploaded */
if (GFX_VER < 9) {
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
shs->sysvals_need_upload = true;
}
if (unbind_num_trailing_slots) {
iris_set_shader_images(ctx, stage, start_slot + count,
unbind_num_trailing_slots, 0, NULL);
}
}
UNUSED static bool
is_sampler_view_3d(const struct iris_sampler_view *view)
{
return view && view->res->base.b.target == PIPE_TEXTURE_3D;
}
/**
* The pipe->set_sampler_views() driver hook.
*/
static void
iris_set_sampler_views(struct pipe_context *ctx,
mesa_shader_stage stage,
unsigned start, unsigned count,
unsigned unbind_num_trailing_slots,
struct pipe_sampler_view **views)
{
struct iris_context *ice = (struct iris_context *) ctx;
UNUSED struct iris_screen *screen = (void *) ctx->screen;
UNUSED const struct intel_device_info *devinfo = screen->devinfo;
struct iris_shader_state *shs = &ice->state.shaders[stage];
unsigned i;
if (count == 0 && unbind_num_trailing_slots == 0)
return;
BITSET_CLEAR_RANGE(shs->bound_sampler_views, start,
start + count + unbind_num_trailing_slots - 1);
for (i = 0; i < count; i++) {
struct pipe_sampler_view *pview = views ? views[i] : NULL;
struct iris_sampler_view *view = (void *) pview;
#if GFX_VERx10 == 125
if (intel_needs_workaround(screen->devinfo, 14014414195)) {
if (is_sampler_view_3d(shs->textures[start + i]) !=
is_sampler_view_3d(view))
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage;
}
#endif
pipe_sampler_view_reference((struct pipe_sampler_view **)
&shs->textures[start + i], pview);
if (view) {
view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
view->res->bind_stages |= 1 << stage;
BITSET_SET(shs->bound_sampler_views, start + i);
update_surface_state_addrs(ice->state.surface_uploader,
&view->surface_state, view->res->bo);
}
}
for (; i < count + unbind_num_trailing_slots; i++) {
pipe_sampler_view_reference((struct pipe_sampler_view **)
&shs->textures[start + i], NULL);
}
ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_BINDINGS_VS << stage);
ice->state.dirty |=
stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
: IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
}
static void
iris_set_global_binding(struct pipe_context *ctx,
unsigned start_slot, unsigned count,
struct pipe_resource **resources,
uint32_t **handles)
{
struct iris_context *ice = (struct iris_context *) ctx;
assert(start_slot + count <= IRIS_MAX_GLOBAL_BINDINGS);
for (unsigned i = 0; i < count; i++) {
if (resources && resources[i]) {
pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
resources[i]);
struct iris_resource *res = (void *) resources[i];
assert(res->base.b.target == PIPE_BUFFER);
util_range_add(&res->base.b, &res->valid_buffer_range,
0, res->base.b.width0);
uint64_t addr = 0;
memcpy(&addr, handles[i], sizeof(addr));
addr += res->bo->address + res->offset;
memcpy(handles[i], &addr, sizeof(addr));
} else {
pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
NULL);
}
}
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_CS;
}
/**
* The pipe->set_tess_state() driver hook.
*/
static void
iris_set_tess_state(struct pipe_context *ctx,
const float default_outer_level[4],
const float default_inner_level[2])
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_TCS;
shs->sysvals_need_upload = true;
}
static void
iris_set_patch_vertices(struct pipe_context *ctx, uint8_t patch_vertices)
{
struct iris_context *ice = (struct iris_context *) ctx;
ice->state.patch_vertices = patch_vertices;
}
static void
iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
{
struct iris_surface *surf = (void *) p_surf;
pipe_resource_reference(&p_surf->texture, NULL);
pipe_resource_reference(&surf->surface_state.ref.res, NULL);
pipe_resource_reference(&surf->surface_state_read.ref.res, NULL);
free(surf->surface_state.cpu);
free(surf->surface_state_read.cpu);
free(surf);
}
static void
iris_set_clip_state(struct pipe_context *ctx,
const struct pipe_clip_state *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
memcpy(&ice->state.clip_planes, state, sizeof(*state));
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS |
IRIS_STAGE_DIRTY_CONSTANTS_GS |
IRIS_STAGE_DIRTY_CONSTANTS_TES;
shs->sysvals_need_upload = true;
gshs->sysvals_need_upload = true;
tshs->sysvals_need_upload = true;
}
/**
* The pipe->set_polygon_stipple() driver hook.
*/
static void
iris_set_polygon_stipple(struct pipe_context *ctx,
const struct pipe_poly_stipple *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.poly_stipple, state, sizeof(*state));
ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
}
/**
* The pipe->set_sample_mask() driver hook.
*/
static void
iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
{
struct iris_context *ice = (struct iris_context *) ctx;
/* We only support 16x MSAA, so we have 16 bits of sample maks.
* st/mesa may pass us 0xffffffff though, meaning "enable all samples".
*/
ice->state.sample_mask = sample_mask & 0xffff;
ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
}
/**
* The pipe->set_scissor_states() driver hook.
*
* This corresponds to our SCISSOR_RECT state structures. It's an
* exact match, so we just store them, and memcpy them out later.
*/
static void
iris_set_scissor_states(struct pipe_context *ctx,
unsigned start_slot,
unsigned num_scissors,
const struct pipe_scissor_state *rects)
{
struct iris_context *ice = (struct iris_context *) ctx;
for (unsigned i = 0; i < num_scissors; i++) {
if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
/* If the scissor was out of bounds and got clamped to 0 width/height
* at the bounds, the subtraction of 1 from maximums could produce a
* negative number and thus not clip anything. Instead, just provide
* a min > max scissor inside the bounds, which produces the expected
* no rendering.
*/
ice->state.scissors[start_slot + i] = (struct iris_scissor_state) {
.minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
};
} else {
ice->state.scissors[start_slot + i] = (struct iris_scissor_state) {
.minx = rects[i].minx, .miny = rects[i].miny,
.maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
};
}
}
ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
}
/**
* The pipe->set_stencil_ref() driver hook.
*
* This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
*/
static void
iris_set_stencil_ref(struct pipe_context *ctx,
const struct pipe_stencil_ref state)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.stencil_ref, &state, sizeof(state));
if (GFX_VER >= 12)
ice->state.dirty |= IRIS_DIRTY_STENCIL_REF;
else if (GFX_VER >= 9)
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
else
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
}
static float
viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
{
return copysignf(state->scale[axis], sign) + state->translate[axis];
}
/**
* The pipe->set_viewport_states() driver hook.
*
* This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
* the guardband yet, as we need the framebuffer dimensions, but we can
* at least fill out the rest.
*/
static void
iris_set_viewport_states(struct pipe_context *ctx,
unsigned start_slot,
unsigned count,
const struct pipe_viewport_state *states)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
/* Fix depth test misrenderings by lowering translated depth range */
if (screen->driconf.lower_depth_range_rate != 1.0f)
ice->state.viewports[start_slot].translate[2] *=
screen->driconf.lower_depth_range_rate;
ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
!ice->state.cso_rast->depth_clip_far))
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
}
/**
* The pipe->set_framebuffer_state() driver hook.
*
* Sets the current draw FBO, including color render targets, depth,
* and stencil buffers.
*/
static void
iris_set_framebuffer_state(struct pipe_context *ctx,
const struct pipe_framebuffer_state *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
const struct intel_device_info *devinfo = screen->devinfo;
struct isl_device *isl_dev = &screen->isl_dev;
struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
struct iris_resource *zres;
struct iris_resource *stencil_res;
struct iris_resource *new_res = NULL;
struct pipe_box new_render_area;
unsigned samples = util_framebuffer_get_num_samples(state);
unsigned layers = util_framebuffer_get_num_layers(state);
/* multiview not supported */
assert(!state->viewmask);
if (cso->samples != samples) {
ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
/* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
if (GFX_VER >= 9 && GFX_VER < 30 &&
(cso->samples == 16 || samples == 16))
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
/* We may need to emit blend state for Wa_14018912822. */
if ((cso->samples > 1) != (samples > 1) &&
intel_needs_workaround(devinfo, 14018912822)) {
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
}
}
if (cso->nr_cbufs != state->nr_cbufs) {
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
}
if ((cso->layers == 0) != (layers == 0)) {
ice->state.dirty |= IRIS_DIRTY_CLIP;
}
if (state->nr_cbufs > 0)
new_res = (struct iris_resource *)state->cbufs[0].texture;
if (new_res && new_res->use_damage) {
new_render_area = new_res->damage;
} else {
new_render_area.x = 0;
new_render_area.y = 0;
new_render_area.z = 0;
new_render_area.width = state->width;
new_render_area.height = state->height;
new_render_area.depth = 0;
}
if (memcmp(&ice->state.render_area, &new_render_area, sizeof(new_render_area))) {
ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
ice->state.render_area = new_render_area;
}
if (cso->zsbuf.texture || state->zsbuf.texture) {
ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
}
bool has_integer_rt = false;
for (unsigned i = 0; i < state->nr_cbufs; i++) {
if (state->cbufs[i].texture) {
enum isl_format ifmt =
isl_format_for_pipe_format(state->cbufs[i].format);
has_integer_rt |= isl_format_has_int_channel(ifmt);
}
}
/* 3DSTATE_RASTER::AntialiasingEnable */
if (has_integer_rt != ice->state.has_integer_rt ||
cso->samples != samples) {
ice->state.dirty |= IRIS_DIRTY_RASTER;
}
util_framebuffer_init(ctx, state, ice->state.fb_cbufs, &ice->state.fb_zsbuf);
util_copy_framebuffer_state(cso, state);
cso->samples = samples;
cso->layers = layers;
ice->state.has_integer_rt = has_integer_rt;
struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
struct isl_view view = {
.base_level = 0,
.levels = 1,
.base_array_layer = 0,
.array_len = 1,
.swizzle = ISL_SWIZZLE_IDENTITY,
};
struct isl_depth_stencil_hiz_emit_info info = {
.view = &view,
.mocs = iris_mocs(NULL, isl_dev, ISL_SURF_USAGE_DEPTH_BIT),
};
if (cso->zsbuf.texture) {
iris_get_depth_stencil_resources(cso->zsbuf.texture, &zres,
&stencil_res);
view.base_level = cso->zsbuf.level;
view.base_array_layer = cso->zsbuf.first_layer;
view.array_len =
cso->zsbuf.last_layer - cso->zsbuf.first_layer + 1;
if (zres) {
view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
info.depth_surf = &zres->surf;
info.depth_address = zres->bo->address + zres->offset;
info.mocs = iris_mocs(zres->bo, isl_dev, view.usage);
view.format = zres->surf.format;
if (zres->aux.usage != ISL_AUX_USAGE_NONE) {
info.hiz_usage = zres->aux.usage;
info.hiz_surf = &zres->aux.surf;
info.hiz_address = zres->aux.bo->address + zres->aux.offset;
}
ice->state.hiz_usage = info.hiz_usage;
}
if (stencil_res) {
view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
info.stencil_aux_usage = stencil_res->aux.usage;
info.stencil_surf = &stencil_res->surf;
info.stencil_address = stencil_res->bo->address + stencil_res->offset;
if (!zres) {
view.format = stencil_res->surf.format;
info.mocs = iris_mocs(stencil_res->bo, isl_dev, view.usage);
}
}
}
isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
/* Make a null surface for unbound buffers */
void *null_surf_map =
upload_state(ice->state.surface_uploader, &ice->state.null_fb,
4 * GENX(RENDER_SURFACE_STATE_length), 64);
isl_null_fill_state(&screen->isl_dev, null_surf_map,
.size = isl_extent3d(MAX2(cso->width, 1),
MAX2(cso->height, 1),
cso->layers ? cso->layers : 1));
ice->state.null_fb.offset +=
iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
/* Render target change */
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_FS;
ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER;
ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
ice->state.stage_dirty |=
ice->state.stage_dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
if (GFX_VER == 8)
ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
}
/**
* The pipe->set_constant_buffer() driver hook.
*
* This uploads any constant data in user buffers, and references
* any UBO resources containing constant data.
*/
static void
iris_set_constant_buffer(struct pipe_context *ctx,
mesa_shader_stage stage, unsigned index,
const struct pipe_constant_buffer *input)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
/* TODO: Only do this if the buffer changes? */
pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
shs->bound_cbufs |= 1u << index;
if (input->user_buffer) {
void *map = NULL;
pipe_resource_reference(&cbuf->buffer, NULL);
u_upload_alloc_ref(ice->ctx.const_uploader, 0, input->buffer_size, 64,
&cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
if (!cbuf->buffer) {
/* Allocation was unsuccessful - just unbind */
iris_set_constant_buffer(ctx, stage, index, NULL);
return;
}
assert(map);
memcpy(map, input->user_buffer, input->buffer_size);
} else if (input->buffer) {
if (cbuf->buffer != input->buffer) {
ice->state.dirty |= (IRIS_DIRTY_RENDER_MISC_BUFFER_FLUSHES |
IRIS_DIRTY_COMPUTE_MISC_BUFFER_FLUSHES);
shs->dirty_cbufs |= 1u << index;
}
pipe_resource_reference(&cbuf->buffer, input->buffer);
cbuf->buffer_offset = input->buffer_offset;
}
cbuf->buffer_size =
MIN2(input->buffer_size,
iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
struct iris_resource *res = (void *) cbuf->buffer;
res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
res->bind_stages |= 1 << stage;
} else {
shs->bound_cbufs &= ~(1u << index);
pipe_resource_reference(&cbuf->buffer, NULL);
}
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
}
static void
upload_sysvals(struct iris_context *ice,
mesa_shader_stage stage,
const struct pipe_grid_info *grid)
{
UNUSED struct iris_genx_state *genx = ice->state.genx;
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (!shader || shader->num_system_values == 0)
return;
assert(shader->num_cbufs > 0);
unsigned sysval_cbuf_index = shader->num_cbufs - 1;
struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
void *map = NULL;
assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
u_upload_alloc_ref(ice->ctx.const_uploader, 0, upload_size, 64,
&cbuf->buffer_offset, &cbuf->buffer, &map);
uint32_t *sysval_map = map;
for (int i = 0; i < shader->num_system_values; i++) {
uint32_t sysval = shader->system_values[i];
uint32_t value = 0;
#if GFX_VER >= 9
#define COMPILER(x) BRW_##x
#else
#define COMPILER(x) ELK_##x
#endif
if (ELK_PARAM_DOMAIN(sysval) == ELK_PARAM_DOMAIN_IMAGE) {
#if GFX_VER == 8
unsigned img = ELK_PARAM_IMAGE_IDX(sysval);
unsigned offset = ELK_PARAM_IMAGE_OFFSET(sysval);
struct isl_image_param *param =
&genx->shaders[stage].image_param[img];
assert(offset < sizeof(struct isl_image_param));
value = ((uint32_t *) param)[offset];
#endif
} else if (sysval == COMPILER(PARAM_BUILTIN_ZERO)) {
value = 0;
} else if (COMPILER(PARAM_BUILTIN_IS_CLIP_PLANE(sysval))) {
int plane = COMPILER(PARAM_BUILTIN_CLIP_PLANE_IDX(sysval));
int comp = COMPILER(PARAM_BUILTIN_CLIP_PLANE_COMP(sysval));
value = fui(ice->state.clip_planes.ucp[plane][comp]);
} else if (sysval == COMPILER(PARAM_BUILTIN_PATCH_VERTICES_IN)) {
if (stage == MESA_SHADER_TESS_CTRL) {
value = ice->state.vertices_per_patch;
} else {
assert(stage == MESA_SHADER_TESS_EVAL);
const struct shader_info *tcs_info =
iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
if (tcs_info)
value = tcs_info->tess.tcs_vertices_out;
else
value = ice->state.vertices_per_patch;
}
} else if (sysval >= COMPILER(PARAM_BUILTIN_TESS_LEVEL_OUTER_X) &&
sysval <= COMPILER(PARAM_BUILTIN_TESS_LEVEL_OUTER_W)) {
unsigned i = sysval - COMPILER(PARAM_BUILTIN_TESS_LEVEL_OUTER_X);
value = fui(ice->state.default_outer_level[i]);
} else if (sysval == COMPILER(PARAM_BUILTIN_TESS_LEVEL_INNER_X)) {
value = fui(ice->state.default_inner_level[0]);
} else if (sysval == COMPILER(PARAM_BUILTIN_TESS_LEVEL_INNER_Y)) {
value = fui(ice->state.default_inner_level[1]);
} else if (sysval >= COMPILER(PARAM_BUILTIN_WORK_GROUP_SIZE_X) &&
sysval <= COMPILER(PARAM_BUILTIN_WORK_GROUP_SIZE_Z)) {
unsigned i = sysval - COMPILER(PARAM_BUILTIN_WORK_GROUP_SIZE_X);
value = ice->state.last_block[i];
} else if (sysval == COMPILER(PARAM_BUILTIN_WORK_DIM)) {
value = grid->work_dim;
} else {
assert(!"unhandled system value");
}
*sysval_map++ = value;
}
cbuf->buffer_size = upload_size;
iris_upload_ubo_ssbo_surf_state(ice, cbuf,
&shs->constbuf_surf_state[sysval_cbuf_index],
ISL_SURF_USAGE_CONSTANT_BUFFER_BIT);
shs->sysvals_need_upload = false;
}
/**
* The pipe->set_shader_buffers() driver hook.
*
* This binds SSBOs and ABOs. Unfortunately, we need to stream out
* SURFACE_STATE here, as the buffer offset may change each time.
*/
static void
iris_set_shader_buffers(struct pipe_context *ctx,
mesa_shader_stage stage,
unsigned start_slot, unsigned count,
const struct pipe_shader_buffer *buffers,
unsigned writable_bitmask)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_shader_state *shs = &ice->state.shaders[stage];
unsigned modified_bits = u_bit_consecutive(start_slot, count);
shs->bound_ssbos &= ~modified_bits;
shs->writable_ssbos &= ~modified_bits;
shs->writable_ssbos |= writable_bitmask << start_slot;
for (unsigned i = 0; i < count; i++) {
if (buffers && buffers[i].buffer) {
struct iris_resource *res = (void *) buffers[i].buffer;
struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
struct iris_state_ref *surf_state =
&shs->ssbo_surf_state[start_slot + i];
pipe_resource_reference(&ssbo->buffer, &res->base.b);
ssbo->buffer_offset = buffers[i].buffer_offset;
ssbo->buffer_size =
MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
shs->bound_ssbos |= 1 << (start_slot + i);
isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, usage);
res->bind_history |= PIPE_BIND_SHADER_BUFFER;
res->bind_stages |= 1 << stage;
util_range_add(&res->base.b, &res->valid_buffer_range, ssbo->buffer_offset,
ssbo->buffer_offset + ssbo->buffer_size);
} else {
pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
NULL);
}
}
ice->state.dirty |= (IRIS_DIRTY_RENDER_MISC_BUFFER_FLUSHES |
IRIS_DIRTY_COMPUTE_MISC_BUFFER_FLUSHES);
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
}
static void
iris_delete_state(struct pipe_context *ctx, void *state)
{
free(state);
}
/**
* The pipe->set_vertex_buffers() driver hook.
*
* This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
*/
static void
iris_set_vertex_buffers(struct pipe_context *ctx,
unsigned count,
const struct pipe_vertex_buffer *buffers)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
struct iris_genx_state *genx = ice->state.genx;
unsigned last_count = util_last_bit64(ice->state.bound_vertex_buffers);
ice->state.bound_vertex_buffers = 0;
for (unsigned i = 0; i < count; i++) {
const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
struct iris_vertex_buffer_state *state =
&genx->vertex_buffers[i];
if (!buffer) {
pipe_resource_reference(&state->resource, NULL);
continue;
}
/* We may see user buffers that are NULL bindings. */
assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
if (buffer->buffer.resource &&
state->resource != buffer->buffer.resource)
ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFER_FLUSHES;
pipe_resource_reference(&state->resource, buffer->buffer.resource);
struct iris_resource *res = (void *) state->resource;
state->offset = (int) buffer->buffer_offset;
if (res) {
ice->state.bound_vertex_buffers |= 1ull << i;
res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
}
iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
vb.VertexBufferIndex = i;
vb.AddressModifyEnable = true;
/* vb.BufferPitch is merged in dynamically from VE state later */
if (res) {
vb.BufferSize = res->base.b.width0 - (int) buffer->buffer_offset;
vb.BufferStartingAddress =
ro_bo(NULL, res->bo->address + (int) buffer->buffer_offset);
vb.MOCS = iris_mocs(res->bo, &screen->isl_dev,
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
#if GFX_VER >= 12
vb.L3BypassDisable = true;
#endif
} else {
vb.NullVertexBuffer = true;
vb.MOCS = iris_mocs(NULL, &screen->isl_dev,
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
}
}
}
for (unsigned i = count; i < last_count; i++) {
struct iris_vertex_buffer_state *state =
&genx->vertex_buffers[i];
pipe_resource_reference(&state->resource, NULL);
}
ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
}
/**
* Gallium CSO for vertex elements.
*/
struct iris_vertex_element_state {
uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
uint32_t stride[PIPE_MAX_ATTRIBS];
unsigned vb_count;
unsigned count;
};
/**
* The pipe->create_vertex_elements_state() driver hook.
*
* This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
* and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
* arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
* needed. In these cases we will need information available at draw time.
* We setup edgeflag_ve and edgeflag_vfi as alternatives last
* 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
* draw time if we detect that EdgeFlag is needed by the Vertex Shader.
*/
static void *
iris_create_vertex_elements(struct pipe_context *ctx,
unsigned count,
const struct pipe_vertex_element *state)
{
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
const struct intel_device_info *devinfo = screen->devinfo;
struct iris_vertex_element_state *cso =
calloc(1, sizeof(struct iris_vertex_element_state));
cso->count = count;
cso->vb_count = 0;
iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
ve.DWordLength =
1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
}
uint32_t *ve_pack_dest = &cso->vertex_elements[1];
uint32_t *vfi_pack_dest = cso->vf_instancing;
if (count == 0) {
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.Valid = true;
ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
ve.Component0Control = VFCOMP_STORE_0;
ve.Component1Control = VFCOMP_STORE_0;
ve.Component2Control = VFCOMP_STORE_0;
ve.Component3Control = VFCOMP_STORE_1_FP;
}
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
}
}
for (int i = 0; i < count; i++) {
const struct iris_format_info fmt =
iris_format_for_usage(devinfo, state[i].src_format, 0);
unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
switch (isl_format_get_num_channels(fmt.fmt)) {
case 0: comp[0] = VFCOMP_STORE_0; FALLTHROUGH;
case 1: comp[1] = VFCOMP_STORE_0; FALLTHROUGH;
case 2: comp[2] = VFCOMP_STORE_0; FALLTHROUGH;
case 3:
comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
: VFCOMP_STORE_1_FP;
break;
}
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.EdgeFlagEnable = false;
ve.VertexBufferIndex = state[i].vertex_buffer_index;
ve.Valid = true;
ve.SourceElementOffset = state[i].src_offset;
ve.SourceElementFormat = fmt.fmt;
ve.Component0Control = comp[0];
ve.Component1Control = comp[1];
ve.Component2Control = comp[2];
ve.Component3Control = comp[3];
}
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
vi.VertexElementIndex = i;
vi.InstancingEnable = state[i].instance_divisor > 0;
vi.InstanceDataStepRate = state[i].instance_divisor;
}
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
cso->stride[state[i].vertex_buffer_index] = state[i].src_stride;
cso->vb_count = MAX2(state[i].vertex_buffer_index + 1, cso->vb_count);
}
/* An alternative version of the last VE and VFI is stored so it
* can be used at draw time in case Vertex Shader uses EdgeFlag
*/
if (count) {
const unsigned edgeflag_index = count - 1;
const struct iris_format_info fmt =
iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
ve.EdgeFlagEnable = true ;
ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
ve.Valid = true;
ve.SourceElementOffset = state[edgeflag_index].src_offset;
ve.SourceElementFormat = fmt.fmt;
ve.Component0Control = VFCOMP_STORE_SRC;
ve.Component1Control = VFCOMP_STORE_0;
ve.Component2Control = VFCOMP_STORE_0;
ve.Component3Control = VFCOMP_STORE_0;
}
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
/* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
* at draw time, as it should change if SGVs are emitted.
*/
vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
}
}
return cso;
}
/**
* The pipe->bind_vertex_elements_state() driver hook.
*/
static void
iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
struct iris_vertex_element_state *new_cso = state;
/* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
* we need to re-emit it to ensure we're overriding the right one.
*/
if (new_cso && cso_changed(count))
ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
ice->state.cso_vertex_elements = state;
ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
if (new_cso) {
/* re-emit vertex buffer state if stride changes */
if (cso_changed(vb_count) ||
cso_changed_memcmp_elts(stride, new_cso->vb_count))
ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
}
}
/**
* The pipe->create_stream_output_target() driver hook.
*
* "Target" here refers to a destination buffer. We translate this into
* a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
* know which buffer this represents, or whether we ought to zero the
* write-offsets, or append. Those are handled in the set() hook.
*/
static struct pipe_stream_output_target *
iris_create_stream_output_target(struct pipe_context *ctx,
struct pipe_resource *p_res,
unsigned buffer_offset,
unsigned buffer_size)
{
struct iris_resource *res = (void *) p_res;
struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
if (!cso)
return NULL;
res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
pipe_reference_init(&cso->base.reference, 1);
pipe_resource_reference(&cso->base.buffer, p_res);
cso->base.buffer_offset = buffer_offset;
cso->base.buffer_size = buffer_size;
cso->base.context = ctx;
util_range_add(&res->base.b, &res->valid_buffer_range, buffer_offset,
buffer_offset + buffer_size);
return &cso->base;
}
static void
iris_stream_output_target_destroy(struct pipe_context *ctx,
struct pipe_stream_output_target *state)
{
struct iris_stream_output_target *cso = (void *) state;
pipe_resource_reference(&cso->base.buffer, NULL);
pipe_resource_reference(&cso->offset.res, NULL);
free(cso);
}
/**
* The pipe->set_stream_output_targets() driver hook.
*
* At this point, we know which targets are bound to a particular index,
* and also whether we want to append or start over. We can finish the
* 3DSTATE_SO_BUFFER packets we started earlier.
*/
static void
iris_set_stream_output_targets(struct pipe_context *ctx,
unsigned num_targets,
struct pipe_stream_output_target **targets,
const unsigned *offsets,
enum mesa_prim output_prim)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_genx_state *genx = ice->state.genx;
uint32_t *so_buffers = genx->so_buffers;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
const bool active = num_targets > 0;
if (ice->state.streamout_active != active) {
ice->state.streamout_active = active;
ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
/* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
* it's a non-pipelined command. If we're switching streamout on, we
* may have missed emitting it earlier, so do so now. (We're already
* taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
*/
if (active) {
ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
} else {
for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
struct iris_stream_output_target *tgt =
(void *) ice->state.so_target[i];
if (tgt)
iris_dirty_for_history(ice, (void *)tgt->base.buffer);
}
}
}
for (int i = 0; i < 4; i++) {
pipe_so_target_reference(&ice->state.so_target[i],
i < num_targets ? targets[i] : NULL);
}
/* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
if (!active)
return;
for (unsigned i = 0; i < 4; i++,
so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
unsigned offset = offsets[i];
if (!tgt) {
iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
#if GFX_VER < 12
sob.SOBufferIndex = i;
#else
sob._3DCommandOpcode = 0;
sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
#endif
sob.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
}
continue;
}
if (!tgt->offset.res)
upload_state(ctx->const_uploader, &tgt->offset, sizeof(uint32_t), 4);
struct iris_resource *res = (void *) tgt->base.buffer;
/* Note that offsets[i] will either be 0, causing us to zero
* the value in the buffer, or 0xFFFFFFFF, which happens to mean
* "continue appending at the existing offset."
*/
assert(offset == 0 || offset == 0xFFFFFFFF);
/* When we're first called with an offset of 0, we want the next
* 3DSTATE_SO_BUFFER packets to reset the offset to the beginning.
* Any further times we emit those packets, we want to use 0xFFFFFFFF
* to continue appending from the current offset.
*
* Note that we might be called by Begin (offset = 0), Pause, then
* Resume (offset = 0xFFFFFFFF) before ever drawing (where these
* commands will actually be sent to the GPU). In this case, we
* don't want to append - we still want to do our initial zeroing.
*/
if (offset == 0)
tgt->zero_offset = true;
iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
#if GFX_VER < 12
sob.SOBufferIndex = i;
#else
sob._3DCommandOpcode = 0;
sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
#endif
sob.SurfaceBaseAddress =
rw_bo(NULL, res->bo->address + tgt->base.buffer_offset,
IRIS_DOMAIN_OTHER_WRITE);
sob.SOBufferEnable = true;
sob.StreamOffsetWriteEnable = true;
sob.StreamOutputBufferOffsetAddressEnable = true;
sob.MOCS = iris_mocs(res->bo, &screen->isl_dev,
ISL_SURF_USAGE_STREAM_OUT_BIT);
sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
sob.StreamOutputBufferOffsetAddress =
rw_bo(NULL, iris_resource_bo(tgt->offset.res)->address +
tgt->offset.offset, IRIS_DOMAIN_OTHER_WRITE);
sob.StreamOffset = 0xFFFFFFFF; /* not offset, see above */
}
}
ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
}
/**
* An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
* 3DSTATE_STREAMOUT packets.
*
* 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
* hardware to record. We can create it entirely based on the shader, with
* no dynamic state dependencies.
*
* 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
* state-based settings. We capture the shader-related ones here, and merge
* the rest in at draw time.
*/
static uint32_t *
iris_create_so_decl_list(const struct pipe_stream_output_info *info,
const struct intel_vue_map *vue_map)
{
struct GENX(SO_DECL) so_decl[PIPE_MAX_VERTEX_STREAMS][128];
int buffer_mask[PIPE_MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
int next_offset[PIPE_MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
int decls[PIPE_MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
int max_decls = 0;
STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= PIPE_MAX_SO_OUTPUTS);
memset(so_decl, 0, sizeof(so_decl));
/* Construct the list of SO_DECLs to be emitted. The formatting of the
* command feels strange -- each dword pair contains a SO_DECL per stream.
*/
for (unsigned i = 0; i < info->num_outputs; i++) {
const struct pipe_stream_output *output = &info->output[i];
const int buffer = output->output_buffer;
const int varying = output->register_index;
const unsigned stream_id = output->stream;
assert(stream_id < PIPE_MAX_VERTEX_STREAMS);
buffer_mask[stream_id] |= 1 << buffer;
assert(vue_map->varying_to_slot[varying] >= 0);
/* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
* array. Instead, it simply increments DstOffset for the following
* input by the number of components that should be skipped.
*
* Our hardware is unusual in that it requires us to program SO_DECLs
* for fake "hole" components, rather than simply taking the offset
* for each real varying. Each hole can have size 1, 2, 3, or 4; we
* program as many size = 4 holes as we can, then a final hole to
* accommodate the final 1, 2, or 3 remaining.
*/
int skip_components = output->dst_offset - next_offset[buffer];
while (skip_components > 0) {
so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
.HoleFlag = 1,
.OutputBufferSlot = output->output_buffer,
.ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
};
skip_components -= 4;
}
next_offset[buffer] = output->dst_offset + output->num_components;
so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
.OutputBufferSlot = output->output_buffer,
.RegisterIndex = vue_map->varying_to_slot[varying],
.ComponentMask =
((1 << output->num_components) - 1) << output->start_component,
};
if (decls[stream_id] > max_decls)
max_decls = decls[stream_id];
}
unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
int urb_entry_read_offset = 0;
int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
urb_entry_read_offset;
/* We always read the whole vertex. This could be reduced at some
* point by reading less and offsetting the register index in the
* SO_DECLs.
*/
sol.Stream0VertexReadOffset = urb_entry_read_offset;
sol.Stream0VertexReadLength = urb_entry_read_length - 1;
sol.Stream1VertexReadOffset = urb_entry_read_offset;
sol.Stream1VertexReadLength = urb_entry_read_length - 1;
sol.Stream2VertexReadOffset = urb_entry_read_offset;
sol.Stream2VertexReadLength = urb_entry_read_length - 1;
sol.Stream3VertexReadOffset = urb_entry_read_offset;
sol.Stream3VertexReadLength = urb_entry_read_length - 1;
/* Set buffer pitches; 0 means unbound. */
sol.Buffer0SurfacePitch = 4 * info->stride[0];
sol.Buffer1SurfacePitch = 4 * info->stride[1];
sol.Buffer2SurfacePitch = 4 * info->stride[2];
sol.Buffer3SurfacePitch = 4 * info->stride[3];
}
iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
list.DWordLength = 3 + 2 * max_decls - 2;
list.StreamtoBufferSelects0 = buffer_mask[0];
list.StreamtoBufferSelects1 = buffer_mask[1];
list.StreamtoBufferSelects2 = buffer_mask[2];
list.StreamtoBufferSelects3 = buffer_mask[3];
list.NumEntries0 = decls[0];
list.NumEntries1 = decls[1];
list.NumEntries2 = decls[2];
list.NumEntries3 = decls[3];
}
for (int i = 0; i < max_decls; i++) {
iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
entry.Stream0Decl = so_decl[0][i];
entry.Stream1Decl = so_decl[1][i];
entry.Stream2Decl = so_decl[2][i];
entry.Stream3Decl = so_decl[3][i];
}
}
return map;
}
static inline int
iris_compute_first_urb_slot_required(struct iris_compiled_shader *fs_shader,
const struct intel_vue_map *prev_stage_vue_map)
{
#if GFX_VER >= 9
uint32_t read_offset, read_length, num_varyings, primid_offset, flat_inputs;
brw_compute_sbe_per_vertex_urb_read(prev_stage_vue_map,
false /* mesh*/,
false /* per_primitive_remapping */,
brw_wm_prog_data(fs_shader->brw_prog_data),
&read_offset, &read_length, &num_varyings,
&primid_offset, &flat_inputs);
return 2 * read_offset;
#else
const struct iris_fs_data *fs_data = iris_fs_data(fs_shader);
return elk_compute_first_urb_slot_required(fs_data->inputs, prev_stage_vue_map);
#endif
}
static void
iris_compute_sbe_urb_read_interval(struct iris_compiled_shader *fs_shader,
const struct intel_vue_map *last_vue_map,
bool two_sided_color,
unsigned *out_offset,
unsigned *out_length)
{
const struct iris_fs_data *fs_data = iris_fs_data(fs_shader);
/* The compiler computes the first URB slot without considering COL/BFC
* swizzling (because it doesn't know whether it's enabled), so we need
* to do that here too. This may result in a smaller offset, which
* should be safe.
*/
const unsigned first_slot =
iris_compute_first_urb_slot_required(fs_shader, last_vue_map);
/* This becomes the URB read offset (counted in pairs of slots). */
assert(first_slot % 2 == 0);
*out_offset = first_slot / 2;
/* We need to adjust the inputs read to account for front/back color
* swizzling, as it can make the URB length longer.
*/
uint64_t fs_input_slots = fs_data->inputs;
for (int c = 0; c <= 1; c++) {
if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
/* If two sided color is enabled, the fragment shader's gl_Color
* (COL0) input comes from either the gl_FrontColor (COL0) or
* gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
*/
if (two_sided_color)
fs_input_slots |= (VARYING_BIT_BFC0 << c);
/* If front color isn't written, we opt to give them back color
* instead of an undefined value. Switch from COL to BFC.
*/
if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
fs_input_slots &= ~(VARYING_BIT_COL0 << c);
fs_input_slots |= (VARYING_BIT_BFC0 << c);
}
}
}
/* Compute the minimum URB Read Length necessary for the FS inputs.
*
* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
* 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
*
* "This field should be set to the minimum length required to read the
* maximum source attribute. The maximum source attribute is indicated
* by the maximum value of the enabled Attribute # Source Attribute if
* Attribute Swizzle Enable is set, Number of Output Attributes-1 if
* enable is not set.
* read_length = ceiling((max_source_attr + 1) / 2)
*
* [errata] Corruption/Hang possible if length programmed larger than
* recommended"
*
* Similar text exists for Ivy Bridge.
*
* We find the last URB slot that's actually read by the FS.
*/
unsigned last_read_slot = last_vue_map->num_slots - 1;
while (last_read_slot > first_slot && !(fs_input_slots &
(1ull << last_vue_map->slot_to_varying[last_read_slot])))
--last_read_slot;
/* The URB read length is the difference of the two, counted in pairs. */
*out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
}
static void
iris_emit_sbe_swiz(struct iris_batch *batch,
const struct iris_context *ice,
const struct intel_vue_map *vue_map,
unsigned urb_read_offset,
unsigned sprite_coord_enables)
{
struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
const struct iris_fs_data *fs_data =
iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
/* XXX: this should be generated when putting programs in place */
for (uint8_t idx = 0; idx < fs_data->urb_setup_attribs_count; idx++) {
const uint8_t fs_attr = fs_data->urb_setup_attribs[idx];
const int input_index = fs_data->urb_setup[fs_attr];
if (input_index < 0 || input_index >= 16)
continue;
struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
&attr_overrides[input_index];
int slot = vue_map->varying_to_slot[fs_attr];
/* Viewport and Layer are stored in the VUE header. We need to override
* them to zero if earlier stages didn't write them, as GL requires that
* they read back as zero when not explicitly set.
*/
switch (fs_attr) {
case VARYING_SLOT_VIEWPORT:
case VARYING_SLOT_LAYER:
attr->ComponentOverrideX = true;
attr->ComponentOverrideW = true;
attr->ConstantSource = CONST_0000;
if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
attr->ComponentOverrideY = true;
if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
attr->ComponentOverrideZ = true;
continue;
default:
break;
}
if (sprite_coord_enables & (1 << input_index))
continue;
/* If there was only a back color written but not front, use back
* as the color instead of undefined.
*/
if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
/* Not written by the previous stage - undefined. */
if (slot == -1) {
attr->ComponentOverrideX = true;
attr->ComponentOverrideY = true;
attr->ComponentOverrideZ = true;
attr->ComponentOverrideW = true;
attr->ConstantSource = CONST_0001_FLOAT;
continue;
}
/* Compute the location of the attribute relative to the read offset,
* which is counted in 256-bit increments (two 128-bit VUE slots).
*/
const int source_attr = slot - 2 * urb_read_offset;
assert(source_attr >= 0 && source_attr <= 32);
attr->SourceAttribute = source_attr;
/* If we are doing two-sided color, and the VUE slot following this one
* represents a back-facing color, then we need to instruct the SF unit
* to do back-facing swizzling.
*/
if (cso_rast->light_twoside &&
((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
(vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
attr->SwizzleSelect = INPUTATTR_FACING;
}
iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
for (int i = 0; i < 16; i++)
sbes.Attribute[i] = attr_overrides[i];
}
}
static bool
iris_is_drawing_points(const struct iris_context *ice)
{
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
if (cso_rast->fill_mode_point) {
return true;
}
if (ice->shaders.prog[MESA_SHADER_GEOMETRY]) {
const struct iris_gs_data *gs_data =
iris_gs_data(ice->shaders.prog[MESA_SHADER_GEOMETRY]);
return gs_data->output_topology == _3DPRIM_POINTLIST;
} else if (ice->shaders.prog[MESA_SHADER_TESS_EVAL]) {
const struct iris_tes_data *tes_data =
iris_tes_data(ice->shaders.prog[MESA_SHADER_TESS_EVAL]);
return tes_data->output_topology == INTEL_TESS_OUTPUT_TOPOLOGY_POINT;
} else {
return ice->state.prim_mode == MESA_PRIM_POINTS;
}
}
static unsigned
iris_calculate_point_sprite_overrides(const struct iris_fs_data *fs_data,
const struct iris_rasterizer_state *cso)
{
unsigned overrides = 0;
if (fs_data->urb_setup[VARYING_SLOT_PNTC] != -1)
overrides |= 1 << fs_data->urb_setup[VARYING_SLOT_PNTC];
for (int i = 0; i < 8; i++) {
if ((cso->sprite_coord_enable & (1 << i)) &&
fs_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
overrides |= 1 << fs_data->urb_setup[VARYING_SLOT_TEX0 + i];
}
return overrides;
}
static void
iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
{
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
const struct iris_fs_data *fs_data =
iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
const struct intel_vue_map *last_vue_map =
&iris_vue_data(ice->shaders.last_vue_shader)->vue_map;
unsigned urb_read_offset, urb_read_length;
iris_compute_sbe_urb_read_interval(ice->shaders.prog[MESA_SHADER_FRAGMENT],
last_vue_map,
cso_rast->light_twoside,
&urb_read_offset, &urb_read_length);
unsigned sprite_coord_overrides =
iris_is_drawing_points(ice) ?
iris_calculate_point_sprite_overrides(fs_data, cso_rast) : 0;
iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
sbe.AttributeSwizzleEnable = true;
sbe.NumberofSFOutputAttributes = fs_data->num_varying_inputs;
sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
sbe.VertexURBEntryReadOffset = urb_read_offset;
sbe.VertexURBEntryReadLength = urb_read_length;
sbe.ForceVertexURBEntryReadOffset = true;
sbe.ForceVertexURBEntryReadLength = true;
sbe.ConstantInterpolationEnable = fs_data->flat_inputs;
sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
#if GFX_VER >= 9
for (int i = 0; i < 32; i++) {
sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
}
#endif
/* Ask the hardware to supply PrimitiveID if the fragment shader
* reads it but a previous stage didn't write one.
*/
if ((fs_data->inputs & VARYING_BIT_PRIMITIVE_ID) &&
last_vue_map->varying_to_slot[VARYING_SLOT_PRIMITIVE_ID] == -1) {
sbe.PrimitiveIDOverrideAttributeSelect =
fs_data->urb_setup[VARYING_SLOT_PRIMITIVE_ID];
sbe.PrimitiveIDOverrideComponentX = true;
sbe.PrimitiveIDOverrideComponentY = true;
sbe.PrimitiveIDOverrideComponentZ = true;
sbe.PrimitiveIDOverrideComponentW = true;
}
}
iris_emit_sbe_swiz(batch, ice, last_vue_map, urb_read_offset,
sprite_coord_overrides);
}
/* ------------------------------------------------------------------- */
/**
* Populate VS program key fields based on the current state.
*/
static void
iris_populate_vs_key(const struct iris_context *ice,
const struct shader_info *info,
mesa_shader_stage last_stage,
struct iris_vs_prog_key *key)
{
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
if (info->clip_distance_array_size == 0 &&
(info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
last_stage == MESA_SHADER_VERTEX)
key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
}
/**
* Populate TCS program key fields based on the current state.
*/
static void
iris_populate_tcs_key(const struct iris_context *ice,
struct iris_tcs_prog_key *key)
{
}
/**
* Populate TES program key fields based on the current state.
*/
static void
iris_populate_tes_key(const struct iris_context *ice,
const struct shader_info *info,
mesa_shader_stage last_stage,
struct iris_tes_prog_key *key)
{
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
if (info->clip_distance_array_size == 0 &&
(info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
last_stage == MESA_SHADER_TESS_EVAL)
key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
}
/**
* Populate GS program key fields based on the current state.
*/
static void
iris_populate_gs_key(const struct iris_context *ice,
const struct shader_info *info,
mesa_shader_stage last_stage,
struct iris_gs_prog_key *key)
{
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
if (info->clip_distance_array_size == 0 &&
(info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
last_stage == MESA_SHADER_GEOMETRY)
key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
}
/**
* Populate FS program key fields based on the current state.
*/
static void
iris_populate_fs_key(const struct iris_context *ice,
const struct shader_info *info,
struct iris_fs_prog_key *key)
{
struct iris_screen *screen = (void *) ice->ctx.screen;
const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
const struct iris_rasterizer_state *rast = ice->state.cso_rast;
const struct iris_blend_state *blend = ice->state.cso_blend;
key->nr_color_regions = fb->nr_cbufs;
key->alpha_to_coverage = blend->alpha_to_coverage;
key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha_enabled;
key->persample_interp = rast->force_persample_interp;
key->multisample_fbo = rast->multisample && fb->samples > 1;
key->coherent_fb_fetch = GFX_VER >= 9 && GFX_VER < 20;
key->force_dual_color_blend =
screen->driconf.dual_color_blend_by_location &&
(blend->blend_enables & 1) && blend->dual_color_blending;
}
static void
iris_populate_cs_key(const struct iris_context *ice,
struct iris_cs_prog_key *key)
{
}
static inline uint32_t
encode_sampler_count(const struct iris_compiled_shader *shader)
{
/* We can potentially have way more than 32 samplers and that's ok.
* However, the 3DSTATE_XS packets only have 3 bits to specify how
* many to pre-fetch and all values above 4 are marked reserved.
*/
uint32_t count = util_last_bit64(shader->bt.samplers_used_mask);
return DIV_ROUND_UP(CLAMP(count, 0, 16), 4);
}
#define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
pkt.KernelStartPointer = KSP(shader); \
pkt.BindingTableEntryCount = shader->bt.size_bytes / 4; \
pkt.SamplerCount = encode_sampler_count(shader); \
pkt.FloatingPointMode = shader->use_alt_mode; \
\
pkt.DispatchGRFStartRegisterForURBData = \
shader->dispatch_grf_start_reg; \
pkt.prefix##URBEntryReadLength = vue_data->urb_read_length; \
pkt.prefix##URBEntryReadOffset = 0; \
\
pkt.StatisticsEnable = true; \
pkt.Enable = true; \
\
if (shader->total_scratch) { \
INIT_THREAD_SCRATCH_SIZE(pkt) \
}
/* Note that on Gfx12HP we pass a scratch space surface state offset
* shifted by 2 relative to the value specified on the BSpec, since
* that allows the compiler to save a shift instruction while
* constructing the extended descriptor for SS addressing. That
* worked because we limit the scratch surface state pool to 8 MB and
* because we relied on the legacy (ExBSO=0) encoding of the extended
* descriptor in order to save the shift, which is no longer supported
* for the UGM shared function on Xe2 platforms, so we no longer
* attempt to do that trick.
*/
#define SCRATCH_SPACE_BUFFER_SHIFT (GFX_VER >= 20 ? 6 : 4)
#if GFX_VERx10 >= 125
#define INIT_THREAD_SCRATCH_SIZE(pkt)
#define MERGE_SCRATCH_ADDR(name) \
{ \
uint32_t pkt2[GENX(name##_length)] = {0}; \
_iris_pack_command(batch, GENX(name), pkt2, p) { \
p.ScratchSpaceBuffer = scratch_addr >> SCRATCH_SPACE_BUFFER_SHIFT; \
} \
iris_emit_merge(batch, pkt, pkt2, GENX(name##_length)); \
}
#else
#define INIT_THREAD_SCRATCH_SIZE(pkt) \
pkt.PerThreadScratchSpace = ffs(shader->total_scratch) - 11;
#define MERGE_SCRATCH_ADDR(name) \
{ \
uint32_t pkt2[GENX(name##_length)] = {0}; \
_iris_pack_command(batch, GENX(name), pkt2, p) { \
p.ScratchSpaceBasePointer = \
rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE); \
} \
iris_emit_merge(batch, pkt, pkt2, GENX(name##_length)); \
}
#endif
/**
* Encode most of 3DSTATE_VS based on the compiled shader.
*/
static void
iris_store_vs_state(const struct intel_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct iris_vue_data *vue_data = iris_vue_data(shader);
iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
#if GFX_VER < 20
vs.SIMD8DispatchEnable = true;
#endif
vs.UserClipDistanceCullTestEnableBitmask =
vue_data->cull_distance_mask;
#if GFX_VER >= 30
vs.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
#endif
}
}
/**
* Encode most of 3DSTATE_HS based on the compiled shader.
*/
static void
iris_store_tcs_state(const struct intel_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct iris_tcs_data *tcs_data = iris_tcs_data(shader);
struct iris_vue_data *vue_data = &tcs_data->base;
iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
#if GFX_VER >= 12
/* Wa_1604578095:
*
* Hang occurs when the number of max threads is less than 2 times
* the number of instance count. The number of max threads must be
* more than 2 times the number of instance count.
*/
assert((devinfo->max_tcs_threads / 2) > tcs_data->instances);
hs.DispatchGRFStartRegisterForURBData = shader->dispatch_grf_start_reg & 0x1f;
hs.DispatchGRFStartRegisterForURBData5 = shader->dispatch_grf_start_reg >> 5;
#endif
hs.InstanceCount = tcs_data->instances - 1;
hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
hs.IncludeVertexHandles = true;
#if GFX_VER == 12
/* Patch Count threshold specifies the maximum number of patches that
* will be accumulated before a thread dispatch is forced.
*/
hs.PatchCountThreshold = tcs_data->patch_count_threshold;
#endif
#if GFX_VER >= 9
#if GFX_VER < 20
hs.DispatchMode = vue_data->dispatch_mode;
#endif
hs.IncludePrimitiveID = tcs_data->include_primitive_id;
#endif
#if GFX_VER >= 30
hs.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
#endif
}
}
/**
* Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
*/
static void
iris_store_tes_state(const struct intel_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct iris_tes_data *tes_data = iris_tes_data(shader);
struct iris_vue_data *vue_data = &tes_data->base;
uint32_t *ds_state = (void *) shader->derived_data;
uint32_t *te_state = ds_state + GENX(3DSTATE_DS_length);
iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
ds.ComputeWCoordinateEnable =
tes_data->domain == INTEL_TESS_DOMAIN_TRI;
#if GFX_VER >= 12
ds.PrimitiveIDNotRequired = !tes_data->include_primitive_id;
#endif
ds.UserClipDistanceCullTestEnableBitmask =
vue_data->cull_distance_mask;
#if GFX_VER >= 30
ds.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
#endif
}
iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
te.Partitioning = tes_data->partitioning;
#if GFX_VER >= 20
te.NumberOfRegionsPerPatch = 2;
#endif
te.OutputTopology = tes_data->output_topology;
te.TEDomain = tes_data->domain;
#if GFX_VER >= 12
te.PatchHeaderLayout = tes_data->domain == INTEL_TESS_DOMAIN_TRI ?
REVERSED_TRI_INSIDE_SEPARATE : REVERSED;
#endif
te.TEEnable = true;
te.MaximumTessellationFactorOdd = 63.0;
te.MaximumTessellationFactorNotOdd = 64.0;
#if GFX_VERx10 >= 125
STATIC_ASSERT(TEDMODE_OFF == 0);
#if GFX_VER >= 20
if (intel_needs_workaround(devinfo, 16025857284))
te.TessellationDistributionLevel = TEDLEVEL_PATCH;
else
te.TessellationDistributionLevel = TEDLEVEL_REGION;
#else
te.TessellationDistributionLevel = TEDLEVEL_PATCH;
#endif
/* 64_TRIANGLES */
te.SmallPatchThreshold = 3;
/* 1K_TRIANGLES */
te.TargetBlockSize = 8;
/* 1K_TRIANGLES */
te.LocalBOPAccumulatorThreshold = 1;
#endif
}
}
/**
* Encode most of 3DSTATE_GS based on the compiled shader.
*/
static void
iris_store_gs_state(const struct intel_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct iris_gs_data *gs_data = iris_gs_data(shader);
struct iris_vue_data *vue_data = &gs_data->base;
iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
gs.OutputVertexSize = gs_data->output_vertex_size_hwords * 2 - 1;
gs.OutputTopology = gs_data->output_topology;
gs.ControlDataHeaderSize = gs_data->control_data_header_size_hwords;
gs.InstanceControl = gs_data->invocations - 1;
#if GFX_VER < 20
gs.DispatchMode = DISPATCH_MODE_SIMD8;
#endif
gs.IncludePrimitiveID = gs_data->include_primitive_id;
gs.ControlDataFormat = gs_data->control_data_format;
gs.ExpectedVertexCount = gs_data->vertices_in;
gs.MaximumNumberofThreads =
GFX_VER == 8 ? (devinfo->max_gs_threads / 2 - 1)
: (devinfo->max_gs_threads - 1);
if (gs_data->static_vertex_count != -1) {
gs.StaticOutput = true;
gs.StaticOutputVertexCount = gs_data->static_vertex_count;
}
gs.IncludeVertexHandles = vue_data->include_vue_handles;
gs.UserClipDistanceCullTestEnableBitmask = vue_data->cull_distance_mask;
const int urb_entry_write_offset = 1;
const uint32_t urb_entry_output_length =
DIV_ROUND_UP(vue_data->vue_map.num_slots, 2) - urb_entry_write_offset;
gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
#if GFX_VER >= 30
gs.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
#endif
}
}
/**
* Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
*/
static void
iris_store_fs_state(const struct intel_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct iris_fs_data *fs_data = iris_fs_data(shader);
uint32_t *ps_state = (void *) shader->derived_data;
uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
ps.VectorMaskEnable = fs_data->uses_vmask;
ps.BindingTableEntryCount = shader->bt.size_bytes / 4;
ps.SamplerCount = encode_sampler_count(shader);
ps.FloatingPointMode = shader->use_alt_mode;
ps.MaximumNumberofThreadsPerPSD =
devinfo->max_threads_per_psd - (GFX_VER == 8 ? 2 : 1);
#if GFX_VER < 20
ps.PushConstantEnable = devinfo->needs_null_push_constant_tbimr_workaround ||
shader->ubo_ranges[0].length > 0;
#endif
#if GFX_VER >= 30
ps.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
#endif
/* From the documentation for this packet:
* "If the PS kernel does not need the Position XY Offsets to
* compute a Position Value, then this field should be programmed
* to POSOFFSET_NONE."
*
* "SW Recommendation: If the PS kernel needs the Position Offsets
* to compute a Position XY value, this field should match Position
* ZW Interpolation Mode to ensure a consistent position.xyzw
* computation."
*
* We only require XY sample offsets. So, this recommendation doesn't
* look useful at the moment. We might need this in future.
*/
ps.PositionXYOffsetSelect =
fs_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
if (shader->total_scratch) {
INIT_THREAD_SCRATCH_SIZE(ps);
}
}
iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
psx.PixelShaderValid = true;
psx.PixelShaderComputedDepthMode = fs_data->computed_depth_mode;
psx.PixelShaderKillsPixel = fs_data->uses_kill;
#if GFX_VER < 20
psx.AttributeEnable = fs_data->num_varying_inputs != 0;
#endif
psx.PixelShaderUsesSourceDepth = fs_data->uses_src_depth;
psx.PixelShaderUsesSourceW = fs_data->uses_src_w;
psx.PixelShaderIsPerSample = fs_data->is_per_sample;
psx.oMaskPresenttoRenderTarget = fs_data->uses_omask;
#if GFX_VER >= 9
#if GFX_VER >= 20
assert(!fs_data->pulls_bary);
#else
psx.PixelShaderPullsBary = fs_data->pulls_bary;
#endif
psx.PixelShaderComputesStencil = fs_data->computed_stencil;
#endif
#if GFX_VER >= 11
psx.PixelShaderRequiresSubpixelSampleOffsets =
fs_data->uses_sample_offsets;
psx.PixelShaderRequiresNonPerspectiveBaryPlaneCoefficients =
fs_data->uses_npc_bary_coefficients;
psx.PixelShaderRequiresPerspectiveBaryPlaneCoefficients =
fs_data->uses_pc_bary_coefficients;
psx.PixelShaderRequiresSourceDepthandorWPlaneCoefficients =
fs_data->uses_depth_w_coefficients;
#endif
}
}
/**
* Compute the size of the derived data (shader command packets).
*
* This must match the data written by the iris_store_xs_state() functions.
*/
static void
iris_store_cs_state(const struct intel_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct iris_cs_data *cs_data = iris_cs_data(shader);
void *map = shader->derived_data;
iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
#if GFX_VERx10 < 125
desc.ConstantURBEntryReadLength = cs_data->push.per_thread.regs;
desc.CrossThreadConstantDataReadLength =
cs_data->push.cross_thread.regs;
#else
assert(cs_data->push.per_thread.regs == 0);
assert(cs_data->push.cross_thread.regs == 0);
#endif
#if GFX_VERx10 <= 125
desc.BarrierEnable = cs_data->uses_barrier;
#endif
/* Typically set to 0 to avoid prefetching on every thread dispatch. */
desc.BindingTableEntryCount = devinfo->verx10 == 125 ?
0 : MIN2(shader->bt.size_bytes / 4, 31);
desc.SamplerCount = encode_sampler_count(shader);
/* TODO: Check if we are missing workarounds and enable mid-thread
* preemption.
*
* We still have issues with mid-thread preemption (it was already
* disabled by the kernel on gfx11, due to missing workarounds). It's
* possible that we are just missing some workarounds, and could enable
* it later, but for now let's disable it to fix a GPU in compute in Car
* Chase (and possibly more).
*/
#if GFX_VER >= 20
desc.ThreadPreemption = false;
#elif GFX_VER >= 12
desc.ThreadPreemptionDisable = true;
#endif
#if GFX_VER >= 30
desc.RegistersPerThread = ptl_register_blocks(
shader->brw_prog_data->grf_used);
#endif
}
}
static unsigned
iris_derived_program_state_size(enum iris_program_cache_id cache_id)
{
assert(cache_id <= IRIS_CACHE_BLORP);
static const unsigned dwords[] = {
[IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
[IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
[IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
[IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
[IRIS_CACHE_FS] =
GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
[IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
[IRIS_CACHE_BLORP] = 0,
};
return sizeof(uint32_t) * dwords[cache_id];
}
/**
* Create any state packets corresponding to the given shader stage
* (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
* This means that we can look up a program in the in-memory cache and
* get most of the state packet without having to reconstruct it.
*/
static void
iris_store_derived_program_state(const struct intel_device_info *devinfo,
enum iris_program_cache_id cache_id,
struct iris_compiled_shader *shader)
{
switch (cache_id) {
case IRIS_CACHE_VS:
iris_store_vs_state(devinfo, shader);
break;
case IRIS_CACHE_TCS:
iris_store_tcs_state(devinfo, shader);
break;
case IRIS_CACHE_TES:
iris_store_tes_state(devinfo, shader);
break;
case IRIS_CACHE_GS:
iris_store_gs_state(devinfo, shader);
break;
case IRIS_CACHE_FS:
iris_store_fs_state(devinfo, shader);
break;
case IRIS_CACHE_CS:
iris_store_cs_state(devinfo, shader);
break;
case IRIS_CACHE_BLORP:
break;
}
}
/* ------------------------------------------------------------------- */
static const uint32_t push_constant_opcodes[] = {
[MESA_SHADER_VERTEX] = 21,
[MESA_SHADER_TESS_CTRL] = 25, /* HS */
[MESA_SHADER_TESS_EVAL] = 26, /* DS */
[MESA_SHADER_GEOMETRY] = 22,
[MESA_SHADER_FRAGMENT] = 23,
[MESA_SHADER_COMPUTE] = 0,
};
static uint32_t
use_null_surface(struct iris_batch *batch, struct iris_context *ice)
{
struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
return ice->state.unbound_tex.offset;
}
static uint32_t
use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
{
/* If set_framebuffer_state() was never called, fall back to 1x1x1 */
if (!ice->state.null_fb.res)
return use_null_surface(batch, ice);
struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
return ice->state.null_fb.offset;
}
static uint32_t
surf_state_offset_for_aux(unsigned aux_modes,
enum isl_aux_usage aux_usage)
{
assert(aux_modes & (1 << aux_usage));
return SURFACE_STATE_ALIGNMENT *
util_bitcount(aux_modes & ((1 << aux_usage) - 1));
}
#if GFX_VER == 9
static void
surf_state_update_clear_value(struct iris_batch *batch,
struct iris_resource *res,
struct iris_surface_state *surf_state,
enum isl_aux_usage aux_usage)
{
struct isl_device *isl_dev = &batch->screen->isl_dev;
struct iris_bo *state_bo = iris_resource_bo(surf_state->ref.res);
uint64_t real_offset = surf_state->ref.offset + IRIS_MEMZONE_BINDER_START;
uint32_t offset_into_bo = real_offset - state_bo->address;
uint32_t clear_offset = offset_into_bo +
isl_dev->ss.clear_value_offset +
surf_state_offset_for_aux(surf_state->aux_usages, aux_usage);
uint32_t *color = res->aux.clear_color.u32;
assert(isl_dev->ss.clear_value_size == 16);
if (aux_usage == ISL_AUX_USAGE_HIZ) {
iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
PIPE_CONTROL_WRITE_IMMEDIATE,
state_bo, clear_offset, color[0]);
} else {
iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
PIPE_CONTROL_WRITE_IMMEDIATE,
state_bo, clear_offset,
(uint64_t) color[0] |
(uint64_t) color[1] << 32);
iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
PIPE_CONTROL_WRITE_IMMEDIATE,
state_bo, clear_offset + 8,
(uint64_t) color[2] |
(uint64_t) color[3] << 32);
}
iris_emit_pipe_control_flush(batch,
"update fast clear: state cache invalidate",
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_STATE_CACHE_INVALIDATE);
}
#endif
static void
update_clear_value(struct iris_context *ice,
struct iris_batch *batch,
struct iris_resource *res,
struct iris_surface_state *surf_state,
struct isl_view *view)
{
UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
UNUSED unsigned aux_modes = surf_state->aux_usages;
/* We only need to update the clear color in the surface state for gfx8 and
* gfx9. Newer gens can read it directly from the clear color state buffer.
*/
#if GFX_VER == 9
/* Skip updating the ISL_AUX_USAGE_NONE surface state */
aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
while (aux_modes) {
enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
surf_state_update_clear_value(batch, res, surf_state, aux_usage);
}
#elif GFX_VER == 8
/* TODO: Could update rather than re-filling */
alloc_surface_states(surf_state, surf_state->aux_usages);
fill_surface_states(isl_dev, surf_state, res, &res->surf, view, 0, 0, 0);
upload_surface_states(ice->state.surface_uploader, surf_state);
#endif
}
static uint32_t
use_surface_state(struct iris_batch *batch,
struct iris_surface_state *surf_state,
enum isl_aux_usage aux_usage)
{
iris_use_pinned_bo(batch, iris_resource_bo(surf_state->ref.res), false,
IRIS_DOMAIN_NONE);
return surf_state->ref.offset +
surf_state_offset_for_aux(surf_state->aux_usages, aux_usage);
}
/**
* Add a surface to the validation list, as well as the buffer containing
* the corresponding SURFACE_STATE.
*
* Returns the binding table entry (offset to SURFACE_STATE).
*/
static uint32_t
use_surface(struct iris_context *ice,
struct iris_batch *batch,
struct pipe_surface *p_surf,
bool writeable,
enum isl_aux_usage aux_usage,
bool is_read_surface,
enum iris_domain access)
{
struct iris_surface *surf = (void *) p_surf;
struct iris_resource *res = (void *) p_surf->texture;
if (GFX_VER == 8 && is_read_surface && !surf->surface_state_read.ref.res) {
upload_surface_states(ice->state.surface_uploader,
&surf->surface_state_read);
}
if (!surf->surface_state.ref.res) {
upload_surface_states(ice->state.surface_uploader,
&surf->surface_state);
}
if (memcmp(&res->aux.clear_color, &surf->clear_color,
sizeof(surf->clear_color)) != 0) {
update_clear_value(ice, batch, res, &surf->surface_state, &surf->view);
if (GFX_VER == 8) {
update_clear_value(ice, batch, res, &surf->surface_state_read,
&surf->read_view);
}
surf->clear_color = res->aux.clear_color;
}
if (res->aux.clear_color_bo)
iris_use_pinned_bo(batch, res->aux.clear_color_bo, false, access);
if (res->aux.bo)
iris_use_pinned_bo(batch, res->aux.bo, writeable, access);
iris_use_pinned_bo(batch, res->bo, writeable, access);
if (GFX_VER == 8 && is_read_surface) {
return use_surface_state(batch, &surf->surface_state_read, aux_usage);
} else {
return use_surface_state(batch, &surf->surface_state, aux_usage);
}
}
static uint32_t
use_sampler_view(struct iris_context *ice,
struct iris_batch *batch,
struct iris_sampler_view *isv)
{
enum isl_aux_usage aux_usage =
iris_resource_texture_aux_usage(ice, isv->res, isv->view.format,
isv->view.base_level, isv->view.levels);
if (!isv->surface_state.ref.res)
upload_surface_states(ice->state.surface_uploader, &isv->surface_state);
if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
sizeof(isv->clear_color)) != 0) {
update_clear_value(ice, batch, isv->res, &isv->surface_state,
&isv->view);
isv->clear_color = isv->res->aux.clear_color;
}
if (isv->res->aux.clear_color_bo) {
iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo,
false, IRIS_DOMAIN_SAMPLER_READ);
}
if (isv->res->aux.bo) {
iris_use_pinned_bo(batch, isv->res->aux.bo,
false, IRIS_DOMAIN_SAMPLER_READ);
}
iris_use_pinned_bo(batch, isv->res->bo, false, IRIS_DOMAIN_SAMPLER_READ);
return use_surface_state(batch, &isv->surface_state, aux_usage);
}
static uint32_t
use_ubo_ssbo(struct iris_batch *batch,
struct iris_context *ice,
struct pipe_shader_buffer *buf,
struct iris_state_ref *surf_state,
bool writable, enum iris_domain access)
{
if (!buf->buffer || !surf_state->res)
return use_null_surface(batch, ice);
iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable, access);
iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false,
IRIS_DOMAIN_NONE);
return surf_state->offset;
}
static uint32_t
use_image(struct iris_batch *batch, struct iris_context *ice,
struct iris_shader_state *shs, const struct shader_info *info,
int i)
{
struct iris_image_view *iv = &shs->image[i];
struct iris_resource *res = (void *) iv->base.resource;
if (!res)
return use_null_surface(batch, ice);
bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
iris_use_pinned_bo(batch, res->bo, write, IRIS_DOMAIN_NONE);
if (res->aux.bo)
iris_use_pinned_bo(batch, res->aux.bo, write, IRIS_DOMAIN_NONE);
if (res->aux.clear_color_bo) {
iris_use_pinned_bo(batch, res->aux.clear_color_bo, false,
IRIS_DOMAIN_NONE);
}
enum isl_aux_usage aux_usage = shs->image_aux_usage[i];
return use_surface_state(batch, &iv->surface_state, aux_usage);
}
#define push_bt_entry(addr) \
assert(addr >= surf_base_offset); \
assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
if (!pin_only) bt_map[s++] = (addr) - surf_base_offset;
#define bt_assert(section) \
if (!pin_only && shader->bt.used_mask[section] != 0) \
assert(shader->bt.offsets[section] == s);
/**
* Populate the binding table for a given shader stage.
*
* This fills out the table of pointers to surfaces required by the shader,
* and also adds those buffers to the validation list so the kernel can make
* resident before running our batch.
*/
static void
iris_populate_binding_table(struct iris_context *ice,
struct iris_batch *batch,
mesa_shader_stage stage,
bool pin_only)
{
const struct iris_binder *binder = &ice->state.binder;
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (!shader)
return;
struct iris_binding_table *bt = &shader->bt;
struct iris_shader_state *shs = &ice->state.shaders[stage];
uint32_t surf_base_offset = GFX_VER < 11 ? binder->bo->address : 0;
uint32_t *bt_map = binder->map + binder->bt_offset[stage];
int s = 0;
const struct shader_info *info = iris_get_shader_info(ice, stage);
if (!info) {
/* TCS passthrough doesn't need a binding table. */
assert(stage == MESA_SHADER_TESS_CTRL);
return;
}
if (stage == MESA_SHADER_COMPUTE &&
shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
/* surface for gl_NumWorkGroups */
struct iris_state_ref *grid_data = &ice->state.grid_size;
struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false,
IRIS_DOMAIN_PULL_CONSTANT_READ);
iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false,
IRIS_DOMAIN_NONE);
push_bt_entry(grid_state->offset);
}
if (stage == MESA_SHADER_FRAGMENT) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
/* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
if (cso_fb->nr_cbufs) {
for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
uint32_t addr;
if (cso_fb->cbufs[i].texture) {
addr = use_surface(ice, batch, ice->state.fb_cbufs[i], true,
ice->state.draw_aux_usage[i], false,
IRIS_DOMAIN_RENDER_WRITE);
} else {
addr = use_null_fb_surface(batch, ice);
}
push_bt_entry(addr);
}
} else if (bt->use_null_rt) {
uint32_t addr = use_null_fb_surface(batch, ice);
push_bt_entry(addr);
}
}
#define foreach_surface_used(index, group) \
bt_assert(group); \
for (int index = 0; index < bt->surf_count[group]; index++) \
if (iris_group_index_to_bti(bt, group, index) != \
IRIS_SURFACE_NOT_USED)
foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
uint32_t addr;
if (cso_fb->cbufs[i].texture) {
addr = use_surface(ice, batch, ice->state.fb_cbufs[i],
false, ice->state.draw_aux_usage[i], true,
IRIS_DOMAIN_SAMPLER_READ);
push_bt_entry(addr);
}
}
foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE_LOW64) {
struct iris_sampler_view *view = shs->textures[i];
uint32_t addr = view ? use_sampler_view(ice, batch, view)
: use_null_surface(batch, ice);
push_bt_entry(addr);
}
foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE_HIGH64) {
struct iris_sampler_view *view = shs->textures[64 + i];
uint32_t addr = view ? use_sampler_view(ice, batch, view)
: use_null_surface(batch, ice);
push_bt_entry(addr);
}
foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
uint32_t addr = use_image(batch, ice, shs, info, i);
push_bt_entry(addr);
}
foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
uint32_t addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
&shs->constbuf_surf_state[i], false,
IRIS_DOMAIN_PULL_CONSTANT_READ);
push_bt_entry(addr);
}
foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
uint32_t addr =
use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
shs->writable_ssbos & (1u << i), IRIS_DOMAIN_NONE);
push_bt_entry(addr);
}
#if 0
/* XXX: YUV surfaces not implemented yet */
bt_assert(plane_start[1], ...);
bt_assert(plane_start[2], ...);
#endif
}
static void
iris_use_optional_res(struct iris_batch *batch,
struct pipe_resource *res,
bool writeable,
enum iris_domain access)
{
if (res) {
struct iris_bo *bo = iris_resource_bo(res);
iris_use_pinned_bo(batch, bo, writeable, access);
}
}
static void
pin_depth_and_stencil_buffers(struct iris_batch *batch,
struct pipe_resource *zsbuf,
struct iris_depth_stencil_alpha_state *cso_zsa)
{
if (!zsbuf)
return;
struct iris_resource *zres, *sres;
iris_get_depth_stencil_resources(zsbuf, &zres, &sres);
if (zres) {
iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled,
IRIS_DOMAIN_DEPTH_WRITE);
if (zres->aux.bo) {
iris_use_pinned_bo(batch, zres->aux.bo,
cso_zsa->depth_writes_enabled,
IRIS_DOMAIN_DEPTH_WRITE);
}
}
if (sres) {
iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled,
IRIS_DOMAIN_DEPTH_WRITE);
}
}
static uint32_t
pin_scratch_space(struct iris_context *ice,
struct iris_batch *batch,
const struct iris_compiled_shader *shader,
mesa_shader_stage stage)
{
uint32_t scratch_addr = 0;
if (shader->total_scratch > 0) {
struct iris_bo *scratch_bo =
iris_get_scratch_space(ice, shader->total_scratch, stage);
iris_use_pinned_bo(batch, scratch_bo, true, IRIS_DOMAIN_NONE);
#if GFX_VERx10 >= 125
const struct iris_state_ref *ref =
iris_get_scratch_surf(ice, shader->total_scratch);
iris_use_pinned_bo(batch, iris_resource_bo(ref->res),
false, IRIS_DOMAIN_NONE);
scratch_addr = ref->offset +
iris_resource_bo(ref->res)->address -
IRIS_MEMZONE_SCRATCH_START;
assert(util_is_aligned(scratch_addr, 64) && scratch_addr < (1 << 26));
#else
scratch_addr = scratch_bo->address;
#endif
}
return scratch_addr;
}
/* ------------------------------------------------------------------- */
/**
* Pin any BOs which were installed by a previous batch, and restored
* via the hardware logical context mechanism.
*
* We don't need to re-emit all state every batch - the hardware context
* mechanism will save and restore it for us. This includes pointers to
* various BOs...which won't exist unless we ask the kernel to pin them
* by adding them to the validation list.
*
* We can skip buffers if we've re-emitted those packets, as we're
* overwriting those stale pointers with new ones, and don't actually
* refer to the old BOs.
*/
static void
iris_restore_render_saved_bos(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_draw_info *draw)
{
struct iris_genx_state *genx = ice->state.genx;
const uint64_t clean = ~ice->state.dirty;
const uint64_t stage_clean = ~ice->state.stage_dirty;
if (clean & IRIS_DIRTY_CC_VIEWPORT) {
iris_use_optional_res(batch, ice->state.last_res.cc_vp, false,
IRIS_DOMAIN_NONE);
}
if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false,
IRIS_DOMAIN_NONE);
}
if (clean & IRIS_DIRTY_BLEND_STATE) {
iris_use_optional_res(batch, ice->state.last_res.blend, false,
IRIS_DOMAIN_NONE);
}
if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
iris_use_optional_res(batch, ice->state.last_res.color_calc, false,
IRIS_DOMAIN_NONE);
}
if (clean & IRIS_DIRTY_SCISSOR_RECT) {
iris_use_optional_res(batch, ice->state.last_res.scissor, false,
IRIS_DOMAIN_NONE);
}
if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
for (int i = 0; i < 4; i++) {
struct iris_stream_output_target *tgt =
(void *) ice->state.so_target[i];
if (tgt) {
iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
true, IRIS_DOMAIN_OTHER_WRITE);
iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
true, IRIS_DOMAIN_OTHER_WRITE);
}
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(stage_clean & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)))
continue;
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (!shader)
continue;
for (int i = 0; i < 4; i++) {
const struct iris_ubo_range *range = &shader->ubo_ranges[i];
if (range->length == 0)
continue;
/* Range block is a binding table index, map back to UBO index. */
unsigned block_index = iris_bti_to_group_index(
&shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
assert(block_index != IRIS_SURFACE_NOT_USED);
struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
struct iris_resource *res = (void *) cbuf->buffer;
if (res)
iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_OTHER_READ);
else
iris_use_pinned_bo(batch, batch->screen->workaround_bo, false,
IRIS_DOMAIN_OTHER_READ);
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (stage_clean & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
/* Re-pin any buffers referred to by the binding table. */
iris_populate_binding_table(ice, batch, stage, true);
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct pipe_resource *res = shs->sampler_table.res;
if (res)
iris_use_pinned_bo(batch, iris_resource_bo(res), false,
IRIS_DOMAIN_NONE);
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (stage_clean & (IRIS_STAGE_DIRTY_VS << stage)) {
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (shader) {
struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
pin_scratch_space(ice, batch, shader, stage);
}
}
}
if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
(clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf.texture, ice->state.cso_zsa);
}
iris_use_optional_res(batch, ice->state.last_res.index_buffer, false,
IRIS_DOMAIN_VF_READ);
if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
uint64_t bound = ice->state.bound_vertex_buffers;
while (bound) {
const int i = u_bit_scan64(&bound);
struct pipe_resource *res = genx->vertex_buffers[i].resource;
iris_use_pinned_bo(batch, iris_resource_bo(res), false,
IRIS_DOMAIN_VF_READ);
}
}
}
static void
iris_restore_compute_saved_bos(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid)
{
const uint64_t stage_clean = ~ice->state.stage_dirty;
const int stage = MESA_SHADER_COMPUTE;
struct iris_shader_state *shs = &ice->state.shaders[stage];
if (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) {
/* Re-pin any buffers referred to by the binding table. */
iris_populate_binding_table(ice, batch, stage, true);
}
struct pipe_resource *sampler_res = shs->sampler_table.res;
if (sampler_res)
iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false,
IRIS_DOMAIN_NONE);
if ((stage_clean & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS) &&
(stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) &&
(stage_clean & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
(stage_clean & IRIS_STAGE_DIRTY_CS)) {
iris_use_optional_res(batch, ice->state.last_res.cs_desc, false,
IRIS_DOMAIN_NONE);
}
if (stage_clean & IRIS_STAGE_DIRTY_CS) {
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (shader) {
struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
if (GFX_VERx10 < 125) {
struct iris_bo *curbe_bo =
iris_resource_bo(ice->state.last_res.cs_thread_ids);
iris_use_pinned_bo(batch, curbe_bo, false, IRIS_DOMAIN_NONE);
}
pin_scratch_space(ice, batch, shader, stage);
}
}
}
/**
* Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
*/
static void
iris_update_binder_address(struct iris_batch *batch,
struct iris_binder *binder)
{
if (batch->last_binder_address == binder->bo->address)
return;
struct isl_device *isl_dev = &batch->screen->isl_dev;
uint32_t mocs = isl_mocs(isl_dev, 0, false);
iris_batch_sync_region_start(batch);
#if GFX_VER >= 11
/* Use 3DSTATE_BINDING_TABLE_POOL_ALLOC on Icelake and later */
#if GFX_VERx10 == 120
/* Wa_1607854226:
*
* Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
* mode by putting the pipeline temporarily in 3D mode..
*/
if (batch->name == IRIS_BATCH_COMPUTE)
emit_pipeline_select(batch, _3D);
#endif
iris_emit_pipe_control_flush(batch, "Stall for binder realloc",
PIPE_CONTROL_CS_STALL);
iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POOL_ALLOC), btpa) {
btpa.BindingTablePoolBaseAddress = ro_bo(binder->bo, 0);
btpa.BindingTablePoolBufferSize = binder->size / 4096;
#if GFX_VERx10 < 125
btpa.BindingTablePoolEnable = true;
#endif
btpa.MOCS = mocs;
}
#if GFX_VERx10 == 120
/* Wa_1607854226:
*
* Put the pipeline back into compute mode.
*/
if (batch->name == IRIS_BATCH_COMPUTE)
emit_pipeline_select(batch, GPGPU);
#endif
#else
/* Use STATE_BASE_ADDRESS on older platforms */
flush_before_state_base_change(batch);
iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
sba.SurfaceStateBaseAddressModifyEnable = true;
sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
/* The hardware appears to pay attention to the MOCS fields even
* if you don't set the "Address Modify Enable" bit for the base.
*/
sba.GeneralStateMOCS = mocs;
sba.StatelessDataPortAccessMOCS = mocs;
sba.DynamicStateMOCS = mocs;
sba.IndirectObjectMOCS = mocs;
sba.InstructionMOCS = mocs;
sba.SurfaceStateMOCS = mocs;
#if GFX_VER >= 9
sba.BindlessSurfaceStateMOCS = mocs;
#endif
#if GFX_VERx10 >= 125
sba.L1CacheControl = L1CC_WB;
#endif
}
#endif
flush_after_state_base_change(batch);
iris_batch_sync_region_end(batch);
batch->last_binder_address = binder->bo->address;
}
static inline void
iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
bool window_space_position, float *zmin, float *zmax)
{
if (window_space_position) {
*zmin = 0.f;
*zmax = 1.f;
return;
}
util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
}
/* Wa_16018063123 */
static inline void
batch_emit_fast_color_dummy_blit(struct iris_batch *batch)
{
#if INTEL_WA_16018063123_GFX_VER
iris_emit_cmd(batch, GENX(XY_FAST_COLOR_BLT), blt) {
uint32_t mocs = iris_mocs(batch->screen->workaround_address.bo,
&batch->screen->isl_dev,
ISL_SURF_USAGE_BLITTER_DST_BIT);
blt.DestinationBaseAddress = batch->screen->workaround_address;
blt.DestinationMOCS = mocs;
blt.DestinationPitch = 63;
blt.DestinationX2 = 1;
blt.DestinationY2 = 4;
blt.DestinationSurfaceWidth = 1;
blt.DestinationSurfaceHeight = 4;
blt.DestinationSurfaceType = XY_SURFTYPE_2D;
blt.DestinationSurfaceQPitch = 4;
blt.DestinationTiling = XY_TILE_LINEAR;
}
#else
UNREACHABLE("Not implemented");
#endif
}
#if GFX_VER >= 12
static void
invalidate_aux_map_state_per_engine(struct iris_batch *batch)
{
uint64_t register_addr = 0;
switch (batch->name) {
case IRIS_BATCH_RENDER: {
/* From Bspec 43904 (Register_CCSAuxiliaryTableInvalidate):
* RCS engine idle sequence:
*
* Gfx12+:
* PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall + Render
* Target Cache Flush + Depth Cache
*
* Gfx125+:
* PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall + Render
* Target Cache Flush + Depth Cache + CCS flush
*/
iris_emit_end_of_pipe_sync(batch, "Invalidate aux map table",
PIPE_CONTROL_DATA_CACHE_FLUSH |
PIPE_CONTROL_L3_FABRIC_FLUSH |
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
(GFX_VERx10 == 125 ?
PIPE_CONTROL_CCS_CACHE_FLUSH : 0));
register_addr = GENX(GFX_CCS_AUX_INV_num);
break;
}
case IRIS_BATCH_COMPUTE: {
/* From Bspec 43904 (Register_CCSAuxiliaryTableInvalidate):
* Compute engine idle sequence:
*
* Gfx12+:
* PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall
*
* Gfx125+:
* PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall + CCS flush
*/
iris_emit_end_of_pipe_sync(batch, "Invalidate aux map table",
PIPE_CONTROL_DATA_CACHE_FLUSH |
PIPE_CONTROL_L3_FABRIC_FLUSH |
PIPE_CONTROL_CS_STALL |
(GFX_VERx10 == 125 ?
PIPE_CONTROL_CCS_CACHE_FLUSH : 0));
register_addr = GENX(COMPCS0_CCS_AUX_INV_num);
break;
}
case IRIS_BATCH_BLITTER: {
#if GFX_VERx10 >= 125
/* Wa_16018063123 - emit fast color dummy blit before MI_FLUSH_DW. */
if (INTEL_WA_16018063123_GFX_VER)
batch_emit_fast_color_dummy_blit(batch);
/*
* Notice we don't set the L3 Fabric Flush here, because we have
* PIPE_CONTROL_CS_STALL. The PIPE_CONTROL::L3 Fabric Flush
* documentation says :
*
* "L3 Fabric Flush will ensure all the pending transactions in the
* L3 Fabric are flushed to global observation point. HW does
* implicit L3 Fabric Flush on all stalling flushes (both explicit
* and implicit) and on PIPECONTROL having Post Sync Operation
* enabled."
*
* Therefore setting L3 Fabric Flush here would be redundant.
*
* From Bspec 43904 (Register_CCSAuxiliaryTableInvalidate):
* Blitter engine idle sequence:
*
* Gfx125+:
* MI_FLUSH_DW (dw0;b16 flush CCS)
*/
iris_emit_cmd(batch, GENX(MI_FLUSH_DW), fd) {
fd.FlushCCS = true;
}
register_addr = GENX(BCS_CCS_AUX_INV_num);
#endif
break;
}
default:
UNREACHABLE("Invalid batch for aux map invalidation");
break;
}
if (register_addr != 0) {
/* If the aux-map state number increased, then we need to rewrite the
* register. Rewriting the register is used to both set the aux-map
* translation table address, and also to invalidate any previously
* cached translations.
*/
iris_load_register_imm32(batch, register_addr, 1);
/* HSD 22012751911: SW Programming sequence when issuing aux invalidation:
*
* "Poll Aux Invalidation bit once the invalidation is set (Register
* 4208 bit 0)"
*/
iris_emit_cmd(batch, GENX(MI_SEMAPHORE_WAIT), sem) {
sem.CompareOperation = COMPARE_SAD_EQUAL_SDD;
sem.WaitMode = PollingMode;
sem.RegisterPollMode = true;
sem.SemaphoreDataDword = 0x0;
sem.SemaphoreAddress = ro_bo(NULL, register_addr);
}
}
}
void
genX(invalidate_aux_map_state)(struct iris_batch *batch)
{
struct iris_screen *screen = batch->screen;
void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
if (!aux_map_ctx)
return;
uint32_t aux_map_state_num = intel_aux_map_get_state_num(aux_map_ctx);
if (batch->last_aux_map_state != aux_map_state_num) {
invalidate_aux_map_state_per_engine(batch);
batch->last_aux_map_state = aux_map_state_num;
}
}
static void
init_aux_map_state(struct iris_batch *batch)
{
struct iris_screen *screen = batch->screen;
void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
if (!aux_map_ctx)
return;
uint64_t base_addr = intel_aux_map_get_base(aux_map_ctx);
assert(base_addr != 0 && align64(base_addr, 32 * 1024) == base_addr);
uint32_t reg = 0;
switch (batch->name) {
case IRIS_BATCH_COMPUTE:
if (iris_bufmgr_compute_engine_supported(screen->bufmgr)) {
reg = GENX(COMPCS0_AUX_TABLE_BASE_ADDR_num);
break;
}
/* fallthrough */
FALLTHROUGH;
case IRIS_BATCH_RENDER:
reg = GENX(GFX_AUX_TABLE_BASE_ADDR_num);
break;
case IRIS_BATCH_BLITTER:
#if GFX_VERx10 >= 125
reg = GENX(BCS_AUX_TABLE_BASE_ADDR_num);
#endif
break;
default:
UNREACHABLE("Invalid batch for aux map init.");
}
if (reg)
iris_load_register_imm64(batch, reg, base_addr);
}
#endif
struct push_bos {
struct {
struct iris_address addr;
uint32_t length;
} buffers[4];
int buffer_count;
uint32_t max_length;
};
static void
setup_constant_buffers(struct iris_context *ice,
struct iris_batch *batch,
int stage,
struct push_bos *push_bos)
{
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
uint32_t push_range_sum = 0;
int n = 0;
for (int i = 0; i < 4; i++) {
const struct iris_ubo_range *range = &shader->ubo_ranges[i];
if (range->length == 0)
continue;
push_range_sum += range->length;
if (range->length > push_bos->max_length)
push_bos->max_length = range->length;
/* Range block is a binding table index, map back to UBO index. */
unsigned block_index = iris_bti_to_group_index(
&shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
assert(block_index != IRIS_SURFACE_NOT_USED);
struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
struct iris_resource *res = (void *) cbuf->buffer;
assert(cbuf->buffer_offset % 32 == 0);
if (res)
iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_OTHER_READ);
push_bos->buffers[n].length = range->length;
push_bos->buffers[n].addr =
res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
: batch->screen->workaround_address;
n++;
}
/* From the 3DSTATE_CONSTANT_XS and 3DSTATE_CONSTANT_ALL programming notes:
*
* "The sum of all four read length fields must be less than or
* equal to the size of 64."
*/
assert(push_range_sum <= 64);
push_bos->buffer_count = n;
}
static void
emit_push_constant_packets(struct iris_context *ice,
struct iris_batch *batch,
int stage,
const struct push_bos *push_bos)
{
UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
#if GFX_VER >= 9
pkt.MOCS = isl_mocs(isl_dev, 0, false);
#endif
/* The Skylake PRM contains the following restriction:
*
* "The driver must ensure The following case does not occur
* without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
* buffer 3 read length equal to zero committed followed by a
* 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
* zero committed."
*
* To avoid this, we program the buffers in the highest slots.
* This way, slot 0 is only used if slot 3 is also used.
*/
const int n = push_bos->buffer_count;
assert(n <= 4);
const unsigned shift = 4 - n;
for (int i = 0; i < n; i++) {
pkt.ConstantBody.ReadLength[i + shift] =
push_bos->buffers[i].length;
pkt.ConstantBody.Buffer[i + shift] = push_bos->buffers[i].addr;
}
}
}
#if GFX_VER >= 12
static void
emit_null_push_constant_tbimr_workaround(struct iris_batch *batch)
{
struct isl_device *isl_dev = &batch->screen->isl_dev;
/* Pass a single-register push constant payload for the PS
* stage even if empty, since PS invocations with zero push
* constant cycles have been found to cause hangs with TBIMR
* enabled. See HSDES #22020184996.
*
* XXX - Use workaround infrastructure and final workaround
* when provided by hardware team.
*/
const struct iris_address null_addr = {
.bo = batch->screen->workaround_bo,
.offset = 1024,
};
const uint32_t num_dwords = 2 + 2 * 1;
uint32_t const_all[num_dwords];
uint32_t *dw = &const_all[0];
iris_pack_command(GENX(3DSTATE_CONSTANT_ALL), dw, all) {
all.DWordLength = num_dwords - 2;
all.MOCS = isl_mocs(isl_dev, 0, false);
all.ShaderUpdateEnable = (1 << MESA_SHADER_FRAGMENT);
all.PointerBufferMask = 1;
}
dw += 2;
_iris_pack_state(batch, GENX(3DSTATE_CONSTANT_ALL_DATA), dw, data) {
data.PointerToConstantBuffer = null_addr;
data.ConstantBufferReadLength = 1;
}
iris_batch_emit(batch, const_all, sizeof(uint32_t) * num_dwords);
}
static void
emit_push_constant_packet_all(struct iris_context *ice,
struct iris_batch *batch,
uint32_t shader_mask,
const struct push_bos *push_bos)
{
struct isl_device *isl_dev = &batch->screen->isl_dev;
if (!push_bos) {
if (batch->screen->devinfo->needs_null_push_constant_tbimr_workaround &&
(shader_mask & (1 << MESA_SHADER_FRAGMENT))) {
emit_null_push_constant_tbimr_workaround(batch);
shader_mask &= ~(1 << MESA_SHADER_FRAGMENT);
}
if (shader_mask) {
iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), pc) {
pc.ShaderUpdateEnable = shader_mask;
pc.MOCS = iris_mocs(NULL, isl_dev, 0);
}
}
return;
}
const uint32_t n = push_bos->buffer_count;
const uint32_t max_pointers = 4;
const uint32_t num_dwords = 2 + 2 * n;
uint32_t const_all[2 + 2 * max_pointers];
uint32_t *dw = &const_all[0];
assert(n <= max_pointers);
iris_pack_command(GENX(3DSTATE_CONSTANT_ALL), dw, all) {
all.DWordLength = num_dwords - 2;
all.MOCS = isl_mocs(isl_dev, 0, false);
all.ShaderUpdateEnable = shader_mask;
all.PointerBufferMask = (1 << n) - 1;
}
dw += 2;
for (int i = 0; i < n; i++) {
_iris_pack_state(batch, GENX(3DSTATE_CONSTANT_ALL_DATA),
dw + i * 2, data) {
data.PointerToConstantBuffer = push_bos->buffers[i].addr;
data.ConstantBufferReadLength = push_bos->buffers[i].length;
}
}
iris_batch_emit(batch, const_all, sizeof(uint32_t) * num_dwords);
}
#endif
void
genX(emit_depth_state_workarounds)(struct iris_context *ice,
struct iris_batch *batch,
const struct isl_surf *surf)
{
#if INTEL_NEEDS_WA_1808121037
const bool is_d16_1x_msaa = surf->format == ISL_FORMAT_R16_UNORM &&
surf->samples == 1;
switch (ice->state.genx->depth_reg_mode) {
case IRIS_DEPTH_REG_MODE_HW_DEFAULT:
if (!is_d16_1x_msaa)
return;
break;
case IRIS_DEPTH_REG_MODE_D16_1X_MSAA:
if (is_d16_1x_msaa)
return;
break;
case IRIS_DEPTH_REG_MODE_UNKNOWN:
break;
}
/* We'll change some CHICKEN registers depending on the depth surface
* format. Do a depth flush and stall so the pipeline is not using these
* settings while we change the registers.
*/
iris_emit_end_of_pipe_sync(batch,
"Workaround: Stop pipeline for Wa_1808121037",
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_DEPTH_CACHE_FLUSH);
/* Wa_1808121037
*
* To avoid sporadic corruptions “Set 0x7010[9] when Depth Buffer
* Surface Format is D16_UNORM , surface type is not NULL & 1X_MSAA”.
*/
iris_emit_reg(batch, GENX(COMMON_SLICE_CHICKEN1), reg) {
reg.HIZPlaneOptimizationdisablebit = is_d16_1x_msaa;
reg.HIZPlaneOptimizationdisablebitMask = true;
}
ice->state.genx->depth_reg_mode =
is_d16_1x_msaa ? IRIS_DEPTH_REG_MODE_D16_1X_MSAA :
IRIS_DEPTH_REG_MODE_HW_DEFAULT;
#endif
}
/* Calculate TBIMR tiling parameters adequate for the current pipeline
* setup. Return true if TBIMR should be enabled.
*/
UNUSED static bool
calculate_tile_dimensions(struct iris_context *ice,
unsigned *tile_width, unsigned *tile_height)
{
struct iris_screen *screen = (void *)ice->ctx.screen;
const struct intel_device_info *devinfo = screen->devinfo;
assert(GFX_VER == 12);
const unsigned aux_scale = ISL_MAIN_TO_CCS_SIZE_RATIO_XE;
/* Perform a rough calculation of the tile cache footprint of the
* pixel pipeline, approximating it as the sum of the amount of
* memory used per pixel by every render target, depth, stencil and
* auxiliary surfaces bound to the pipeline.
*/
unsigned pixel_size = 0;
struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
if (cso->width == 0 || cso->height == 0)
return false;
for (unsigned i = 0; i < cso->nr_cbufs; i++) {
const struct iris_surface *surf = (void *)ice->state.fb_cbufs[i];
if (surf) {
const struct iris_resource *res = (void *)surf->base.texture;
pixel_size += intel_calculate_surface_pixel_size(&res->surf);
/* XXX - Pessimistic, in some cases it might be helpful to neglect
* aux surface traffic.
*/
if (ice->state.draw_aux_usage[i]) {
pixel_size += intel_calculate_surface_pixel_size(&res->aux.surf);
if (isl_aux_usage_has_ccs(res->aux.usage)) {
pixel_size += DIV_ROUND_UP(intel_calculate_surface_pixel_size(
&res->surf), aux_scale);
}
}
}
}
if (cso->zsbuf.texture) {
struct iris_resource *zres;
struct iris_resource *sres;
iris_get_depth_stencil_resources(cso->zsbuf.texture, &zres, &sres);
if (zres) {
pixel_size += intel_calculate_surface_pixel_size(&zres->surf);
/* XXX - Pessimistic, in some cases it might be helpful to neglect
* aux surface traffic.
*/
if (zres->aux.usage != ISL_AUX_USAGE_NONE) {
pixel_size += intel_calculate_surface_pixel_size(&zres->aux.surf);
if (isl_aux_usage_has_ccs(zres->aux.usage)) {
pixel_size += DIV_ROUND_UP(intel_calculate_surface_pixel_size(
&zres->surf), aux_scale);
}
}
}
if (sres) {
pixel_size += intel_calculate_surface_pixel_size(&sres->surf);
}
}
/* Compute a tile layout that allows reasonable utilization of the
* tile cache based on the per-pixel cache footprint estimated
* above.
*/
intel_calculate_tile_dimensions(devinfo, screen->l3_config_3d,
32, 32, cso->width, cso->height, pixel_size,
tile_width, tile_height);
/* Perform TBIMR tile passes only if the framebuffer covers more
* than a single tile.
*/
return *tile_width < cso->width || *tile_height < cso->height;
}
static void
iris_preemption_streamout_wa(struct iris_context *ice,
struct iris_batch *batch,
bool enable)
{
#if GFX_VERx10 >= 120
if (!intel_needs_workaround(batch->screen->devinfo, 16013994831))
return;
iris_emit_reg(batch, GENX(CS_CHICKEN1), reg) {
reg.DisablePreemptionandHighPriorityPausingdueto3DPRIMITIVECommand = !enable;
reg.DisablePreemptionandHighPriorityPausingdueto3DPRIMITIVECommandMask = true;
}
/* Emit CS_STALL and 250 noops. */
iris_emit_pipe_control_flush(batch, "workaround: Wa_16013994831",
PIPE_CONTROL_CS_STALL);
for (unsigned i = 0; i < 250; i++)
iris_emit_cmd(batch, GENX(MI_NOOP), noop);
ice->state.genx->object_preemption = enable;
#endif
}
static void
shader_program_uses_primitive_id(struct iris_context *ice,
struct iris_batch *batch,
struct iris_compiled_shader *shader,
mesa_shader_stage stage,
bool *uses_primitive_id)
{
switch (stage) {
case MESA_SHADER_TESS_CTRL: {
struct iris_tcs_data *tcs_data = iris_tcs_data(shader);
*uses_primitive_id |= tcs_data->include_primitive_id;
break;
}
case MESA_SHADER_TESS_EVAL: {
struct iris_tes_data *tes_data = iris_tes_data(shader);
*uses_primitive_id |= tes_data->include_primitive_id;
break;
}
default:
break;
}
struct iris_compiled_shader *gs_shader =
ice->shaders.prog[MESA_SHADER_GEOMETRY];
const struct iris_gs_data *gs_data =
gs_shader ? iris_gs_data(gs_shader) : NULL;
*uses_primitive_id |= gs_data && gs_data->include_primitive_id;
}
static void
emit_wa_18020335297_dummy_draw(struct iris_batch *batch)
{
#if GFX_VERx10 >= 125
iris_emit_cmd(batch, GENX(3DSTATE_VFG), vfg) {
vfg.DistributionMode = RR_STRICT;
}
iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
vf.GeometryDistributionEnable =
batch->screen->driconf.enable_vf_distribution;
}
#endif
#if GFX_VER >= 12
iris_emit_cmd(batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr) {
pr.ReplicaMask = 1;
}
#endif
iris_emit_cmd(batch, GENX(3DSTATE_RASTER), rr) {
rr.CullMode = CULLMODE_NONE;
rr.FrontFaceFillMode = FILL_MODE_SOLID;
rr.BackFaceFillMode = FILL_MODE_SOLID;
}
iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) { }
iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgvs) { }
#if GFX_VER >= 11
iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS_2), sgvs2) { }
#endif
iris_emit_cmd(batch, GENX(3DSTATE_CLIP), clip) {
clip.ClipEnable = true;
clip.ClipMode = CLIPMODE_REJECT_ALL;
}
iris_emit_cmd(batch, GENX(3DSTATE_VS), vs) { }
iris_emit_cmd(batch, GENX(3DSTATE_GS), gs) { }
iris_emit_cmd(batch, GENX(3DSTATE_HS), hs) { }
iris_emit_cmd(batch, GENX(3DSTATE_TE), te) { }
iris_emit_cmd(batch, GENX(3DSTATE_DS), ds) { }
iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), so) { }
uint32_t vertex_elements[1 + 2 * GENX(VERTEX_ELEMENT_STATE_length)];
uint32_t *ve_pack_dest = &vertex_elements[1];
iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), vertex_elements, ve) {
ve.DWordLength = 1 + GENX(VERTEX_ELEMENT_STATE_length) * 2 -
GENX(3DSTATE_VERTEX_ELEMENTS_length_bias);
}
for (int i = 0; i < 2; i++) {
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.Valid = true;
ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
ve.Component0Control = VFCOMP_STORE_0;
ve.Component1Control = VFCOMP_STORE_0;
ve.Component2Control = i == 0 ? VFCOMP_STORE_0 : VFCOMP_STORE_1_FP;
ve.Component3Control = i == 0 ? VFCOMP_STORE_0 : VFCOMP_STORE_1_FP;
}
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
}
iris_batch_emit(batch, vertex_elements, sizeof(uint32_t) *
(1 + 2 * GENX(VERTEX_ELEMENT_STATE_length)));
iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
topo.PrimitiveTopologyType = _3DPRIM_TRILIST;
}
/* Emit dummy draw per slice. */
for (unsigned i = 0; i < batch->screen->devinfo->num_slices; i++) {
iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
prim.VertexCountPerInstance = 3;
prim.PrimitiveTopologyType = _3DPRIM_TRILIST;
prim.InstanceCount = 1;
prim.VertexAccessType = SEQUENTIAL;
}
}
}
static void
setup_autostrip_state(struct iris_context *ice,
struct iris_batch *batch,
bool enable)
{
#if GFX_VERx10 >= 200
if (ice->state.autostrip_state != enable) {
iris_emit_pipe_control_flush(batch,
"Wa_14024997852",
PIPE_CONTROL_CS_STALL);
/* VF */
iris_emit_reg(batch, GENX(VFL_SCRATCH_PAD), vfl) {
vfl.AutostripDisable = !enable;
vfl.PartialAutostripDisable = !enable;
vfl.AutostripDisableMask = true;
vfl.PartialAutostripDisableMask = true;
}
/* TE and Mesh. */
iris_emit_reg(batch, GENX(FF_MODE), ff) {
ff.TEAutostripDisable = !enable;
ff.MeshShaderAutostripDisable = !enable;
ff.MeshShaderPartialAutostripDisable = !enable;
}
ice->state.autostrip_state = enable;
}
#endif
}
static void
iris_emit_binding_tables(struct iris_context *ice, struct iris_batch *batch,
uint64_t stage_dirty)
{
struct iris_binder *binder = &ice->state.binder;
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (stage_dirty & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
iris_populate_binding_table(ice, batch, stage, false);
}
/* Gfx9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted
* in order to commit constants. TODO: Investigate "Disable Gather
* at Set Shader" to go back to legacy mode...
*/
if (stage_dirty & ((IRIS_STAGE_DIRTY_BINDINGS_VS |
(GFX_VER == 9 ? IRIS_STAGE_DIRTY_CONSTANTS_VS : 0))
<< stage)) {
iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
ptr._3DCommandSubOpcode = 38 + stage;
ptr.PointertoVSBindingTable =
binder->bt_offset[stage] >> IRIS_BT_OFFSET_SHIFT;
}
}
if (stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage) &&
ice->shaders.prog[stage]) {
iris_upload_sampler_states(ice, stage);
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct pipe_resource *res = shs->sampler_table.res;
if (res)
iris_use_pinned_bo(batch, iris_resource_bo(res), false,
IRIS_DOMAIN_NONE);
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
ptr._3DCommandSubOpcode = 43 + stage;
ptr.PointertoVSSamplerState = shs->sampler_table.offset;
}
}
}
}
static void
iris_emit_push_constants(struct iris_context *ice, struct iris_batch *batch,
uint64_t dirty, uint64_t stage_dirty)
{
/* Wa_1604061319
*
* 3DSTATE_CONSTANT_* needs to be programmed before BTP_*
*
* Testing shows that all the 3DSTATE_CONSTANT_XS need to be emitted if
* any stage has a dirty binding table.
*/
const bool emit_const_wa = INTEL_NEEDS_WA_1604061319 &&
((dirty & IRIS_DIRTY_RENDER_BUFFER) ||
(stage_dirty & IRIS_ALL_STAGE_DIRTY_BINDINGS_FOR_RENDER));
#if GFX_VER >= 12
uint32_t nobuffer_stages = 0;
#endif
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(stage_dirty & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)) &&
!emit_const_wa)
continue;
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (!shader)
continue;
if (shs->sysvals_need_upload)
upload_sysvals(ice, stage, NULL);
struct push_bos push_bos = {};
setup_constant_buffers(ice, batch, stage, &push_bos);
#if GFX_VER >= 12
/* If this stage doesn't have any push constants, emit it later in a
* single CONSTANT_ALL packet with all the other stages.
*/
if (push_bos.buffer_count == 0) {
nobuffer_stages |= 1 << stage;
continue;
}
/* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
* contains only 5 bits, so we can only use it for buffers smaller than
* 32.
*
* According to Wa_16011448509, Gfx12.0 misinterprets some address bits
* in 3DSTATE_CONSTANT_ALL. It should still be safe to use the command
* for disabling stages, where all address bits are zero. However, we
* can't safely use it for general buffers with arbitrary addresses.
* Just fall back to the individual 3DSTATE_CONSTANT_XS commands in that
* case.
*/
if (push_bos.max_length < 32 && GFX_VERx10 > 120) {
emit_push_constant_packet_all(ice, batch, 1 << stage, &push_bos);
continue;
}
#endif
emit_push_constant_packets(ice, batch, stage, &push_bos);
}
#if GFX_VER >= 12
if (nobuffer_stages)
/* Wa_16011448509: all address bits are zero */
emit_push_constant_packet_all(ice, batch, nobuffer_stages, NULL);
#endif
}
static void
iris_upload_dirty_render_state(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_draw_info *draw,
bool skip_vb_params)
{
struct iris_screen *screen = batch->screen;
struct iris_border_color_pool *border_color_pool =
iris_bufmgr_get_border_color_pool(screen->bufmgr);
/* Re-emit 3DSTATE_DS before any 3DPRIMITIVE when tessellation is on */
if (intel_needs_workaround(batch->screen->devinfo, 22018402687) &&
ice->shaders.prog[MESA_SHADER_TESS_EVAL])
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TES;
/* Reprogram SF_CLIP & CC_STATE together. This reproduces the windows driver programming.
* Since blorp disables 3DSTATE_CLIP::ClipEnable and dirties CC_STATE, this takes care of
* Wa_14016820455 which requires SF_CLIP to be reprogrammed whenever
* 3DSTATE_CLIP::ClipEnable is enabled.
*/
if (ice->state.dirty & (IRIS_DIRTY_CC_VIEWPORT | IRIS_DIRTY_SF_CL_VIEWPORT))
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT | IRIS_DIRTY_SF_CL_VIEWPORT;
uint64_t dirty = ice->state.dirty;
uint64_t stage_dirty = ice->state.stage_dirty;
if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER) &&
!(stage_dirty & IRIS_ALL_STAGE_DIRTY_FOR_RENDER))
return;
struct iris_genx_state *genx = ice->state.genx;
struct iris_fs_data *fs_data =
iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
/* Wa_14024997852: When Draw Cut Index or primitive id is enabled
* and topology is tri list, we need to toggle autostrip.
*
* Note that we do not take primitive id in to account because it
* is mentioned only in xe2 clone of this wa and autostrip has been
* disabled globally on xe2 (+xe3 a0) by kernel due to 14021490052
* workaround.
*/
if (intel_needs_workaround(batch->screen->devinfo, 14024997852) &&
dirty & (IRIS_DIRTY_VF | IRIS_DIRTY_VF_TOPOLOGY)) {
bool tri_list_topology =
translate_prim_type(draw->mode, ice->state.vertices_per_patch) ==
_3DPRIM_TRILIST;
/* Enable autostrip unless having triangle list topology and
* IndexedDrawCutIndexEnable (only used on primitive_restart).
*/
setup_autostrip_state(ice, batch,
tri_list_topology &&
draw->primitive_restart);
}
/* When MSAA is enabled, instead of using BLENDFACTOR_ZERO use
* CONST_COLOR, CONST_ALPHA and supply zero by using blend constants.
*/
bool needs_wa_14018912822 =
screen->driconf.intel_enable_wa_14018912822 &&
intel_needs_workaround(batch->screen->devinfo, 14018912822) &&
util_framebuffer_get_num_samples(&ice->state.framebuffer) > 1;
if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
uint32_t cc_vp_address;
bool wa_18020335297_applied = false;
/* Wa_18020335297 - Apply the WA when viewport ptr is reprogrammed. */
if (intel_needs_workaround(screen->devinfo, 18020335297) &&
batch->name == IRIS_BATCH_RENDER &&
ice->state.viewport_ptr_set) {
emit_wa_18020335297_dummy_draw(batch);
wa_18020335297_applied = true;
}
/* XXX: could avoid streaming for depth_clip [0,1] case. */
uint32_t *cc_vp_map =
stream_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.cc_vp,
4 * ice->state.num_viewports *
GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
for (int i = 0; i < ice->state.num_viewports; i++) {
float zmin, zmax;
iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
ice->state.window_space_position,
&zmin, &zmax);
if (cso_rast->depth_clip_near)
zmin = 0.0;
if (cso_rast->depth_clip_far)
zmax = 1.0;
iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
ccv.MinimumDepth = zmin;
ccv.MaximumDepth = zmax;
}
cc_vp_map += GENX(CC_VIEWPORT_length);
}
iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
ptr.CCViewportPointer = cc_vp_address;
}
if (wa_18020335297_applied) {
#if GFX_VER >= 12
iris_emit_cmd(batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr) { }
#endif
/* Dirty all emitted WA state to make sure that current real
* state is restored.
*/
dirty |= IRIS_DIRTY_VFG |
IRIS_DIRTY_VF |
IRIS_DIRTY_RASTER |
IRIS_DIRTY_VF_STATISTICS |
IRIS_DIRTY_VF_SGVS |
IRIS_DIRTY_CLIP |
IRIS_DIRTY_STREAMOUT |
IRIS_DIRTY_VERTEX_ELEMENTS |
IRIS_DIRTY_VF_TOPOLOGY;
for (int stage = 0; stage < MESA_SHADER_FRAGMENT; stage++) {
if (ice->shaders.prog[stage])
stage_dirty |= (IRIS_STAGE_DIRTY_VS << stage);
}
}
ice->state.viewport_ptr_set = true;
}
if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
int32_t x_min, y_min, x_max, y_max;
uint32_t sf_cl_vp_address;
uint32_t *vp_map =
stream_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.sf_cl_vp,
4 * ice->state.num_viewports *
GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
x_min = ice->state.render_area.x;
y_min = ice->state.render_area.y;
x_max = ice->state.render_area.width;
y_max = ice->state.render_area.height;
for (unsigned i = 0; i < ice->state.num_viewports; i++) {
const struct pipe_viewport_state *state = &ice->state.viewports[i];
float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
float vp_xmin = viewport_extent(state, 0, -1.0f);
float vp_xmax = viewport_extent(state, 0, 1.0f);
float vp_ymin = viewport_extent(state, 1, -1.0f);
float vp_ymax = viewport_extent(state, 1, 1.0f);
intel_calculate_guardband_size(x_min, x_max, y_min, y_max,
state->scale[0], state->scale[1],
state->translate[0], state->translate[1],
&gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
vp.ViewportMatrixElementm00 = state->scale[0];
vp.ViewportMatrixElementm11 = state->scale[1];
vp.ViewportMatrixElementm22 = state->scale[2];
vp.ViewportMatrixElementm30 = state->translate[0];
vp.ViewportMatrixElementm31 = state->translate[1];
vp.ViewportMatrixElementm32 = state->translate[2];
vp.XMinClipGuardband = gb_xmin;
vp.XMaxClipGuardband = gb_xmax;
vp.YMinClipGuardband = gb_ymin;
vp.YMaxClipGuardband = gb_ymax;
vp.XMinViewPort = MAX2(vp_xmin, 0);
vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
vp.YMinViewPort = MAX2(vp_ymin, 0);
vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
}
vp_map += GENX(SF_CLIP_VIEWPORT_length);
}
iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
ptr.SFClipViewportPointer = sf_cl_vp_address;
}
}
if (dirty & IRIS_DIRTY_URB) {
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
if (!ice->shaders.prog[i]) {
ice->shaders.urb.cfg.size[i] = 1;
} else {
struct iris_vue_data *vue_data =
iris_vue_data(ice->shaders.prog[i]);
ice->shaders.urb.cfg.size[i] = vue_data->urb_entry_size;
}
assert(ice->shaders.urb.cfg.size[i] != 0);
}
genX(emit_urb_config)(batch,
ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
}
if (dirty & IRIS_DIRTY_BLEND_STATE) {
struct iris_blend_state *cso_blend = ice->state.cso_blend;
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
bool color_blend_zero = false;
bool alpha_blend_zero = false;
/* Always write at least one BLEND_STATE - the final RT message will
* reference BLEND_STATE[0] even if there aren't color writes. There
* may still be alpha testing, computed depth, and so on.
*/
const int rt_dwords =
MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
uint32_t blend_offset;
uint32_t *blend_map =
stream_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.blend,
96, 64, &blend_offset);
/* Copy of blend entries for merging dynamic changes. */
uint32_t blend_entries[4 * rt_dwords];
memcpy(blend_entries, &cso_blend->blend_state[1], sizeof(blend_entries));
unsigned cbufs = MAX2(cso_fb->nr_cbufs, 1);
uint32_t *blend_entry = blend_entries;
for (unsigned i = 0; i < cbufs; i++) {
int dst_blend_factor = cso_blend->ps_dst_blend_factor[i];
int dst_alpha_blend_factor = cso_blend->ps_dst_alpha_blend_factor[i];
uint32_t entry[GENX(BLEND_STATE_ENTRY_length)];
iris_pack_state(GENX(BLEND_STATE_ENTRY), entry, be) {
if (needs_wa_14018912822) {
if (dst_blend_factor == BLENDFACTOR_ZERO) {
dst_blend_factor = BLENDFACTOR_CONST_COLOR;
color_blend_zero = true;
}
if (dst_alpha_blend_factor == BLENDFACTOR_ZERO) {
dst_alpha_blend_factor = BLENDFACTOR_CONST_ALPHA;
alpha_blend_zero = true;
}
}
be.DestinationBlendFactor = dst_blend_factor;
be.DestinationAlphaBlendFactor = dst_alpha_blend_factor;
}
/* Merge entry. */
uint32_t *dst = blend_entry;
uint32_t *src = entry;
for (unsigned j = 0; j < GENX(BLEND_STATE_ENTRY_length); j++)
*dst |= *src;
blend_entry += GENX(BLEND_STATE_ENTRY_length);
}
/* Blend constants modified for Wa_14018912822. */
if (ice->state.color_blend_zero != color_blend_zero) {
ice->state.color_blend_zero = color_blend_zero;
dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
}
if (ice->state.alpha_blend_zero != alpha_blend_zero) {
ice->state.alpha_blend_zero = alpha_blend_zero;
dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
}
uint32_t blend_state_header;
iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
bs.AlphaTestEnable = cso_zsa->alpha_enabled;
bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha_func);
}
blend_map[0] = blend_state_header | cso_blend->blend_state[0];
memcpy(&blend_map[1], blend_entries, 4 * rt_dwords);
iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
ptr.BlendStatePointer = blend_offset;
ptr.BlendStatePointerValid = true;
}
}
if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
#if GFX_VER == 8
struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
#endif
uint32_t cc_offset;
void *cc_map =
stream_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.color_calc,
sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
64, &cc_offset);
iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
cc.AlphaTestFormat = ALPHATEST_FLOAT32;
cc.AlphaReferenceValueAsFLOAT32 = cso->alpha_ref_value;
cc.BlendConstantColorRed = ice->state.color_blend_zero ?
0.0 : ice->state.blend_color.color[0];
cc.BlendConstantColorGreen = ice->state.color_blend_zero ?
0.0 : ice->state.blend_color.color[1];
cc.BlendConstantColorBlue = ice->state.color_blend_zero ?
0.0 : ice->state.blend_color.color[2];
cc.BlendConstantColorAlpha = ice->state.alpha_blend_zero ?
0.0 : ice->state.blend_color.color[3];
#if GFX_VER == 8
cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
#endif
}
iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
ptr.ColorCalcStatePointer = cc_offset;
ptr.ColorCalcStatePointerValid = true;
}
}
#if GFX_VERx10 == 125
if (dirty & (IRIS_DIRTY_RENDER_BUFFER | IRIS_DIRTY_DEPTH_BUFFER)) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
unsigned tile_width, tile_height;
ice->state.use_tbimr = batch->screen->driconf.enable_tbimr &&
calculate_tile_dimensions(ice, &tile_width, &tile_height);
if (ice->state.use_tbimr) {
/* Use a batch size of 128 polygons per slice as recommended
* by BSpec 68436 "TBIMR Programming".
*/
const unsigned num_slices = screen->devinfo->num_slices;
const unsigned batch_size = DIV_ROUND_UP(num_slices, 2) * 256;
iris_emit_cmd(batch, GENX(3DSTATE_TBIMR_TILE_PASS_INFO), tbimr) {
tbimr.TileRectangleHeight = tile_height;
tbimr.TileRectangleWidth = tile_width;
tbimr.VerticalTileCount = DIV_ROUND_UP(cso_fb->height, tile_height);
tbimr.HorizontalTileCount = DIV_ROUND_UP(cso_fb->width, tile_width);
tbimr.TBIMRBatchSize = util_logbase2(batch_size) - 5;
tbimr.TileBoxCheck = true;
}
}
}
#endif
iris_emit_push_constants(ice, batch, dirty, stage_dirty);
iris_emit_binding_tables(ice, batch, stage_dirty);
if (GFX_VER >= 11 && (dirty & IRIS_DIRTY_RENDER_BUFFER)) {
// XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
// XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
/* The PIPE_CONTROL command description says:
*
* "Whenever a Binding Table Index (BTI) used by a Render Target
* Message points to a different RENDER_SURFACE_STATE, SW must issue a
* Render Target Cache Flush by enabling this bit. When render target
* flush is set due to new association of BTI, PS Scoreboard Stall bit
* must be set in this packet."
*/
// XXX: does this need to happen at 3DSTATE_BTP_PS time?
iris_emit_pipe_control_flush(batch, "workaround: RT BTI change [draw]",
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_STALL_AT_SCOREBOARD);
}
if (dirty & IRIS_DIRTY_RENDER_BUFFER)
trace_framebuffer_state(&batch->trace, NULL, &ice->state.framebuffer);
if (ice->state.need_border_colors)
iris_use_pinned_bo(batch, border_color_pool->bo, false, IRIS_DOMAIN_NONE);
if (dirty & IRIS_DIRTY_MULTISAMPLE) {
iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
ms.PixelLocation =
ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
if (ice->state.framebuffer.samples > 0)
ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
}
}
if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
ms.SampleMask = ice->state.sample_mask;
}
}
#if GFX_VERx10 >= 125
/* This is only used on >= gfx125 for dynamic 3DSTATE_TE and
* 3DSTATE_VFG emission related workarounds.
*/
bool program_uses_primitive_id = false;
/* Check if FS stage will use primitive ID overrides. */
const struct intel_vue_map *last_vue_map =
&iris_vue_data(ice->shaders.last_vue_shader)->vue_map;
if ((fs_data->inputs & VARYING_BIT_PRIMITIVE_ID) &&
last_vue_map->varying_to_slot[VARYING_SLOT_PRIMITIVE_ID] == -1) {
program_uses_primitive_id = true;
}
#endif
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(stage_dirty & (IRIS_STAGE_DIRTY_VS << stage)))
continue;
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (shader) {
struct iris_resource *cache = (void *) shader->assembly.res;
iris_use_pinned_bo(batch, cache->bo, false, IRIS_DOMAIN_NONE);
uint32_t scratch_addr =
pin_scratch_space(ice, batch, shader, stage);
#if GFX_VERx10 >= 125
shader_program_uses_primitive_id(ice, batch, shader, stage,
&program_uses_primitive_id);
#endif
if (stage == MESA_SHADER_FRAGMENT) {
UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
_iris_pack_command(batch, GENX(3DSTATE_PS), ps_state, ps) {
#if GFX_VER >= 9
struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(shader->brw_prog_data);
#else
struct elk_wm_prog_data *wm_prog_data = elk_wm_prog_data(shader->elk_prog_data);
#endif
intel_set_ps_dispatch_state(&ps, batch->screen->devinfo,
wm_prog_data, util_framebuffer_get_num_samples(cso_fb),
0 /* msaa_flags */);
#if GFX_VER == 12
assert(fs_data->dispatch_multi == 0 ||
(fs_data->dispatch_multi == 16 && fs_data->max_polygons == 2));
ps.DualSIMD8DispatchEnable = fs_data->dispatch_multi;
/* XXX - No major improvement observed from enabling
* overlapping subspans, but it could be helpful
* in theory when the requirements listed on the
* BSpec page for 3DSTATE_PS_BODY are met.
*/
ps.OverlappingSubspansEnable = false;
#endif
#if GFX_VER >= 9
ps.DispatchGRFStartRegisterForConstantSetupData0 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
ps.DispatchGRFStartRegisterForConstantSetupData1 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
#if GFX_VER < 20
ps.DispatchGRFStartRegisterForConstantSetupData2 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
#endif
ps.KernelStartPointer0 = KSP(shader) +
brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
ps.KernelStartPointer1 = KSP(shader) +
brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
#if GFX_VER < 20
ps.KernelStartPointer2 = KSP(shader) +
brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
#endif
#else
ps.DispatchGRFStartRegisterForConstantSetupData0 =
elk_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
ps.DispatchGRFStartRegisterForConstantSetupData1 =
elk_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
ps.DispatchGRFStartRegisterForConstantSetupData2 =
elk_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
ps.KernelStartPointer0 = KSP(shader) +
elk_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
ps.KernelStartPointer1 = KSP(shader) +
elk_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
ps.KernelStartPointer2 = KSP(shader) +
elk_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
#endif
#if GFX_VERx10 >= 125
ps.ScratchSpaceBuffer = scratch_addr >> SCRATCH_SPACE_BUFFER_SHIFT;
#else
ps.ScratchSpaceBasePointer =
rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE);
#endif
}
uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
#if GFX_VER >= 9
if (!fs_data->uses_sample_mask)
psx.InputCoverageMaskState = ICMS_NONE;
else if (fs_data->post_depth_coverage)
psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
else if (fs_data->inner_coverage &&
cso->conservative_rasterization)
psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
else
psx.InputCoverageMaskState = ICMS_NORMAL;
#else
psx.PixelShaderUsesInputCoverageMask =
fs_data->uses_sample_mask;
#endif
}
uint32_t *shader_ps = (uint32_t *) shader->derived_data;
uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
iris_emit_merge(batch, shader_ps, ps_state,
GENX(3DSTATE_PS_length));
iris_emit_merge(batch, shader_psx, psx_state,
GENX(3DSTATE_PS_EXTRA_length));
#if GFX_VERx10 >= 125
} else if (stage == MESA_SHADER_TESS_EVAL) {
uint32_t te_state[GENX(3DSTATE_TE_length)] = { 0 };
iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
if (intel_needs_workaround(screen->devinfo, 14015055625) &&
program_uses_primitive_id)
te.TessellationDistributionMode = TEDMODE_OFF;
else if (intel_needs_workaround(screen->devinfo, 22012699309))
te.TessellationDistributionMode = TEDMODE_RR_STRICT;
else
te.TessellationDistributionMode = TEDMODE_RR_FREE;
if (!screen->driconf.enable_te_distribution)
te.TessellationDistributionMode = TEDMODE_OFF;
}
uint32_t ds_state[GENX(3DSTATE_DS_length)] = { 0 };
iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
if (scratch_addr)
ds.ScratchSpaceBuffer =
scratch_addr >> SCRATCH_SPACE_BUFFER_SHIFT;
}
uint32_t *shader_ds = (uint32_t *) shader->derived_data;
uint32_t *shader_te = shader_ds + GENX(3DSTATE_DS_length);
iris_emit_merge(batch, shader_ds, ds_state,
GENX(3DSTATE_DS_length));
iris_emit_merge(batch, shader_te, te_state,
GENX(3DSTATE_TE_length));
#endif
} else if (stage == MESA_SHADER_GEOMETRY) {
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
uint32_t gs_state[GENX(3DSTATE_GS_length)] = { 0 };
iris_pack_command(GENX(3DSTATE_GS), gs_state, gs) {
gs.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
if (scratch_addr)
#if GFX_VERx10 >= 125
gs.ScratchSpaceBuffer =
scratch_addr >> SCRATCH_SPACE_BUFFER_SHIFT;
#else
gs.ScratchSpaceBasePointer =
rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE);
#endif
}
uint32_t *shader_gs = (uint32_t *) shader->derived_data;
iris_emit_merge(batch, shader_gs, gs_state,
GENX(3DSTATE_GS_length));
} else if (scratch_addr) {
uint32_t *pkt = (uint32_t *) shader->derived_data;
switch (stage) {
case MESA_SHADER_VERTEX: MERGE_SCRATCH_ADDR(3DSTATE_VS); break;
case MESA_SHADER_TESS_CTRL: MERGE_SCRATCH_ADDR(3DSTATE_HS); break;
case MESA_SHADER_TESS_EVAL: {
uint32_t *shader_ds = (uint32_t *) shader->derived_data;
uint32_t *shader_te = shader_ds + GENX(3DSTATE_DS_length);
iris_batch_emit(batch, shader_te, 4 * GENX(3DSTATE_TE_length));
MERGE_SCRATCH_ADDR(3DSTATE_DS);
break;
}
}
} else {
iris_batch_emit(batch, shader->derived_data,
iris_derived_program_state_size(stage));
}
} else {
if (stage == MESA_SHADER_TESS_EVAL) {
iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
} else if (stage == MESA_SHADER_GEOMETRY) {
iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
}
}
}
#if GFX_VERx10 >= 125
/* Inspect program_uses_primitive_id state and dirty VFG if required. */
if (intel_needs_workaround(batch->screen->devinfo, 14019166699) &&
program_uses_primitive_id != ice->state.uses_primitive_id) {
dirty |= IRIS_DIRTY_VFG;
ice->state.uses_primitive_id = program_uses_primitive_id;
}
#endif
if (ice->state.streamout_active) {
if (dirty & IRIS_DIRTY_SO_BUFFERS) {
/* Wa_16011411144
* SW must insert a PIPE_CONTROL cmd before and after the
* 3dstate_so_buffer_index_0/1/2/3 states to ensure so_buffer_index_* state is
* not combined with other state changes.
*/
if (intel_device_info_is_dg2(batch->screen->devinfo)) {
iris_emit_pipe_control_flush(batch,
"SO pre change stall WA",
PIPE_CONTROL_CS_STALL);
}
for (int i = 0; i < 4; i++) {
struct iris_stream_output_target *tgt =
(void *) ice->state.so_target[i];
enum { dwords = GENX(3DSTATE_SO_BUFFER_length) };
uint32_t *so_buffers = genx->so_buffers + i * dwords;
bool zero_offset = false;
if (tgt) {
zero_offset = tgt->zero_offset;
iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
true, IRIS_DOMAIN_OTHER_WRITE);
iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
true, IRIS_DOMAIN_OTHER_WRITE);
}
if (zero_offset) {
/* Skip the last DWord which contains "Stream Offset" of
* 0xFFFFFFFF and instead emit a dword of zero directly.
*/
STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_StreamOffset_start) ==
32 * (dwords - 1));
const uint32_t zero = 0;
iris_batch_emit(batch, so_buffers, 4 * (dwords - 1));
iris_batch_emit(batch, &zero, sizeof(zero));
tgt->zero_offset = false;
} else {
iris_batch_emit(batch, so_buffers, 4 * dwords);
}
}
/* Wa_16011411144 */
if (intel_device_info_is_dg2(batch->screen->devinfo)) {
iris_emit_pipe_control_flush(batch,
"SO post change stall WA",
PIPE_CONTROL_CS_STALL);
}
}
if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
/* Wa_16011773973:
* If SOL is enabled and SO_DECL state has to be programmed,
* 1. Send 3D State SOL state with SOL disabled
* 2. Send SO_DECL NP state
* 3. Send 3D State SOL with SOL Enabled
*/
if (intel_device_info_is_dg2(batch->screen->devinfo))
iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
uint32_t *decl_list =
ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
#if GFX_VER >= 11 && GFX_VER < 20
/* ICL PRMs, Volume 2a - Command Reference: Instructions,
* 3DSTATE_SO_DECL_LIST:
*
* "Workaround: This command must be followed by a PIPE_CONTROL
* with CS Stall bit set."
*
* On DG2+ also known as Wa_1509820217.
*/
iris_emit_pipe_control_flush(batch,
"workaround: cs stall after so_decl",
PIPE_CONTROL_CS_STALL);
#endif
}
if (dirty & IRIS_DIRTY_STREAMOUT) {
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
#if GFX_VERx10 >= 120
/* Wa_16013994831 - Disable preemption. */
if (intel_needs_workaround(batch->screen->devinfo, 16013994831))
iris_preemption_streamout_wa(ice, batch, false);
#endif
uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
sol.SOFunctionEnable = true;
sol.SOStatisticsEnable = true;
sol.RenderingDisable = cso_rast->rasterizer_discard &&
!ice->state.prims_generated_query_active;
sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
#if INTEL_NEEDS_WA_18022508906
/* Wa_14017076903 :
*
* SKL PRMs, Volume 7: 3D-Media-GPGPU, Stream Output Logic (SOL) Stage:
*
* SOL_INT::Render_Enable =
* (3DSTATE_STREAMOUT::Force_Rending == Force_On) ||
* (
* (3DSTATE_STREAMOUT::Force_Rending != Force_Off) &&
* !(3DSTATE_GS::Enable && 3DSTATE_GS::Output Vertex Size == 0) &&
* !3DSTATE_STREAMOUT::API_Render_Disable &&
* (
* 3DSTATE_DEPTH_STENCIL_STATE::Stencil_TestEnable ||
* 3DSTATE_DEPTH_STENCIL_STATE::Depth_TestEnable ||
* 3DSTATE_DEPTH_STENCIL_STATE::Depth_WriteEnable ||
* 3DSTATE_PS_EXTRA::PS_Valid ||
* 3DSTATE_WM::Legacy Depth_Buffer_Clear ||
* 3DSTATE_WM::Legacy Depth_Buffer_Resolve_Enable ||
* 3DSTATE_WM::Legacy Hierarchical_Depth_Buffer_Resolve_Enable
* )
* )
*
* If SOL_INT::Render_Enable is false, the SO stage will not forward any
* topologies down the pipeline. Which is not what we want for occlusion
* queries.
*
* Here we force rendering to get SOL_INT::Render_Enable when occlusion
* queries are active.
*/
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
if (!cso_rast->rasterizer_discard && ice->state.occlusion_query_active)
sol.ForceRendering = Force_on;
#endif
}
assert(ice->state.streamout);
iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
GENX(3DSTATE_STREAMOUT_length));
}
} else {
if (dirty & IRIS_DIRTY_STREAMOUT) {
#if GFX_VERx10 >= 120
/* Wa_16013994831 - Enable preemption. */
if (!ice->state.genx->object_preemption)
iris_preemption_streamout_wa(ice, batch, true);
#endif
iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
}
}
if (dirty & IRIS_DIRTY_CLIP) {
struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
ice->shaders.prog[MESA_SHADER_TESS_EVAL];
bool points_or_lines = cso_rast->fill_mode_point_or_line ||
(gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
: ice->state.prim_is_points_or_lines);
const struct intel_vue_map *last =
&iris_vue_data(ice->shaders.last_vue_shader)->vue_map;
uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
cl.StatisticsEnable = ice->state.statistics_counters_enabled;
if (cso_rast->rasterizer_discard)
cl.ClipMode = CLIPMODE_REJECT_ALL;
else if (ice->state.window_space_position)
cl.ClipMode = CLIPMODE_ACCEPT_ALL;
else
cl.ClipMode = CLIPMODE_NORMAL;
cl.PerspectiveDivideDisable = ice->state.window_space_position;
cl.ViewportXYClipTestEnable = !points_or_lines;
cl.NonPerspectiveBarycentricEnable = fs_data->uses_nonperspective_interp_modes;
cl.ForceZeroRTAIndexEnable = cso_fb->layers <= 1 ||
!(last->slots_valid & VARYING_BIT_LAYER);
cl.MaximumVPIndex = ice->state.num_viewports - 1;
}
iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
ARRAY_SIZE(cso_rast->clip));
}
if (dirty & (IRIS_DIRTY_RASTER | IRIS_DIRTY_URB)) {
/* From the Browadwell PRM, Volume 2, documentation for
* 3DSTATE_RASTER, "Antialiasing Enable":
*
* "This field must be disabled if any of the render targets
* have integer (UINT or SINT) surface format."
*
* Additionally internal documentation for Gfx12+ states:
*
* "This bit MUST not be set when NUM_MULTISAMPLES > 1 OR
* FORCED_SAMPLE_COUNT > 1."
*/
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
unsigned samples = util_framebuffer_get_num_samples(cso_fb);
struct iris_rasterizer_state *cso = ice->state.cso_rast;
bool aa_enable = cso->line_smooth &&
!ice->state.has_integer_rt &&
!(batch->screen->devinfo->ver >= 12 && samples > 1);
uint32_t dynamic_raster[GENX(3DSTATE_RASTER_length)];
iris_pack_command(GENX(3DSTATE_RASTER), &dynamic_raster, raster) {
raster.AntialiasingEnable = aa_enable;
}
iris_emit_merge(batch, cso->raster, dynamic_raster,
ARRAY_SIZE(cso->raster));
uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
sf.ViewportTransformEnable = !ice->state.window_space_position;
#if GFX_VER >= 12
sf.DerefBlockSize = ice->shaders.urb.cfg.deref_block_size;
#endif
}
iris_emit_merge(batch, cso->sf, dynamic_sf,
ARRAY_SIZE(dynamic_sf));
}
if (dirty & IRIS_DIRTY_WM) {
struct iris_rasterizer_state *cso = ice->state.cso_rast;
uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
wm.StatisticsEnable = ice->state.statistics_counters_enabled;
wm.BarycentricInterpolationMode =
iris_fs_barycentric_modes(ice->shaders.prog[MESA_SHADER_FRAGMENT], 0);
if (fs_data->early_fragment_tests)
wm.EarlyDepthStencilControl = EDSC_PREPS;
else if (fs_data->has_side_effects)
wm.EarlyDepthStencilControl = EDSC_PSEXEC;
else
wm.EarlyDepthStencilControl = EDSC_NORMAL;
/* We could skip this bit if color writes are enabled. */
if (fs_data->has_side_effects || fs_data->uses_kill)
wm.ForceThreadDispatchEnable = ForceON;
}
iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
}
if (dirty & IRIS_DIRTY_SBE) {
iris_emit_sbe(batch, ice);
}
if (dirty & IRIS_DIRTY_PS_BLEND) {
struct iris_blend_state *cso_blend = ice->state.cso_blend;
struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
const struct shader_info *fs_info =
iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
int dst_blend_factor = cso_blend->ps_dst_blend_factor[0];
int dst_alpha_blend_factor = cso_blend->ps_dst_alpha_blend_factor[0];
/* When MSAA is enabled, instead of using BLENDFACTOR_ZERO use
* CONST_COLOR, CONST_ALPHA and supply zero by using blend constants.
*/
if (needs_wa_14018912822) {
if (ice->state.color_blend_zero)
dst_blend_factor = BLENDFACTOR_CONST_COLOR;
if (ice->state.alpha_blend_zero)
dst_alpha_blend_factor = BLENDFACTOR_CONST_ALPHA;
}
uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
pb.AlphaTestEnable = cso_zsa->alpha_enabled;
pb.DestinationBlendFactor = dst_blend_factor;
pb.DestinationAlphaBlendFactor = dst_alpha_blend_factor;
/* The dual source blending docs caution against using SRC1 factors
* when the shader doesn't use a dual source render target write.
* Empirically, this can lead to GPU hangs, and the results are
* undefined anyway, so simply disable blending to avoid the hang.
*/
pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
(!cso_blend->dual_color_blending || fs_data->dual_src_blend);
}
iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
ARRAY_SIZE(cso_blend->ps_blend));
}
if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
#if GFX_VER >= 9 && GFX_VER < 12
struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
}
iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
#else
/* Use modify disable fields which allow us to emit packets
* directly instead of merging them later.
*/
iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
#endif
/* Depth or stencil write changed in cso. */
if (intel_needs_workaround(batch->screen->devinfo, 18019816803) &&
(dirty & IRIS_DIRTY_DS_WRITE_ENABLE)) {
iris_emit_pipe_control_flush(
batch, "workaround: PSS stall after DS write enable change",
PIPE_CONTROL_PSS_STALL_SYNC);
}
#if GFX_VER >= 12
iris_batch_emit(batch, cso->depth_bounds, sizeof(cso->depth_bounds));
#endif
}
if (dirty & IRIS_DIRTY_STENCIL_REF) {
#if GFX_VER >= 12
/* Use modify disable fields which allow us to emit packets
* directly instead of merging them later.
*/
struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
wmds.StencilTestMaskModifyDisable = true;
wmds.StencilWriteMaskModifyDisable = true;
wmds.StencilStateModifyDisable = true;
wmds.DepthStateModifyDisable = true;
}
iris_batch_emit(batch, stencil_refs, sizeof(stencil_refs));
#endif
}
if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
/* Wa_1409725701:
* "The viewport-specific state used by the SF unit (SCISSOR_RECT) is
* stored as an array of up to 16 elements. The location of first
* element of the array, as specified by Pointer to SCISSOR_RECT,
* should be aligned to a 64-byte boundary.
*/
uint32_t alignment = 64;
uint32_t scissor_offset =
emit_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.scissor,
ice->state.scissors,
sizeof(struct pipe_scissor_state) *
ice->state.num_viewports, alignment);
iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
ptr.ScissorRectPointer = scissor_offset;
}
}
if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
/* Do not emit the cso yet. We may need to update clear params first. */
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
struct iris_resource *zres = NULL, *sres = NULL;
if (cso_fb->zsbuf.texture) {
iris_get_depth_stencil_resources(cso_fb->zsbuf.texture,
&zres, &sres);
}
if (zres && ice->state.hiz_usage != ISL_AUX_USAGE_NONE) {
#if GFX_VER < 20
uint32_t *clear_params =
cso_z->packets + ARRAY_SIZE(cso_z->packets) -
GENX(3DSTATE_CLEAR_PARAMS_length);
iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
clear.DepthClearValueValid = true;
clear.DepthClearValue = zres->aux.clear_color.f32[0];
}
#endif
}
iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
if (intel_needs_workaround(batch->screen->devinfo, 1408224581) ||
intel_needs_workaround(batch->screen->devinfo, 14014097488) ||
intel_needs_workaround(batch->screen->devinfo, 14016712196)) {
/* Wa_1408224581
*
* Workaround: Gfx12LP Astep only An additional pipe control with
* post-sync = store dword operation would be required.( w/a is to
* have an additional pipe control after the stencil state whenever
* the surface state bits of this state is changing).
*
* This also seems sufficient to handle Wa_14014097488 and
* Wa_14016712196.
*/
iris_emit_pipe_control_write(batch, "WA for depth/stencil state",
PIPE_CONTROL_WRITE_IMMEDIATE,
screen->workaround_address.bo,
screen->workaround_address.offset, 0);
}
if (zres)
genX(emit_depth_state_workarounds)(ice, batch, &zres->surf);
}
if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
/* Listen for buffer changes, and also write enable changes. */
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf.texture, ice->state.cso_zsa);
}
if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
for (int i = 0; i < 32; i++) {
poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
}
}
}
if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
struct iris_rasterizer_state *cso = ice->state.cso_rast;
iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
#if GFX_VER >= 11
/* ICL PRMs, Volume 2a - Command Reference: Instructions,
* 3DSTATE_LINE_STIPPLE:
*
* "Workaround: This command must be followed by a PIPE_CONTROL with
* CS Stall bit set."
*/
iris_emit_pipe_control_flush(batch,
"workaround: post 3DSTATE_LINE_STIPPLE",
PIPE_CONTROL_CS_STALL);
#endif
}
if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
topo.PrimitiveTopologyType =
translate_prim_type(draw->mode, ice->state.vertices_per_patch);
}
}
if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
int count = util_bitcount64(ice->state.bound_vertex_buffers);
uint64_t dynamic_bound = ice->state.bound_vertex_buffers;
if (ice->state.vs_uses_draw_params && !skip_vb_params) {
assert(ice->draw.draw_params.res);
struct iris_vertex_buffer_state *state =
&(ice->state.genx->vertex_buffers[count]);
pipe_resource_reference(&state->resource, ice->draw.draw_params.res);
struct iris_resource *res = (void *) state->resource;
iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
vb.VertexBufferIndex = count;
vb.AddressModifyEnable = true;
vb.BufferPitch = 0;
vb.BufferSize = res->bo->size - ice->draw.draw_params.offset;
vb.BufferStartingAddress =
ro_bo(NULL, res->bo->address +
(int) ice->draw.draw_params.offset);
vb.MOCS = iris_mocs(res->bo, &screen->isl_dev,
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
#if GFX_VER >= 12
vb.L3BypassDisable = true;
#endif
}
dynamic_bound |= 1ull << count;
count++;
}
if (ice->state.vs_uses_derived_draw_params && !skip_vb_params) {
struct iris_vertex_buffer_state *state =
&(ice->state.genx->vertex_buffers[count]);
pipe_resource_reference(&state->resource,
ice->draw.derived_draw_params.res);
struct iris_resource *res = (void *) ice->draw.derived_draw_params.res;
iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
vb.VertexBufferIndex = count;
vb.AddressModifyEnable = true;
vb.BufferPitch = 0;
vb.BufferSize =
res->bo->size - ice->draw.derived_draw_params.offset;
vb.BufferStartingAddress =
ro_bo(NULL, res->bo->address +
(int) ice->draw.derived_draw_params.offset);
vb.MOCS = iris_mocs(res->bo, &screen->isl_dev,
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
#if GFX_VER >= 12
vb.L3BypassDisable = true;
#endif
}
dynamic_bound |= 1ull << count;
count++;
}
if (count) {
#if GFX_VER >= 11
/* Gfx11+ doesn't need the cache workaround below */
uint64_t bound = dynamic_bound;
while (bound) {
const int i = u_bit_scan64(&bound);
iris_use_optional_res(batch, genx->vertex_buffers[i].resource,
false, IRIS_DOMAIN_VF_READ);
}
#else
/* The VF cache designers cut corners, and made the cache key's
* <VertexBufferIndex, Memory Address> tuple only consider the bottom
* 32 bits of the address. If you have two vertex buffers which get
* placed exactly 4 GiB apart and use them in back-to-back draw calls,
* you can get collisions (even within a single batch).
*
* So, we need to do a VF cache invalidate if the buffer for a VB
* slot slot changes [48:32] address bits from the previous time.
*/
unsigned flush_flags = 0;
uint64_t bound = dynamic_bound;
while (bound) {
const int i = u_bit_scan64(&bound);
uint16_t high_bits = 0;
struct iris_resource *res =
(void *) genx->vertex_buffers[i].resource;
if (res) {
iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_VF_READ);
high_bits = res->bo->address >> 32ull;
if (high_bits != ice->state.last_vbo_high_bits[i]) {
flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
PIPE_CONTROL_CS_STALL;
ice->state.last_vbo_high_bits[i] = high_bits;
}
}
}
if (flush_flags) {
iris_emit_pipe_control_flush(batch,
"workaround: VF cache 32-bit key [VB]",
flush_flags);
}
#endif
const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
uint32_t *map =
iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
_iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
vb.DWordLength = (vb_dwords * count + 1) - 2;
}
map += 1;
const struct iris_vertex_element_state *cso_ve =
ice->state.cso_vertex_elements;
bound = dynamic_bound;
while (bound) {
const int i = u_bit_scan64(&bound);
uint32_t vb_stride[GENX(VERTEX_BUFFER_STATE_length)];
struct iris_bo *bo =
iris_resource_bo(genx->vertex_buffers[i].resource);
iris_pack_state(GENX(VERTEX_BUFFER_STATE), &vb_stride, vbs) {
vbs.BufferPitch = cso_ve->stride[i];
/* Unnecessary except to defeat the genxml nonzero checker */
vbs.MOCS = iris_mocs(bo, &screen->isl_dev,
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
}
for (unsigned d = 0; d < vb_dwords; d++)
map[d] = genx->vertex_buffers[i].state[d] | vb_stride[d];
map += vb_dwords;
}
}
}
if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
const unsigned entries = MAX2(cso->count, 1);
if (!(ice->state.vs_needs_sgvs_element ||
ice->state.vs_uses_derived_draw_params ||
ice->state.vs_needs_edge_flag)) {
iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
(1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
} else {
uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
const unsigned dyn_count = cso->count +
ice->state.vs_needs_sgvs_element +
ice->state.vs_uses_derived_draw_params;
iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
&dynamic_ves, ve) {
ve.DWordLength =
1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
}
memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
(cso->count - ice->state.vs_needs_edge_flag) *
GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
uint32_t *ve_pack_dest =
&dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
GENX(VERTEX_ELEMENT_STATE_length)];
if (ice->state.vs_needs_sgvs_element) {
uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
VFCOMP_STORE_SRC : VFCOMP_STORE_0;
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.Valid = true;
ve.VertexBufferIndex =
util_bitcount64(ice->state.bound_vertex_buffers);
ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
ve.Component0Control = base_ctrl;
ve.Component1Control = base_ctrl;
ve.Component2Control = VFCOMP_STORE_0;
ve.Component3Control = VFCOMP_STORE_0;
}
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
}
if (ice->state.vs_uses_derived_draw_params) {
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.Valid = true;
ve.VertexBufferIndex =
util_bitcount64(ice->state.bound_vertex_buffers) +
ice->state.vs_uses_draw_params;
ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
ve.Component0Control = VFCOMP_STORE_SRC;
ve.Component1Control = VFCOMP_STORE_SRC;
ve.Component2Control = VFCOMP_STORE_0;
ve.Component3Control = VFCOMP_STORE_0;
}
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
}
if (ice->state.vs_needs_edge_flag) {
for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
ve_pack_dest[i] = cso->edgeflag_ve[i];
}
iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
(1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
}
if (!ice->state.vs_needs_edge_flag) {
iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
entries * GENX(3DSTATE_VF_INSTANCING_length));
} else {
assert(cso->count > 0);
const unsigned edgeflag_index = cso->count - 1;
uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
vi.VertexElementIndex = edgeflag_index +
ice->state.vs_needs_sgvs_element +
ice->state.vs_uses_derived_draw_params;
}
for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
entries * GENX(3DSTATE_VF_INSTANCING_length));
}
}
if (dirty & IRIS_DIRTY_VF_SGVS) {
const struct iris_vs_data *vs_data =
iris_vs_data(ice->shaders.prog[MESA_SHADER_VERTEX]);
struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
if (vs_data->uses_vertexid) {
sgv.VertexIDEnable = true;
sgv.VertexIDComponentNumber = 2;
sgv.VertexIDElementOffset =
cso->count - ice->state.vs_needs_edge_flag;
}
if (vs_data->uses_instanceid) {
sgv.InstanceIDEnable = true;
sgv.InstanceIDComponentNumber = 3;
sgv.InstanceIDElementOffset =
cso->count - ice->state.vs_needs_edge_flag;
}
}
}
if (dirty & IRIS_DIRTY_VF_STATISTICS) {
iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
vf.StatisticsEnable = true;
}
}
if (dirty & IRIS_DIRTY_VF) {
#if INTEL_WA_16012775297_GFX_VER
/* Emit dummy VF statistics before each 3DSTATE_VF. */
if (intel_needs_workaround(batch->screen->devinfo, 16012775297) &&
(dirty & IRIS_DIRTY_VF_STATISTICS) == 0) {
iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
vfs.StatisticsEnable = true;
}
}
#endif
iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
#if GFX_VERx10 >= 125
vf.GeometryDistributionEnable = screen->driconf.enable_vf_distribution;
#endif
if (draw->primitive_restart) {
vf.IndexedDrawCutIndexEnable = true;
vf.CutIndex = draw->restart_index;
}
}
}
#if GFX_VERx10 >= 125
if (dirty & IRIS_DIRTY_VFG) {
iris_emit_cmd(batch, GENX(3DSTATE_VFG), vfg) {
/* Gfx12.5: If 3DSTATE_TE: TE Enable == 1 then RR_STRICT else RR_FREE */
vfg.DistributionMode =
#if GFX_VER < 20
ice->shaders.prog[MESA_SHADER_TESS_EVAL] == NULL ? RR_FREE :
#endif
RR_STRICT;
if (intel_needs_workaround(batch->screen->devinfo, 14019166699) &&
program_uses_primitive_id)
vfg.DistributionGranularity = InstanceLevelGranularity;
else
vfg.DistributionGranularity = BatchLevelGranularity;
#if INTEL_WA_14014851047_GFX_VER
vfg.GranularityThresholdDisable =
intel_needs_workaround(batch->screen->devinfo, 14014851047);
#endif
vfg.ListCutIndexEnable = draw->primitive_restart;
/* 192 vertices for TRILIST_ADJ */
vfg.ListNBatchSizeScale = 0;
/* Batch size of 384 vertices */
vfg.List3BatchSizeScale = 2;
/* Batch size of 128 vertices */
vfg.List2BatchSizeScale = 1;
/* Batch size of 128 vertices */
vfg.List1BatchSizeScale = 2;
/* Batch size of 256 vertices for STRIP topologies */
vfg.StripBatchSizeScale = 3;
/* 192 control points for PATCHLIST_3 */
vfg.PatchBatchSizeScale = 1;
/* 192 control points for PATCHLIST_3 */
vfg.PatchBatchSizeMultiplier = 31;
}
}
#endif
#if GFX_VER == 8
if (dirty & IRIS_DIRTY_PMA_FIX) {
bool enable = want_pma_fix(ice);
genX(update_pma_fix)(ice, batch, enable);
}
#endif
if (ice->state.current_hash_scale != 1)
genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
#if GFX_VER >= 12
genX(invalidate_aux_map_state)(batch);
#endif
}
static void
flush_vbos(struct iris_context *ice, struct iris_batch *batch)
{
struct iris_genx_state *genx = ice->state.genx;
uint64_t bound = ice->state.bound_vertex_buffers;
while (bound) {
const int i = u_bit_scan64(&bound);
struct iris_bo *bo = iris_resource_bo(genx->vertex_buffers[i].resource);
iris_emit_buffer_barrier_for(batch, bo, IRIS_DOMAIN_VF_READ);
}
}
static bool
point_or_line_list(enum mesa_prim prim_type)
{
switch (prim_type) {
case MESA_PRIM_POINTS:
case MESA_PRIM_LINES:
case MESA_PRIM_LINE_STRIP:
case MESA_PRIM_LINES_ADJACENCY:
case MESA_PRIM_LINE_STRIP_ADJACENCY:
case MESA_PRIM_LINE_LOOP:
return true;
default:
return false;
}
return false;
}
void
genX(emit_breakpoint)(struct iris_batch *batch, bool emit_before_draw)
{
struct iris_context *ice = batch->ice;
uint32_t draw_count = emit_before_draw ?
p_atomic_inc_return(&ice->draw_call_count) :
p_atomic_read(&ice->draw_call_count);
if (((draw_count == intel_debug_bkp_before_draw_count &&
emit_before_draw) ||
(draw_count == intel_debug_bkp_after_draw_count &&
!emit_before_draw))) {
iris_emit_cmd(batch, GENX(MI_SEMAPHORE_WAIT), sem) {
sem.WaitMode = PollingMode;
sem.CompareOperation = COMPARE_SAD_EQUAL_SDD;
sem.SemaphoreDataDword = 0x1;
sem.SemaphoreAddress = rw_bo(batch->screen->breakpoint_bo, 0,
IRIS_DOMAIN_OTHER_WRITE);
};
}
}
void
genX(emit_3dprimitive_was)(struct iris_batch *batch,
const struct pipe_draw_indirect_info *indirect,
uint32_t primitive_type,
uint32_t vertex_count)
{
UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
UNUSED const struct iris_context *ice = batch->ice;
#if INTEL_WA_22014412737_GFX_VER || INTEL_WA_16014538804_GFX_VER
if (intel_needs_workaround(devinfo, 22014412737) &&
(point_or_line_list(primitive_type) || indirect ||
(vertex_count == 1 || vertex_count == 2))) {
iris_emit_pipe_control_write(batch, "Wa_22014412737",
PIPE_CONTROL_WRITE_IMMEDIATE,
batch->screen->workaround_bo,
batch->screen->workaround_address.offset,
0ull);
batch->num_3d_primitives_emitted = 0;
} else if (intel_needs_workaround(devinfo, 16014538804)) {
batch->num_3d_primitives_emitted++;
/* Wa_16014538804 - Send empty/dummy pipe control after 3 3DPRIMITIVE. */
if (batch->num_3d_primitives_emitted == 3) {
iris_emit_pipe_control_flush(batch, "Wa_16014538804", 0);
batch->num_3d_primitives_emitted = 0;
}
}
#endif
}
void
genX(urb_workaround)(struct iris_batch *batch,
const struct intel_urb_config *urb_cfg)
{
#if INTEL_NEEDS_WA_16014912113
if (intel_urb_setup_changed(urb_cfg, &batch->ice->shaders.last_urb,
MESA_SHADER_TESS_EVAL) &&
batch->ice->shaders.last_urb.size[0] != 0) {
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
#if GFX_VER >= 12
iris_emit_cmd(batch, GENX(3DSTATE_URB_ALLOC_VS), urb) {
urb._3DCommandSubOpcode += i;
urb.VSURBEntryAllocationSize =
batch->ice->shaders.last_urb.size[i] - 1;
urb.VSURBStartingAddressSlice0 =
batch->ice->shaders.last_urb.start[i];
urb.VSURBStartingAddressSliceN =
batch->ice->shaders.last_urb.start[i];
urb.VSNumberofURBEntriesSlice0 = i == 0 ? 256 : 0;
urb.VSNumberofURBEntriesSliceN = i == 0 ? 256 : 0;
}
#else
iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
urb._3DCommandSubOpcode += i;
urb.VSURBStartingAddress =
batch->ice->shaders.last_urb.start[i];
urb.VSURBEntryAllocationSize =
batch->ice->shaders.last_urb.size[i] - 1;
urb.VSNumberofURBEntries = i == 0 ? 256 : 0;
}
#endif
}
iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
pc.HDCPipelineFlushEnable = true;
}
}
#endif
/* Update current urb config. */
memcpy(&batch->ice->shaders.last_urb, &batch->ice->shaders.urb.cfg,
sizeof(struct intel_urb_config));
}
static void
iris_emit_index_buffer(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_draw_info *draw,
const struct pipe_draw_start_count_bias *sc)
{
unsigned offset;
if (draw->has_user_indices) {
unsigned start_offset = draw->index_size * sc->start;
u_upload_data_ref(ice->ctx.const_uploader, start_offset,
sc->count * draw->index_size, 4,
(char*)draw->index.user + start_offset,
&offset, &ice->state.last_res.index_buffer);
offset -= start_offset;
} else {
struct iris_resource *res = (void *) draw->index.resource;
res->bind_history |= PIPE_BIND_INDEX_BUFFER;
pipe_resource_reference(&ice->state.last_res.index_buffer,
draw->index.resource);
offset = 0;
iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_VF_READ);
}
struct iris_genx_state *genx = ice->state.genx;
struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
ib.IndexFormat = draw->index_size >> 1;
ib.MOCS = iris_mocs(bo, &batch->screen->isl_dev,
ISL_SURF_USAGE_INDEX_BUFFER_BIT);
ib.BufferSize = bo->size - offset;
ib.BufferStartingAddress = ro_bo(NULL, bo->address + offset);
#if GFX_VER >= 12
ib.L3BypassDisable = true;
#endif
}
if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_VF_READ);
}
#if GFX_VER < 11
/* The VF cache key only uses 32-bits, see vertex buffer comment above */
uint16_t high_bits = bo->address >> 32ull;
if (high_bits != ice->state.last_index_bo_high_bits) {
iris_emit_pipe_control_flush(batch,
"workaround: VF cache 32-bit key [IB]",
PIPE_CONTROL_VF_CACHE_INVALIDATE |
PIPE_CONTROL_CS_STALL);
ice->state.last_index_bo_high_bits = high_bits;
}
#endif
}
static void
iris_upload_render_state(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_draw_info *draw,
unsigned drawid_offset,
const struct pipe_draw_indirect_info *indirect,
const struct pipe_draw_start_count_bias *sc)
{
UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
trace_intel_begin_draw(&batch->trace);
if (ice->state.dirty & IRIS_DIRTY_VERTEX_BUFFER_FLUSHES)
flush_vbos(ice, batch);
iris_batch_sync_region_start(batch);
/* Always pin the binder. If we're emitting new binding table pointers,
* we need it. If not, we're probably inheriting old tables via the
* context, and need it anyway. Since true zero-bindings cases are
* practically non-existent, just pin it and avoid last_res tracking.
*/
iris_use_pinned_bo(batch, ice->state.binder.bo, false,
IRIS_DOMAIN_NONE);
if (!batch->contains_draw) {
if (GFX_VER == 12) {
/* Re-emit constants when starting a new batch buffer in order to
* work around push constant corruption on context switch.
*
* XXX - Provide hardware spec quotation when available.
*/
ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_CONSTANTS_VS |
IRIS_STAGE_DIRTY_CONSTANTS_TCS |
IRIS_STAGE_DIRTY_CONSTANTS_TES |
IRIS_STAGE_DIRTY_CONSTANTS_GS |
IRIS_STAGE_DIRTY_CONSTANTS_FS);
}
batch->contains_draw = true;
}
if (!batch->contains_draw_with_next_seqno) {
iris_restore_render_saved_bos(ice, batch, draw);
batch->contains_draw_with_next_seqno = true;
}
/* Wa_1306463417 - Send HS state for every primitive on gfx11.
* Wa_16011107343 (same for gfx12)
* We implement this by setting TCS dirty on each draw.
*/
if ((INTEL_NEEDS_WA_1306463417 || INTEL_NEEDS_WA_16011107343) &&
ice->shaders.prog[MESA_SHADER_TESS_CTRL]) {
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TCS;
}
iris_upload_dirty_render_state(ice, batch, draw, false);
if (draw->index_size > 0)
iris_emit_index_buffer(ice, batch, draw, sc);
if (indirect) {
struct mi_builder b;
uint32_t mocs;
mi_builder_init(&b, batch->screen->devinfo, batch);
#define _3DPRIM_END_OFFSET 0x2420
#define _3DPRIM_START_VERTEX 0x2430
#define _3DPRIM_VERTEX_COUNT 0x2434
#define _3DPRIM_INSTANCE_COUNT 0x2438
#define _3DPRIM_START_INSTANCE 0x243C
#define _3DPRIM_BASE_VERTEX 0x2440
if (!indirect->count_from_stream_output) {
if (indirect->indirect_draw_count) {
use_predicate = true;
struct iris_bo *draw_count_bo =
iris_resource_bo(indirect->indirect_draw_count);
unsigned draw_count_offset =
indirect->indirect_draw_count_offset;
mocs = iris_mocs(draw_count_bo, &batch->screen->isl_dev, 0);
mi_builder_set_mocs(&b, mocs);
if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
/* comparison = draw id < draw count */
struct mi_value comparison =
mi_ult(&b, mi_imm(drawid_offset),
mi_mem32(ro_bo(draw_count_bo, draw_count_offset)));
/* predicate = comparison & conditional rendering predicate */
mi_store(&b, mi_reg32(MI_PREDICATE_RESULT),
mi_iand(&b, comparison, mi_reg32(CS_GPR(15))));
} else {
uint32_t mi_predicate;
/* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(drawid_offset));
/* Upload the current draw count from the draw parameters buffer
* to MI_PREDICATE_SRC0. Zero the top 32-bits of
* MI_PREDICATE_SRC0.
*/
mi_store(&b, mi_reg64(MI_PREDICATE_SRC0),
mi_mem32(ro_bo(draw_count_bo, draw_count_offset)));
if (drawid_offset == 0) {
mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
MI_PREDICATE_COMBINEOP_SET |
MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
} else {
/* While draw_index < draw_count the predicate's result will be
* (draw_index == draw_count) ^ TRUE = TRUE
* When draw_index == draw_count the result is
* (TRUE) ^ TRUE = FALSE
* After this all results will be:
* (FALSE) ^ FALSE = FALSE
*/
mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
MI_PREDICATE_COMBINEOP_XOR |
MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
}
iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
}
}
struct iris_bo *bo = iris_resource_bo(indirect->buffer);
assert(bo);
mocs = iris_mocs(bo, &batch->screen->isl_dev, 0);
mi_builder_set_mocs(&b, mocs);
mi_store(&b, mi_reg32(_3DPRIM_VERTEX_COUNT),
mi_mem32(ro_bo(bo, indirect->offset + 0)));
mi_store(&b, mi_reg32(_3DPRIM_INSTANCE_COUNT),
mi_mem32(ro_bo(bo, indirect->offset + 4)));
mi_store(&b, mi_reg32(_3DPRIM_START_VERTEX),
mi_mem32(ro_bo(bo, indirect->offset + 8)));
if (draw->index_size) {
mi_store(&b, mi_reg32(_3DPRIM_BASE_VERTEX),
mi_mem32(ro_bo(bo, indirect->offset + 12)));
mi_store(&b, mi_reg32(_3DPRIM_START_INSTANCE),
mi_mem32(ro_bo(bo, indirect->offset + 16)));
} else {
mi_store(&b, mi_reg32(_3DPRIM_START_INSTANCE),
mi_mem32(ro_bo(bo, indirect->offset + 12)));
mi_store(&b, mi_reg32(_3DPRIM_BASE_VERTEX), mi_imm(0));
}
} else if (indirect->count_from_stream_output) {
struct iris_stream_output_target *so =
(void *) indirect->count_from_stream_output;
struct iris_bo *so_bo = iris_resource_bo(so->offset.res);
mocs = iris_mocs(so_bo, &batch->screen->isl_dev, 0);
mi_builder_set_mocs(&b, mocs);
iris_emit_buffer_barrier_for(batch, so_bo, IRIS_DOMAIN_OTHER_READ);
struct iris_address addr = ro_bo(so_bo, so->offset.offset);
struct mi_value offset =
mi_iadd_imm(&b, mi_mem32(addr), -so->base.buffer_offset);
mi_store(&b, mi_reg32(_3DPRIM_VERTEX_COUNT),
mi_udiv32_imm(&b, offset, so->stride));
mi_store(&b, mi_reg32(_3DPRIM_START_VERTEX), mi_imm(0));
mi_store(&b, mi_reg32(_3DPRIM_BASE_VERTEX), mi_imm(0));
mi_store(&b, mi_reg32(_3DPRIM_START_INSTANCE), mi_imm(0));
mi_store(&b, mi_reg32(_3DPRIM_INSTANCE_COUNT),
mi_imm(draw->instance_count));
}
}
iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_DRAW, draw, indirect, sc);
genX(maybe_emit_breakpoint)(batch, true);
iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
prim.PredicateEnable = use_predicate;
#if GFX_VERx10 >= 125
prim.TBIMREnable = ice->state.use_tbimr;
#endif
if (indirect) {
prim.IndirectParameterEnable = true;
} else {
prim.StartInstanceLocation = draw->start_instance;
prim.InstanceCount = draw->instance_count;
prim.VertexCountPerInstance = sc->count;
prim.StartVertexLocation = sc->start;
if (draw->index_size) {
prim.BaseVertexLocation += sc->index_bias;
}
}
}
genX(emit_3dprimitive_was)(batch, indirect, ice->state.prim_mode, sc->count);
genX(maybe_emit_breakpoint)(batch, false);
iris_batch_sync_region_end(batch);
uint32_t count = (sc) ? sc->count : 0;
count *= draw->instance_count ? draw->instance_count : 1;
trace_intel_end_draw(&batch->trace, count, 0, 0);
}
static void
iris_upload_indirect_render_state(struct iris_context *ice,
const struct pipe_draw_info *draw,
const struct pipe_draw_indirect_info *indirect,
const struct pipe_draw_start_count_bias *sc)
{
#if GFX_VERx10 >= 125
assert(indirect);
struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
UNUSED struct iris_screen *screen = batch->screen;
UNUSED const struct intel_device_info *devinfo = screen->devinfo;
const bool use_predicate =
ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
trace_intel_begin_draw(&batch->trace);
if (ice->state.dirty & IRIS_DIRTY_VERTEX_BUFFER_FLUSHES)
flush_vbos(ice, batch);
iris_batch_sync_region_start(batch);
/* Always pin the binder. If we're emitting new binding table pointers,
* we need it. If not, we're probably inheriting old tables via the
* context, and need it anyway. Since true zero-bindings cases are
* practically non-existent, just pin it and avoid last_res tracking.
*/
iris_use_pinned_bo(batch, ice->state.binder.bo, false,
IRIS_DOMAIN_NONE);
if (!batch->contains_draw) {
/* Re-emit constants when starting a new batch buffer in order to
* work around push constant corruption on context switch.
*
* XXX - Provide hardware spec quotation when available.
*/
ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_CONSTANTS_VS |
IRIS_STAGE_DIRTY_CONSTANTS_TCS |
IRIS_STAGE_DIRTY_CONSTANTS_TES |
IRIS_STAGE_DIRTY_CONSTANTS_GS |
IRIS_STAGE_DIRTY_CONSTANTS_FS);
batch->contains_draw = true;
}
if (!batch->contains_draw_with_next_seqno) {
iris_restore_render_saved_bos(ice, batch, draw);
batch->contains_draw_with_next_seqno = true;
}
/* Wa_1306463417 - Send HS state for every primitive on gfx11.
* Wa_16011107343 (same for gfx12)
* We implement this by setting TCS dirty on each draw.
*/
if ((INTEL_NEEDS_WA_1306463417 || INTEL_NEEDS_WA_16011107343) &&
ice->shaders.prog[MESA_SHADER_TESS_CTRL]) {
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TCS;
}
iris_upload_dirty_render_state(ice, batch, draw, false);
if (draw->index_size > 0)
iris_emit_index_buffer(ice, batch, draw, sc);
iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_DRAW, draw, indirect, sc);
genX(maybe_emit_breakpoint)(batch, true);
iris_emit_cmd(batch, GENX(EXECUTE_INDIRECT_DRAW), ind) {
ind.ArgumentFormat =
draw->index_size > 0 ? XI_DRAWINDEXED : XI_DRAW;
ind.PredicateEnable = use_predicate;
ind.TBIMREnabled = ice->state.use_tbimr;
ind.MaxCount = indirect->draw_count;
if (indirect->buffer) {
struct iris_bo *bo = iris_resource_bo(indirect->buffer);
ind.ArgumentBufferStartAddress = ro_bo(bo, indirect->offset);
ind.MOCS = iris_mocs(bo, &screen->isl_dev, 0);
} else {
ind.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
}
if (indirect->indirect_draw_count) {
struct iris_bo *draw_count_bo =
iris_resource_bo(indirect->indirect_draw_count);
ind.CountBufferIndirectEnable = true;
ind.CountBufferAddress =
ro_bo(draw_count_bo, indirect->indirect_draw_count_offset);
}
}
genX(emit_3dprimitive_was)(batch, indirect, ice->state.prim_mode, sc->count);
genX(maybe_emit_breakpoint)(batch, false);
iris_batch_sync_region_end(batch);
uint32_t count = (sc) ? sc->count : 0;
count *= draw->instance_count ? draw->instance_count : 1;
trace_intel_end_draw(&batch->trace, count, 0, 0);
#else
UNREACHABLE("Unsupported path");
#endif /* GFX_VERx10 >= 125 */
}
static void
iris_upload_indirect_shader_render_state(struct iris_context *ice,
const struct pipe_draw_info *draw,
const struct pipe_draw_indirect_info *indirect,
const struct pipe_draw_start_count_bias *sc)
{
assert(indirect);
struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
UNUSED struct iris_screen *screen = batch->screen;
UNUSED const struct intel_device_info *devinfo = screen->devinfo;
if (ice->state.dirty & IRIS_DIRTY_VERTEX_BUFFER_FLUSHES)
flush_vbos(ice, batch);
iris_batch_sync_region_start(batch);
/* Always pin the binder. If we're emitting new binding table pointers,
* we need it. If not, we're probably inheriting old tables via the
* context, and need it anyway. Since true zero-bindings cases are
* practically non-existent, just pin it and avoid last_res tracking.
*/
iris_use_pinned_bo(batch, ice->state.binder.bo, false,
IRIS_DOMAIN_NONE);
if (!batch->contains_draw) {
if (GFX_VER == 12) {
/* Re-emit constants when starting a new batch buffer in order to
* work around push constant corruption on context switch.
*
* XXX - Provide hardware spec quotation when available.
*/
ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_CONSTANTS_VS |
IRIS_STAGE_DIRTY_CONSTANTS_TCS |
IRIS_STAGE_DIRTY_CONSTANTS_TES |
IRIS_STAGE_DIRTY_CONSTANTS_GS |
IRIS_STAGE_DIRTY_CONSTANTS_FS);
}
batch->contains_draw = true;
}
if (!batch->contains_draw_with_next_seqno) {
iris_restore_render_saved_bos(ice, batch, draw);
batch->contains_draw_with_next_seqno = true;
}
if (draw->index_size > 0)
iris_emit_index_buffer(ice, batch, draw, sc);
/* Make sure we have enough space to keep all the commands in the single BO
* (because of the jumps)
*/
iris_require_command_space(batch, 2000);
#ifndef NDEBUG
struct iris_bo *command_bo = batch->bo;
#endif
/* Jump point to generate more draw if we run out of space in the ring
* buffer.
*/
uint64_t gen_addr = iris_batch_current_address_u64(batch);
iris_handle_always_flush_cache(batch);
#if GFX_VER == 9
iris_emit_pipe_control_flush(batch, "before generation",
PIPE_CONTROL_VF_CACHE_INVALIDATE);
#endif
struct iris_address params_addr;
struct iris_gen_indirect_params *params =
genX(emit_indirect_generate)(batch, draw, indirect, sc,
&params_addr);
iris_emit_pipe_control_flush(batch, "after generation flush",
((ice->state.vs_uses_draw_params ||
ice->state.vs_uses_derived_draw_params) ?
PIPE_CONTROL_VF_CACHE_INVALIDATE : 0) |
PIPE_CONTROL_STALL_AT_SCOREBOARD |
PIPE_CONTROL_DATA_CACHE_FLUSH |
PIPE_CONTROL_CS_STALL);
trace_intel_begin_draw(&batch->trace);
/* Always pin the binder. If we're emitting new binding table pointers,
* we need it. If not, we're probably inheriting old tables via the
* context, and need it anyway. Since true zero-bindings cases are
* practically non-existent, just pin it and avoid last_res tracking.
*/
iris_use_pinned_bo(batch, ice->state.binder.bo, false,
IRIS_DOMAIN_NONE);
/* Wa_1306463417 - Send HS state for every primitive on gfx11.
* Wa_16011107343 (same for gfx12)
* We implement this by setting TCS dirty on each draw.
*/
if ((INTEL_NEEDS_WA_1306463417 || INTEL_NEEDS_WA_16011107343) &&
ice->shaders.prog[MESA_SHADER_TESS_CTRL]) {
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TCS;
}
iris_upload_dirty_render_state(ice, batch, draw, true);
iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_DRAW, draw, indirect, sc);
genX(maybe_emit_breakpoint)(batch, true);
#if GFX_VER >= 12
iris_emit_cmd(batch, GENX(MI_ARB_CHECK), arb) {
arb.PreParserDisableMask = true;
arb.PreParserDisable = true;
}
#endif
iris_emit_cmd(batch, GENX(MI_BATCH_BUFFER_START), bbs) {
bbs.AddressSpaceIndicator = ASI_PPGTT;
bbs.BatchBufferStartAddress = (struct iris_address) {
.bo = ice->draw.generation.ring_bo,
};
}
/* Run the ring buffer one more time with the next set of commands */
uint64_t inc_addr = iris_batch_current_address_u64(batch);
{
iris_emit_pipe_control_flush(batch,
"post generated draws wait",
PIPE_CONTROL_STALL_AT_SCOREBOARD |
PIPE_CONTROL_CS_STALL);
struct mi_builder b;
mi_builder_init(&b, batch->screen->devinfo, batch);
struct iris_address draw_base_addr = iris_address_add(
params_addr,
offsetof(struct iris_gen_indirect_params, draw_base));
const uint32_t mocs =
iris_mocs(draw_base_addr.bo, &screen->isl_dev, 0);
mi_builder_set_mocs(&b, mocs);
mi_store(&b, mi_mem32(draw_base_addr),
mi_iadd(&b, mi_mem32(draw_base_addr),
mi_imm(params->ring_count)));
iris_emit_pipe_control_flush(batch,
"post generation base increment",
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_CONST_CACHE_INVALIDATE);
iris_emit_cmd(batch, GENX(MI_BATCH_BUFFER_START), bbs) {
bbs.AddressSpaceIndicator = ASI_PPGTT;
bbs.BatchBufferStartAddress = (struct iris_address) {
.offset = gen_addr,
};
}
}
/* Exit of the ring buffer */
uint64_t end_addr = iris_batch_current_address_u64(batch);
#ifndef NDEBUG
assert(command_bo == batch->bo);
#endif
genX(emit_3dprimitive_was)(batch, indirect, ice->state.prim_mode, sc->count);
genX(maybe_emit_breakpoint)(batch, false);
iris_emit_pipe_control_flush(batch,
"post generated draws wait",
PIPE_CONTROL_STALL_AT_SCOREBOARD |
PIPE_CONTROL_CS_STALL);
params->gen_addr = inc_addr;
params->end_addr = end_addr;
iris_batch_sync_region_end(batch);
uint32_t count = (sc) ? sc->count : 0;
count *= draw->instance_count ? draw->instance_count : 1;
trace_intel_end_draw(&batch->trace, count, 0, 0);
}
static void
iris_load_indirect_location(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid)
{
#define GPGPU_DISPATCHDIMX 0x2500
#define GPGPU_DISPATCHDIMY 0x2504
#define GPGPU_DISPATCHDIMZ 0x2508
assert(grid->indirect);
struct iris_state_ref *grid_size = &ice->state.grid_size;
struct iris_bo *bo = iris_resource_bo(grid_size->res);
struct mi_builder b;
mi_builder_init(&b, batch->screen->devinfo, batch);
struct mi_value size_x = mi_mem32(ro_bo(bo, grid_size->offset + 0));
struct mi_value size_y = mi_mem32(ro_bo(bo, grid_size->offset + 4));
struct mi_value size_z = mi_mem32(ro_bo(bo, grid_size->offset + 8));
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMX), size_x);
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMY), size_y);
mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
}
static bool iris_emit_indirect_dispatch_supported(const struct intel_device_info *devinfo)
{
// TODO: Swizzling X and Y workgroup sizes is not supported in execute indirect dispatch
return devinfo->has_indirect_unroll;
}
#if GFX_VERx10 >= 125
static void iris_emit_execute_indirect_dispatch(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid,
const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd)
{
const struct iris_screen *screen = batch->screen;
struct iris_compiled_shader *shader =
ice->shaders.prog[MESA_SHADER_COMPUTE];
const struct iris_cs_data *cs_data = iris_cs_data(shader);
const struct intel_cs_dispatch_info dispatch =
iris_get_cs_dispatch_info(screen->devinfo, shader, grid->block);
struct iris_bo *indirect = iris_resource_bo(grid->indirect);
const int dispatch_size = dispatch.simd_size / 16;
struct GENX(COMPUTE_WALKER_BODY) body = {};
body.SIMDSize = dispatch_size;
body.MessageSIMD = dispatch_size;
body.GenerateLocalID = cs_data->generate_local_id != 0;
body.EmitLocal = cs_data->generate_local_id;
body.WalkOrder = cs_data->walk_order;
body.TileLayout = cs_data->walk_order == INTEL_WALK_ORDER_YXZ ?
TileY32bpe : Linear;
body.LocalXMaximum = grid->block[0] - 1;
body.LocalYMaximum = grid->block[1] - 1;
body.LocalZMaximum = grid->block[2] - 1;
body.ExecutionMask = dispatch.right_mask;
body.PostSync.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
body.InterfaceDescriptor = idd;
/* HSD 14016252163: Use of Morton walk order (and batching using a batch
* size of 4) is expected to increase sampler cache hit rates by
* increasing sample address locality within a subslice.
*/
#if GFX_VER >= 30
body.DispatchWalkOrder =
cs_data->uses_sampler ? MortonWalk : LinearWalk;
body.ThreadGroupBatchSize =
cs_data->uses_sampler ? TG_BATCH_4 : TG_BATCH_1;
#endif
struct iris_address indirect_bo = ro_bo(indirect, grid->indirect_offset);
iris_emit_cmd(batch, GENX(EXECUTE_INDIRECT_DISPATCH), ind) {
ind.PredicateEnable =
ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
ind.MaxCount = 1;
ind.body = body;
ind.ArgumentBufferStartAddress = indirect_bo;
ind.MOCS =
iris_mocs(indirect_bo.bo, &screen->isl_dev, 0);
}
}
static void
iris_upload_compute_walker(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid)
{
const uint64_t stage_dirty = ice->state.stage_dirty;
struct iris_screen *screen = batch->screen;
const struct intel_device_info *devinfo = screen->devinfo;
struct iris_binder *binder = &ice->state.binder;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
struct iris_compiled_shader *shader =
ice->shaders.prog[MESA_SHADER_COMPUTE];
const struct iris_cs_data *cs_data = iris_cs_data(shader);
const struct intel_cs_dispatch_info dispatch =
iris_get_cs_dispatch_info(devinfo, shader, grid->block);
uint32_t total_shared = shader->total_shared + grid->variable_shared_mem;
trace_intel_begin_compute(&batch->trace);
if (stage_dirty & IRIS_STAGE_DIRTY_CS) {
iris_emit_cmd(batch, GENX(CFE_STATE), cfe) {
cfe.MaximumNumberofThreads =
devinfo->max_cs_threads * devinfo->subslice_total;
uint32_t scratch_addr = pin_scratch_space(ice, batch, shader,
MESA_SHADER_COMPUTE);
cfe.ScratchSpaceBuffer = scratch_addr >> SCRATCH_SPACE_BUFFER_SHIFT;
}
}
/* Not need with VRT enabled */
#if GFX_VERx10 < 300
uint8_t pixel_async_compute_thread_limit, z_pass_async_compute_thread_limit,
np_z_async_throttle_settings;
bool slm_or_barrier_enabled = total_shared != 0 || cs_data->uses_barrier;
intel_compute_engine_async_threads_limit(devinfo, dispatch.threads,
slm_or_barrier_enabled,
&pixel_async_compute_thread_limit,
&z_pass_async_compute_thread_limit,
&np_z_async_throttle_settings);
if (ice->state.pixel_async_compute_thread_limit != pixel_async_compute_thread_limit ||
ice->state.z_pass_async_compute_thread_limit != z_pass_async_compute_thread_limit ||
ice->state.np_z_async_throttle_settings != np_z_async_throttle_settings) {
batch->ice->state.pixel_async_compute_thread_limit = pixel_async_compute_thread_limit;
batch->ice->state.z_pass_async_compute_thread_limit = z_pass_async_compute_thread_limit;
batch->ice->state.np_z_async_throttle_settings = np_z_async_throttle_settings;
iris_emit_cmd(batch, GENX(STATE_COMPUTE_MODE), cm) {
#if GFX_VER >= 20
cm.AsyncComputeThreadLimit = pixel_async_compute_thread_limit;
cm.ZPassAsyncComputeThreadLimit = z_pass_async_compute_thread_limit;
cm.ZAsyncThrottlesettings = np_z_async_throttle_settings;
cm.AsyncComputeThreadLimitMask = 0x7;
cm.ZPassAsyncComputeThreadLimitMask = 0x7;
cm.ZAsyncThrottlesettingsMask = 0x3;
#else
cm.PixelAsyncComputeThreadLimit = pixel_async_compute_thread_limit;
cm.ZPassAsyncComputeThreadLimit = z_pass_async_compute_thread_limit;
cm.PixelAsyncComputeThreadLimitMask = 0x7;
cm.ZPassAsyncComputeThreadLimitMask = 0x7;
if (intel_device_info_is_mtl_or_arl(devinfo)) {
cm.ZAsyncThrottlesettings = np_z_async_throttle_settings;
cm.ZAsyncThrottlesettingsMask = 0x3;
}
#endif
}
}
#endif /* GFX_VERx10 < 300 */
struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {};
idd.KernelStartPointer =
KSP(shader) + iris_cs_data_prog_offset(cs_data, dispatch.simd_size);
idd.NumberofThreadsinGPGPUThreadGroup = dispatch.threads;
idd.ThreadGroupDispatchSize =
intel_compute_threads_group_dispatch_size(dispatch.threads);
idd.SharedLocalMemorySize =
intel_compute_slm_encode_size(GFX_VER, total_shared);
idd.PreferredSLMAllocationSize =
intel_compute_preferred_slm_calc_encode_size(devinfo,
total_shared,
dispatch.group_size,
dispatch.simd_size);
idd.SamplerStatePointer = shs->sampler_table.offset;
idd.SamplerCount = encode_sampler_count(shader),
idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
/* Typically set to 0 to avoid prefetching on every thread dispatch. */
idd.BindingTableEntryCount = devinfo->verx10 == 125 ?
0 : MIN2(shader->bt.size_bytes / 4, 31);
idd.NumberOfBarriers = cs_data->uses_barrier;
#if GFX_VER >= 30
idd.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
#endif
iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_COMPUTE, NULL, NULL, NULL);
if (iris_emit_indirect_dispatch_supported(devinfo) && grid->indirect) {
iris_emit_execute_indirect_dispatch(ice, batch, grid, idd);
} else {
if (grid->indirect)
iris_load_indirect_location(ice, batch, grid);
iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_COMPUTE, NULL, NULL, NULL);
ice->utrace.last_compute_walker =
iris_emit_dwords(batch, GENX(COMPUTE_WALKER_length));
struct GENX(COMPUTE_WALKER_BODY) body = {
.SIMDSize = dispatch.simd_size / 16,
.MessageSIMD = dispatch.simd_size / 16,
.LocalXMaximum = grid->block[0] - 1,
.LocalYMaximum = grid->block[1] - 1,
.LocalZMaximum = grid->block[2] - 1,
.ThreadGroupIDXDimension = grid->grid[0],
.ThreadGroupIDYDimension = grid->grid[1],
.ThreadGroupIDZDimension = grid->grid[2],
.ExecutionMask = dispatch.right_mask,
.PostSync.MOCS = iris_mocs(NULL, &screen->isl_dev, 0),
.InterfaceDescriptor = idd,
#if GFX_VERx10 >= 125
.GenerateLocalID = cs_data->generate_local_id != 0,
.EmitLocal = cs_data->generate_local_id,
.WalkOrder = cs_data->walk_order,
.TileLayout = cs_data->walk_order == INTEL_WALK_ORDER_YXZ ?
TileY32bpe : Linear,
#endif
#if GFX_VER >= 30
/* HSD 14016252163 */
.DispatchWalkOrder = cs_data->uses_sampler ? MortonWalk : LinearWalk,
.ThreadGroupBatchSize = cs_data->uses_sampler ? TG_BATCH_4 : TG_BATCH_1,
#endif
};
_iris_pack_command(batch, GENX(COMPUTE_WALKER),
ice->utrace.last_compute_walker, cw) {
cw.IndirectParameterEnable = grid->indirect;
cw.body = body;
assert(iris_cs_push_const_total_size(shader, dispatch.threads) == 0);
}
}
/*
* TDOD: Add INTEL_NEEDS_WA_14025112257 check once HSD is propogated for all
* other impacted platforms.
*/
if (screen->devinfo->ver >= 20 && batch->name == IRIS_BATCH_COMPUTE) {
iris_emit_pipe_control_flush(batch, "WA_14025112257",
PIPE_CONTROL_STATE_CACHE_INVALIDATE);
}
trace_intel_end_compute(&batch->trace, grid->grid[0], grid->grid[1], grid->grid[2], 0);
}
#else /* #if GFX_VERx10 >= 125 */
static void
iris_upload_gpgpu_walker(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid)
{
const uint64_t stage_dirty = ice->state.stage_dirty;
struct iris_screen *screen = batch->screen;
const struct intel_device_info *devinfo = screen->devinfo;
struct iris_binder *binder = &ice->state.binder;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_COMPUTE];
struct iris_compiled_shader *shader =
ice->shaders.prog[MESA_SHADER_COMPUTE];
struct iris_cs_data *cs_data = iris_cs_data(shader);
const struct intel_cs_dispatch_info dispatch =
iris_get_cs_dispatch_info(screen->devinfo, shader, grid->block);
trace_intel_begin_compute(&batch->trace);
if ((stage_dirty & IRIS_STAGE_DIRTY_CS) ||
cs_data->local_size[0] == 0 /* Variable local group size */) {
/* The MEDIA_VFE_STATE documentation for Gfx8+ says:
*
* "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
* the only bits that are changed are scoreboard related: Scoreboard
* Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
* these scoreboard related states, a MEDIA_STATE_FLUSH is
* sufficient."
*/
iris_emit_pipe_control_flush(batch,
"workaround: stall before MEDIA_VFE_STATE",
PIPE_CONTROL_CS_STALL);
iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
if (shader->total_scratch) {
uint32_t scratch_addr =
pin_scratch_space(ice, batch, shader, MESA_SHADER_COMPUTE);
vfe.PerThreadScratchSpace = ffs(shader->total_scratch) - 11;
vfe.ScratchSpaceBasePointer =
rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE);
}
vfe.MaximumNumberofThreads =
devinfo->max_cs_threads * devinfo->subslice_total - 1;
#if GFX_VER < 11
vfe.ResetGatewayTimer =
Resettingrelativetimerandlatchingtheglobaltimestamp;
#endif
#if GFX_VER == 8
vfe.BypassGatewayControl = true;
#endif
vfe.NumberofURBEntries = 2;
vfe.URBEntryAllocationSize = 2;
vfe.CURBEAllocationSize =
align(cs_data->push.per_thread.regs * dispatch.threads +
cs_data->push.cross_thread.regs, 2);
}
}
/* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
if ((stage_dirty & IRIS_STAGE_DIRTY_CS) ||
(GFX_VER == 12 && !batch->contains_draw) ||
cs_data->local_size[0] == 0 /* Variable local group size */) {
uint32_t curbe_data_offset = 0;
assert(cs_data->push.cross_thread.dwords == 0 &&
cs_data->push.per_thread.dwords == 1 &&
cs_data->first_param_is_builtin_subgroup_id);
const unsigned push_const_size =
iris_cs_push_const_total_size(shader, dispatch.threads);
uint32_t *curbe_data_map =
stream_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.cs_thread_ids,
align(push_const_size, 64), 64,
&curbe_data_offset);
assert(curbe_data_map);
memset(curbe_data_map, 0x5a, align(push_const_size, 64));
iris_fill_cs_push_const_buffer(screen, shader, dispatch.threads,
curbe_data_map);
iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
curbe.CURBETotalDataLength = align(push_const_size, 64);
curbe.CURBEDataStartAddress = curbe_data_offset;
}
}
if (stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_CS |
IRIS_STAGE_DIRTY_BINDINGS_CS |
IRIS_STAGE_DIRTY_CONSTANTS_CS |
IRIS_STAGE_DIRTY_CS)) {
uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
idd.SharedLocalMemorySize =
intel_compute_slm_encode_size(GFX_VER, ish->kernel_shared_size + grid->variable_shared_mem);
idd.KernelStartPointer =
KSP(shader) + iris_cs_data_prog_offset(cs_data, dispatch.simd_size);
idd.SamplerStatePointer = shs->sampler_table.offset;
idd.BindingTablePointer =
binder->bt_offset[MESA_SHADER_COMPUTE] >> IRIS_BT_OFFSET_SHIFT;
idd.NumberofThreadsinGPGPUThreadGroup = dispatch.threads;
}
for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
desc[i] |= ((uint32_t *) shader->derived_data)[i];
iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
load.InterfaceDescriptorTotalLength =
GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
load.InterfaceDescriptorDataStartAddress =
emit_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
}
}
if (grid->indirect)
iris_load_indirect_location(ice, batch, grid);
iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_COMPUTE, NULL, NULL, NULL);
iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
ggw.IndirectParameterEnable = grid->indirect != NULL;
ggw.SIMDSize = dispatch.simd_size / 16;
ggw.ThreadDepthCounterMaximum = 0;
ggw.ThreadHeightCounterMaximum = 0;
ggw.ThreadWidthCounterMaximum = dispatch.threads - 1;
ggw.ThreadGroupIDXDimension = grid->grid[0];
ggw.ThreadGroupIDYDimension = grid->grid[1];
ggw.ThreadGroupIDZDimension = grid->grid[2];
ggw.RightExecutionMask = dispatch.right_mask;
ggw.BottomExecutionMask = 0xffffffff;
}
iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
trace_intel_end_compute(&batch->trace, grid->grid[0], grid->grid[1], grid->grid[2], 0);
}
#endif /* #if GFX_VERx10 >= 125 */
static void
iris_use_global_bindings(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid)
{
for (unsigned i = 0; i < IRIS_MAX_GLOBAL_BINDINGS; i++) {
struct pipe_resource *res = ice->state.global_bindings[i];
if (!res)
break;
iris_use_pinned_bo(batch, iris_resource_bo(res),
true, IRIS_DOMAIN_NONE);
}
for (unsigned i = 0; i < grid->num_globals; i++) {
struct iris_resource *res = (void *) grid->globals[i];
iris_use_pinned_bo(batch, res->bo, true, IRIS_DOMAIN_NONE);
util_range_add(&res->base.b, &res->valid_buffer_range,
0, res->base.b.width0);
}
}
static void
iris_upload_compute_state(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid)
{
struct iris_screen *screen = batch->screen;
const uint64_t stage_dirty = ice->state.stage_dirty;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
struct iris_compiled_shader *shader =
ice->shaders.prog[MESA_SHADER_COMPUTE];
struct iris_border_color_pool *border_color_pool =
iris_bufmgr_get_border_color_pool(screen->bufmgr);
iris_batch_sync_region_start(batch);
/* Always pin the binder. If we're emitting new binding table pointers,
* we need it. If not, we're probably inheriting old tables via the
* context, and need it anyway. Since true zero-bindings cases are
* practically non-existent, just pin it and avoid last_res tracking.
*/
iris_use_pinned_bo(batch, ice->state.binder.bo, false, IRIS_DOMAIN_NONE);
if ((stage_dirty & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
shs->sysvals_need_upload)
upload_sysvals(ice, MESA_SHADER_COMPUTE, grid);
if (stage_dirty & IRIS_STAGE_DIRTY_BINDINGS_CS)
iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
if (stage_dirty & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS)
iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
iris_use_optional_res(batch, shs->sampler_table.res, false,
IRIS_DOMAIN_NONE);
iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false,
IRIS_DOMAIN_NONE);
if (ice->state.need_border_colors)
iris_use_pinned_bo(batch, border_color_pool->bo, false,
IRIS_DOMAIN_NONE);
iris_use_global_bindings(ice, batch, grid);
#if GFX_VER >= 12
genX(invalidate_aux_map_state)(batch);
#endif
#if GFX_VERx10 >= 125
iris_upload_compute_walker(ice, batch, grid);
#else
iris_upload_gpgpu_walker(ice, batch, grid);
#endif
if (!batch->contains_draw_with_next_seqno) {
iris_restore_compute_saved_bos(ice, batch, grid);
batch->contains_draw_with_next_seqno = batch->contains_draw = true;
}
iris_batch_sync_region_end(batch);
}
/**
* State module teardown.
*/
static void
iris_destroy_state(struct iris_context *ice)
{
struct iris_genx_state *genx = ice->state.genx;
pipe_resource_reference(&ice->state.pixel_hashing_tables, NULL);
pipe_resource_reference(&ice->draw.draw_params.res, NULL);
pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL);
pipe_resource_reference(&ice->draw.generation.params.res, NULL);
pipe_resource_reference(&ice->draw.generation.vertices.res, NULL);
/* Loop over all VBOs, including ones for draw parameters */
for (unsigned i = 0; i < ARRAY_SIZE(genx->vertex_buffers); i++) {
pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
}
free(ice->state.genx);
for (int i = 0; i < 4; i++) {
pipe_so_target_reference(&ice->state.so_target[i], NULL);
}
util_unreference_framebuffer_state(&ice->state.framebuffer);
for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
struct iris_shader_state *shs = &ice->state.shaders[stage];
pipe_resource_reference(&shs->sampler_table.res, NULL);
for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
}
for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
pipe_resource_reference(&shs->image[i].base.resource, NULL);
pipe_resource_reference(&shs->image[i].surface_state.ref.res, NULL);
free(shs->image[i].surface_state.cpu);
}
for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
}
for (int i = 0; i < IRIS_MAX_TEXTURES; i++) {
pipe_sampler_view_reference((struct pipe_sampler_view **)
&shs->textures[i], NULL);
}
}
pipe_resource_reference(&ice->state.grid_size.res, NULL);
pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
pipe_resource_reference(&ice->state.null_fb.res, NULL);
pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
pipe_resource_reference(&ice->state.last_res.scissor, NULL);
pipe_resource_reference(&ice->state.last_res.blend, NULL);
pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
}
/* ------------------------------------------------------------------- */
static void
iris_rebind_buffer(struct iris_context *ice,
struct iris_resource *res)
{
struct pipe_context *ctx = &ice->ctx;
struct iris_genx_state *genx = ice->state.genx;
assert(res->base.b.target == PIPE_BUFFER);
/* Buffers can't be framebuffer attachments, nor display related,
* and we don't have upstream Clover support.
*/
assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
PIPE_BIND_RENDER_TARGET |
PIPE_BIND_BLENDABLE |
PIPE_BIND_DISPLAY_TARGET |
PIPE_BIND_CURSOR |
PIPE_BIND_GLOBAL)));
if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
uint64_t bound_vbs = ice->state.bound_vertex_buffers;
while (bound_vbs) {
const int i = u_bit_scan64(&bound_vbs);
struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
/* Update the CPU struct */
STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
uint64_t *addr = (uint64_t *) &state->state[1];
struct iris_bo *bo = iris_resource_bo(state->resource);
if (*addr != bo->address + state->offset) {
*addr = bo->address + state->offset;
ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS |
IRIS_DIRTY_VERTEX_BUFFER_FLUSHES;
}
}
}
/* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
* the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
*
* There is also no need to handle these:
* - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
* - PIPE_BIND_QUERY_BUFFER (no persistent state references)
*/
if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
uint32_t *so_buffers = genx->so_buffers;
for (unsigned i = 0; i < 4; i++,
so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
/* There are no other fields in bits 127:64 */
uint64_t *addr = (uint64_t *) &so_buffers[2];
STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_SurfaceBaseAddress_start) == 66);
STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_SurfaceBaseAddress_bits) == 46);
struct pipe_stream_output_target *tgt = ice->state.so_target[i];
if (tgt) {
struct iris_bo *bo = iris_resource_bo(tgt->buffer);
if (*addr != bo->address + tgt->buffer_offset) {
*addr = bo->address + tgt->buffer_offset;
ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
}
}
}
}
for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
struct iris_shader_state *shs = &ice->state.shaders[s];
if (!(res->bind_stages & (1 << s)))
continue;
if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
/* Skip constant buffer 0, it's for regular uniforms, not UBOs */
uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
while (bound_cbufs) {
const int i = u_bit_scan(&bound_cbufs);
struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
if (res->bo == iris_resource_bo(cbuf->buffer)) {
pipe_resource_reference(&surf_state->res, NULL);
shs->dirty_cbufs |= 1u << i;
ice->state.dirty |= (IRIS_DIRTY_RENDER_MISC_BUFFER_FLUSHES |
IRIS_DIRTY_COMPUTE_MISC_BUFFER_FLUSHES);
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << s;
}
}
}
if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
uint32_t bound_ssbos = shs->bound_ssbos;
while (bound_ssbos) {
const int i = u_bit_scan(&bound_ssbos);
struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
if (res->bo == iris_resource_bo(ssbo->buffer)) {
struct pipe_shader_buffer buf = {
.buffer = &res->base.b,
.buffer_offset = ssbo->buffer_offset,
.buffer_size = ssbo->buffer_size,
};
iris_set_shader_buffers(ctx, s, i, 1, &buf,
(shs->writable_ssbos >> i) & 1);
}
}
}
if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
int i;
BITSET_FOREACH_SET(i, shs->bound_sampler_views, IRIS_MAX_TEXTURES) {
struct iris_sampler_view *isv = shs->textures[i];
struct iris_bo *bo = isv->res->bo;
if (update_surface_state_addrs(ice->state.surface_uploader,
&isv->surface_state, bo)) {
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
}
}
}
if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
uint64_t bound_image_views = shs->bound_image_views;
while (bound_image_views) {
const int i = u_bit_scan64(&bound_image_views);
struct iris_image_view *iv = &shs->image[i];
struct iris_bo *bo = iris_resource_bo(iv->base.resource);
if (update_surface_state_addrs(ice->state.surface_uploader,
&iv->surface_state, bo)) {
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
}
}
}
}
}
/* ------------------------------------------------------------------- */
/**
* Introduce a batch synchronization boundary, and update its cache coherency
* status to reflect the execution of a PIPE_CONTROL command with the
* specified flags.
*/
static void
batch_mark_sync_for_pipe_control(struct iris_batch *batch, uint32_t flags)
{
const struct intel_device_info *devinfo = batch->screen->devinfo;
iris_batch_sync_boundary(batch);
if ((flags & PIPE_CONTROL_CS_STALL)) {
if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
if ((flags & PIPE_CONTROL_TILE_CACHE_FLUSH)) {
/* A tile cache flush makes any C/Z data in L3 visible to memory. */
const unsigned c = IRIS_DOMAIN_RENDER_WRITE;
const unsigned z = IRIS_DOMAIN_DEPTH_WRITE;
batch->coherent_seqnos[c][c] = batch->l3_coherent_seqnos[c];
batch->coherent_seqnos[z][z] = batch->l3_coherent_seqnos[z];
}
if (flags & (PIPE_CONTROL_FLUSH_HDC | PIPE_CONTROL_DATA_CACHE_FLUSH)) {
/* HDC and DC flushes both flush the data cache out to L3 */
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_DATA_WRITE);
}
if ((flags & PIPE_CONTROL_DATA_CACHE_FLUSH)) {
/* A DC flush also flushes L3 data cache lines out to memory. */
const unsigned i = IRIS_DOMAIN_DATA_WRITE;
batch->coherent_seqnos[i][i] = batch->l3_coherent_seqnos[i];
}
if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
if ((flags & (PIPE_CONTROL_CACHE_FLUSH_BITS |
PIPE_CONTROL_STALL_AT_SCOREBOARD))) {
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_VF_READ);
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_SAMPLER_READ);
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_PULL_CONSTANT_READ);
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_READ);
}
}
if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
if (flags & (PIPE_CONTROL_FLUSH_HDC | PIPE_CONTROL_DATA_CACHE_FLUSH))
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_DATA_WRITE);
if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
if ((flags & PIPE_CONTROL_VF_CACHE_INVALIDATE))
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_VF_READ);
if ((flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE))
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_SAMPLER_READ);
/* Technically, to invalidate IRIS_DOMAIN_PULL_CONSTANT_READ, we need
* both "Constant Cache Invalidate" and either "Texture Cache Invalidate"
* or "Data Cache Flush" set, depending on the setting of
* iris_indirect_ubos_use_sampler().
*
* However, "Data Cache Flush" and "Constant Cache Invalidate" will never
* appear in the same PIPE_CONTROL command, because one is bottom-of-pipe
* while the other is top-of-pipe. Because we only look at one flush at
* a time, we won't see both together.
*
* To deal with this, we mark it as invalidated when the constant cache
* is invalidated, and trust the callers to also flush the other related
* cache correctly at the same time.
*/
if ((flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE))
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_PULL_CONSTANT_READ);
/* IRIS_DOMAIN_OTHER_READ no longer uses any caches. */
if ((flags & PIPE_CONTROL_L3_RO_INVALIDATE_BITS) == PIPE_CONTROL_L3_RO_INVALIDATE_BITS) {
/* If we just invalidated the read-only lines of L3, then writes from non-L3-coherent
* domains will now be visible to those L3 clients.
*/
for (unsigned i = 0; i < NUM_IRIS_DOMAINS; i++) {
if (!iris_domain_is_l3_coherent(devinfo, i))
batch->l3_coherent_seqnos[i] = batch->coherent_seqnos[i][i];
}
}
}
static unsigned
flags_to_post_sync_op(uint32_t flags)
{
if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
return WriteImmediateData;
if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
return WritePSDepthCount;
if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
return WriteTimestamp;
return 0;
}
/**
* Do the given flags have a Post Sync or LRI Post Sync operation?
*/
static enum pipe_control_flags
get_post_sync_flags(enum pipe_control_flags flags)
{
flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
PIPE_CONTROL_WRITE_DEPTH_COUNT |
PIPE_CONTROL_WRITE_TIMESTAMP |
PIPE_CONTROL_LRI_POST_SYNC_OP;
/* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
* "LRI Post Sync Operation". So more than one bit set would be illegal.
*/
assert(util_bitcount(flags) <= 1);
return flags;
}
#define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
/**
* Emit a series of PIPE_CONTROL commands, taking into account any
* workarounds necessary to actually accomplish the caller's request.
*
* Unless otherwise noted, spec quotations in this function come from:
*
* Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
* Restrictions for PIPE_CONTROL.
*
* You should not use this function directly. Use the helpers in
* iris_pipe_control.c instead, which may split the pipe control further.
*/
static void
iris_emit_raw_pipe_control(struct iris_batch *batch,
const char *reason,
uint32_t flags,
struct iris_bo *bo,
uint32_t offset,
uint64_t imm)
{
UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
enum pipe_control_flags non_lri_post_sync_flags =
post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
#if GFX_VER >= 12
if (batch->name == IRIS_BATCH_BLITTER) {
batch_mark_sync_for_pipe_control(batch, flags);
iris_batch_sync_region_start(batch);
assert(!(flags & PIPE_CONTROL_WRITE_DEPTH_COUNT));
/* Wa_16018063123 - emit fast color dummy blit before MI_FLUSH_DW. */
if (INTEL_WA_16018063123_GFX_VER)
batch_emit_fast_color_dummy_blit(batch);
/* The blitter doesn't actually use PIPE_CONTROL; rather it uses the
* MI_FLUSH_DW command. However, all of our code is set up to flush
* via emitting a pipe control, so we just translate it at this point,
* even if it is a bit hacky.
*/
iris_emit_cmd(batch, GENX(MI_FLUSH_DW), fd) {
fd.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
fd.ImmediateData = imm;
fd.PostSyncOperation = flags_to_post_sync_op(flags);
#if GFX_VERx10 >= 125
/* TODO: This may not always be necessary */
fd.FlushCCS = true;
#endif
}
iris_batch_sync_region_end(batch);
return;
}
#endif
#if GFX_VER >= 12
/* BSpec 47112 (xe), 56551 (xe2): Instruction_PIPE_CONTROL (ComputeCS):
* SW must follow below programming restrictions when programming
* PIPE_CONTROL command:
* "Command Streamer Stall Enable" must be always set.
*/
if (batch->name == IRIS_BATCH_COMPUTE)
flags |= PIPE_CONTROL_CS_STALL;
#endif
/* The "L3 Read Only Cache Invalidation Bit" docs say it "controls the
* invalidation of the Geometry streams cached in L3 cache at the top
* of the pipe". In other words, index & vertex data that gets cached
* in L3 when VERTEX_BUFFER_STATE::L3BypassDisable is set.
*
* Normally, invalidating L1/L2 read-only caches also invalidate their
* related L3 cachelines, but this isn't the case for the VF cache.
* Emulate it by setting the L3 Read Only bit when doing a VF invalidate.
*/
if (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)
flags |= PIPE_CONTROL_L3_READ_ONLY_CACHE_INVALIDATE;
/* Recursive PIPE_CONTROL workarounds --------------------------------
* (http://knowyourmeme.com/memes/xzibit-yo-dawg)
*
* We do these first because we want to look at the original operation,
* rather than any workarounds we set.
*/
if (GFX_VER == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
/* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
* lists several workarounds:
*
* "Project: SKL, KBL, BXT
*
* If the VF Cache Invalidation Enable is set to a 1 in a
* PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
* sets to 0, with the VF Cache Invalidation Enable set to 0
* needs to be sent prior to the PIPE_CONTROL with VF Cache
* Invalidation Enable set to a 1."
*/
iris_emit_raw_pipe_control(batch,
"workaround: recursive VF cache invalidate",
0, NULL, 0, 0);
}
if (GFX_VER == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
/* Project: SKL / Argument: LRI Post Sync Operation [23]
*
* "PIPECONTROL command with “Command Streamer Stall Enable” must be
* programmed prior to programming a PIPECONTROL command with "LRI
* Post Sync Operation" in GPGPU mode of operation (i.e when
* PIPELINE_SELECT command is set to GPGPU mode of operation)."
*
* The same text exists a few rows below for Post Sync Op.
*/
iris_emit_raw_pipe_control(batch,
"workaround: CS stall before gpgpu post-sync",
PIPE_CONTROL_CS_STALL, bo, offset, imm);
}
/* "Flush Types" workarounds ---------------------------------------------
* We do these now because they may add post-sync operations or CS stalls.
*/
if (GFX_VER < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
/* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
*
* "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
* 'Write PS Depth Count' or 'Write Timestamp'."
*/
if (!bo) {
flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
bo = batch->screen->workaround_address.bo;
offset = batch->screen->workaround_address.offset;
}
}
if (flags & PIPE_CONTROL_DEPTH_STALL) {
/* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
*
* "This bit must be DISABLED for operations other than writing
* PS_DEPTH_COUNT."
*
* This seems like nonsense. An Ivybridge workaround requires us to
* emit a PIPE_CONTROL with a depth stall and write immediate post-sync
* operation. Gfx8+ requires us to emit depth stalls and depth cache
* flushes together. So, it's hard to imagine this means anything other
* than "we originally intended this to be used for PS_DEPTH_COUNT".
*
* We ignore the supposed restriction and do nothing.
*/
}
if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
/* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
*
* "This bit must be DISABLED for End-of-pipe (Read) fences,
* PS_DEPTH_COUNT or TIMESTAMP queries."
*
* TODO: Implement end-of-pipe checking.
*/
assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
PIPE_CONTROL_WRITE_TIMESTAMP)));
}
if (GFX_VER < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
/* From the PIPE_CONTROL instruction table, bit 1:
*
* "This bit is ignored if Depth Stall Enable is set.
* Further, the render cache is not flushed even if Write Cache
* Flush Enable bit is set."
*
* We assert that the caller doesn't do this combination, to try and
* prevent mistakes. It shouldn't hurt the GPU, though.
*
* We skip this check on Gfx11+ as the "Stall at Pixel Scoreboard"
* and "Render Target Flush" combo is explicitly required for BTI
* update workarounds.
*/
assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_RENDER_TARGET_FLUSH)));
}
/* PIPE_CONTROL page workarounds ------------------------------------- */
if (GFX_VER <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
/* From the PIPE_CONTROL page itself:
*
* "IVB, HSW, BDW
* Restriction: Pipe_control with CS-stall bit set must be issued
* before a pipe-control command that has the State Cache
* Invalidate bit set."
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (flags & PIPE_CONTROL_FLUSH_LLC) {
/* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
*
* "Project: ALL
* SW must always program Post-Sync Operation to "Write Immediate
* Data" when Flush LLC is set."
*
* For now, we just require the caller to do it.
*/
assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
}
/* Emulate a HDC flush with a full Data Cache Flush on older hardware which
* doesn't support the new lightweight flush.
*/
#if GFX_VER < 12
if (flags & PIPE_CONTROL_FLUSH_HDC)
flags |= PIPE_CONTROL_DATA_CACHE_FLUSH;
#endif
/* "Post-Sync Operation" workarounds -------------------------------- */
/* Project: All / Argument: Global Snapshot Count Reset [19]
*
* "This bit must not be exercised on any product.
* Requires stall bit ([20] of DW1) set."
*
* We don't use this, so we just assert that it isn't used. The
* PIPE_CONTROL instruction page indicates that they intended this
* as a debug feature and don't think it is useful in production,
* but it may actually be usable, should we ever want to.
*/
assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
/* Project: All / Arguments:
*
* - Generic Media State Clear [16]
* - Indirect State Pointers Disable [16]
*
* "Requires stall bit ([20] of DW1) set."
*
* Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
* State Clear) says:
*
* "PIPECONTROL command with “Command Streamer Stall Enable” must be
* programmed prior to programming a PIPECONTROL command with "Media
* State Clear" set in GPGPU mode of operation"
*
* This is a subset of the earlier rule, so there's nothing to do.
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
/* Project: All / Argument: Store Data Index
*
* "Post-Sync Operation ([15:14] of DW1) must be set to something other
* than '0'."
*
* For now, we just assert that the caller does this. We might want to
* automatically add a write to the workaround BO...
*/
assert(non_lri_post_sync_flags != 0);
}
if (flags & PIPE_CONTROL_SYNC_GFDT) {
/* Project: All / Argument: Sync GFDT
*
* "Post-Sync Operation ([15:14] of DW1) must be set to something other
* than '0' or 0x2520[13] must be set."
*
* For now, we just assert that the caller does this.
*/
assert(non_lri_post_sync_flags != 0);
}
if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
/* Project: IVB+ / Argument: TLB inv
*
* "Requires stall bit ([20] of DW1) set."
*
* Also, from the PIPE_CONTROL instruction table:
*
* "Project: SKL+
* Post Sync Operation or CS stall must be set to ensure a TLB
* invalidation occurs. Otherwise no cycle will occur to the TLB
* cache to invalidate."
*
* This is not a subset of the earlier rule, so there's nothing to do.
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (GFX_VER == 9 && devinfo->gt == 4) {
/* TODO: The big Skylake GT4 post sync op workaround */
}
/* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
if (IS_COMPUTE_PIPELINE(batch)) {
if (GFX_VER >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
/* SKL PRMs, Volume 7: 3D-Media-GPGPU, Programming Restrictions for
* PIPE_CONTROL, Flush Types:
* "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
* For newer platforms this is documented in the PIPE_CONTROL
* instruction page.
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (GFX_VER == 8 && (post_sync_flags ||
(flags & (PIPE_CONTROL_NOTIFY_ENABLE |
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
/* Project: BDW / Arguments:
*
* - LRI Post Sync Operation [23]
* - Post Sync Op [15:14]
* - Notify En [8]
* - Depth Stall [13]
* - Render Target Cache Flush [12]
* - Depth Cache Flush [0]
* - DC Flush Enable [5]
*
* "Requires stall bit ([20] of DW) set for all GPGPU and Media
* Workloads."
*/
flags |= PIPE_CONTROL_CS_STALL;
/* Also, from the PIPE_CONTROL instruction table, bit 20:
*
* "Project: BDW
* This bit must be always set when PIPE_CONTROL command is
* programmed by GPGPU and MEDIA workloads, except for the cases
* when only Read Only Cache Invalidation bits are set (State
* Cache Invalidation Enable, Instruction cache Invalidation
* Enable, Texture Cache Invalidation Enable, Constant Cache
* Invalidation Enable). This is to WA FFDOP CG issue, this WA
* need not implemented when FF_DOP_CG is disable via "Fixed
* Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
*
* It sounds like we could avoid CS stalls in some cases, but we
* don't currently bother. This list isn't exactly the list above,
* either...
*/
}
}
/* "Stall" workarounds ----------------------------------------------
* These have to come after the earlier ones because we may have added
* some additional CS stalls above.
*/
if (GFX_VER < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
/* Project: PRE-SKL, VLV, CHV
*
* "[All Stepping][All SKUs]:
*
* One of the following must also be set:
*
* - Render Target Cache Flush Enable ([12] of DW1)
* - Depth Cache Flush Enable ([0] of DW1)
* - Stall at Pixel Scoreboard ([1] of DW1)
* - Depth Stall ([13] of DW1)
* - Post-Sync Operation ([13] of DW1)
* - DC Flush Enable ([5] of DW1)"
*
* If we don't already have one of those bits set, we choose to add
* "Stall at Pixel Scoreboard". Some of the other bits require a
* CS stall as a workaround (see above), which would send us into
* an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
* appears to be safe, so we choose that.
*/
const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_WRITE_IMMEDIATE |
PIPE_CONTROL_WRITE_DEPTH_COUNT |
PIPE_CONTROL_WRITE_TIMESTAMP |
PIPE_CONTROL_STALL_AT_SCOREBOARD |
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_DATA_CACHE_FLUSH;
if (!(flags & wa_bits))
flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
}
if (INTEL_NEEDS_WA_1409600907 && (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH)) {
/* Wa_1409600907:
*
* "PIPE_CONTROL with Depth Stall Enable bit must be set
* with any PIPE_CONTROL with Depth Flush Enable bit set.
*/
flags |= PIPE_CONTROL_DEPTH_STALL;
}
#if INTEL_WA_1607156449_GFX_VER || INTEL_NEEDS_WA_18040903259
/* Wa_1607156449: For COMPUTE Workload - Any PIPE_CONTROL command with
* POST_SYNC Operation Enabled MUST be preceded by a PIPE_CONTROL with
* CS_STALL Bit set (with No POST_SYNC ENABLED)
*
* Wa_18040903259 says that timestamp are incorrect (not doing the CS Stall
* prior to writing the timestamp) with a command like this:
*
* PIPE_CONTROL(CS Stall, Post Sync = Timestamp)
*
* should be turned into :
*
* PIPE_CONTROL(CS Stall)
* PIPE_CONTROL(CS Stall, Post Sync = Timestamp)
*
* Also : "This WA needs to be applied only when we have done a Compute
* Walker and there is a request for a Timestamp."
*
* At the moment it's unclear whether all other parameters should go in the
* first or second PIPE_CONTROL. It seems logical that it should go to the
* first so that the timestamp accounts for all the associated flushes.
*/
if ((intel_needs_workaround(devinfo, 1607156449) ||
intel_needs_workaround(devinfo, 18040903259)) &&
IS_COMPUTE_PIPELINE(batch) &&
(flags & (PIPE_CONTROL_WRITE_TIMESTAMP |
PIPE_CONTROL_WRITE_IMMEDIATE))) {
iris_emit_raw_pipe_control(batch,
"workaround: Wa_1607156449/Wa_18040903259",
(flags & ~(PIPE_CONTROL_WRITE_TIMESTAMP |
PIPE_CONTROL_WRITE_IMMEDIATE)),
NULL, 0, 0);
flags &= (PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_WRITE_IMMEDIATE |
PIPE_CONTROL_WRITE_TIMESTAMP);
}
#endif
batch_mark_sync_for_pipe_control(batch, flags);
#if INTEL_NEEDS_WA_14010840176
/* "If the intention of “constant cache invalidate” is
* to invalidate the L1 cache (which can cache constants), use “HDC
* pipeline flush” instead of Constant Cache invalidate command."
*
* "If L3 invalidate is needed, the w/a should be to set state invalidate
* in the pipe control command, in addition to the HDC pipeline flush."
*/
if (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) {
flags &= ~PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_FLUSH_HDC | PIPE_CONTROL_STATE_CACHE_INVALIDATE;
}
#endif
/* Emit --------------------------------------------------------------- */
if (INTEL_DEBUG(DEBUG_PIPE_CONTROL)) {
fprintf(stderr,
" PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
(flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
(flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
(flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
(flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
(flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
(flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
(flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
(flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
(flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
(flags & PIPE_CONTROL_TILE_CACHE_FLUSH) ? "Tile " : "",
(flags & PIPE_CONTROL_L3_FABRIC_FLUSH) ? "L3Fabric " : "",
(flags & PIPE_CONTROL_CCS_CACHE_FLUSH) ? "CCS " : "",
(flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
(flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
(flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
(flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
(flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
(flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
(flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
"SnapRes" : "",
(flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
"ISPDis" : "",
(flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
(flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
(flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
(flags & PIPE_CONTROL_FLUSH_HDC) ? "HDC " : "",
(flags & PIPE_CONTROL_PSS_STALL_SYNC) ? "PSS " : "",
(flags & PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH) ? "UntypedDataPortCache " : "",
imm, reason);
}
iris_batch_sync_region_start(batch);
const bool trace_pc =
(flags & (PIPE_CONTROL_CACHE_FLUSH_BITS | PIPE_CONTROL_CACHE_INVALIDATE_BITS)) != 0;
if (trace_pc)
trace_intel_begin_stall(&batch->trace);
iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
#if GFX_VERx10 >= 125
pc.PSSStallSyncEnable = flags & PIPE_CONTROL_PSS_STALL_SYNC;
#endif
#if GFX_VER == 12
pc.TileCacheFlushEnable = flags & PIPE_CONTROL_TILE_CACHE_FLUSH;
pc.L3FabricFlush = flags & PIPE_CONTROL_L3_FABRIC_FLUSH;
#endif
#if GFX_VER > 11
pc.HDCPipelineFlushEnable = flags & PIPE_CONTROL_FLUSH_HDC;
#endif
#if GFX_VERx10 >= 125
pc.UntypedDataPortCacheFlushEnable =
(flags & (PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
PIPE_CONTROL_FLUSH_HDC |
PIPE_CONTROL_DATA_CACHE_FLUSH)) &&
IS_COMPUTE_PIPELINE(batch);
pc.HDCPipelineFlushEnable |= pc.UntypedDataPortCacheFlushEnable;
pc.CCSFlushEnable |= flags & PIPE_CONTROL_CCS_CACHE_FLUSH;
#endif
pc.LRIPostSyncOperation = NoLRIOperation;
pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
pc.StoreDataIndex = 0;
pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
#if GFX_VERx10 < 125
pc.GlobalSnapshotCountReset =
flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
#endif
pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
#if GFX_VERx10 < 200
pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
#endif
pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
pc.RenderTargetCacheFlushEnable =
flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
pc.StateCacheInvalidationEnable =
flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
#if GFX_VER >= 12
pc.L3ReadOnlyCacheInvalidationEnable =
flags & PIPE_CONTROL_L3_READ_ONLY_CACHE_INVALIDATE;
#endif
pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
pc.ConstantCacheInvalidationEnable =
flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
pc.PostSyncOperation = flags_to_post_sync_op(flags);
pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
pc.InstructionCacheInvalidateEnable =
flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
pc.IndirectStatePointersDisable =
flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
pc.TextureCacheInvalidationEnable =
flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
pc.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
pc.ImmediateData = imm;
}
if (trace_pc) {
trace_intel_end_stall(&batch->trace, flags,
iris_utrace_pipe_flush_bit_to_ds_stall_flag,
reason,0,0,0);
}
iris_batch_sync_region_end(batch);
}
#if GFX_VER == 9
/**
* Preemption on Gfx9 has to be enabled or disabled in various cases.
*
* See these workarounds for preemption:
* - WaDisableMidObjectPreemptionForGSLineStripAdj
* - WaDisableMidObjectPreemptionForTrifanOrPolygon
* - WaDisableMidObjectPreemptionForLineLoop
* - WA#0798
*
* We don't put this in the vtable because it's only used on Gfx9.
*/
void
gfx9_toggle_preemption(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_draw_info *draw)
{
struct iris_genx_state *genx = ice->state.genx;
bool object_preemption = true;
/* WaDisableMidObjectPreemptionForGSLineStripAdj
*
* "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
* and GS is enabled."
*/
if (draw->mode == MESA_PRIM_LINE_STRIP_ADJACENCY &&
ice->shaders.prog[MESA_SHADER_GEOMETRY])
object_preemption = false;
/* WaDisableMidObjectPreemptionForTrifanOrPolygon
*
* "TriFan miscompare in Execlist Preemption test. Cut index that is
* on a previous context. End the previous, the resume another context
* with a tri-fan or polygon, and the vertex count is corrupted. If we
* prempt again we will cause corruption.
*
* WA: Disable mid-draw preemption when draw-call has a tri-fan."
*/
if (draw->mode == MESA_PRIM_TRIANGLE_FAN)
object_preemption = false;
/* WaDisableMidObjectPreemptionForLineLoop
*
* "VF Stats Counters Missing a vertex when preemption enabled.
*
* WA: Disable mid-draw preemption when the draw uses a lineloop
* topology."
*/
if (draw->mode == MESA_PRIM_LINE_LOOP)
object_preemption = false;
/* WA#0798
*
* "VF is corrupting GAFS data when preempted on an instance boundary
* and replayed with instancing enabled.
*
* WA: Disable preemption when using instanceing."
*/
if (draw->instance_count > 1)
object_preemption = false;
if (genx->object_preemption != object_preemption) {
iris_enable_obj_preemption(batch, object_preemption);
genx->object_preemption = object_preemption;
}
}
#endif
static void
iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
{
struct iris_genx_state *genx = ice->state.genx;
#if INTEL_NEEDS_WA_1808121037
genx->depth_reg_mode = IRIS_DEPTH_REG_MODE_UNKNOWN;
#endif
memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
}
static void
iris_emit_mi_report_perf_count(struct iris_batch *batch,
struct iris_bo *bo,
uint32_t offset_in_bytes,
uint32_t report_id)
{
iris_batch_sync_region_start(batch);
iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes,
IRIS_DOMAIN_OTHER_WRITE);
mi_rpc.ReportID = report_id;
}
iris_batch_sync_region_end(batch);
}
/**
* Update the pixel hashing modes that determine the balancing of PS threads
* across subslices and slices.
*
* \param width Width bound of the rendering area (already scaled down if \p
* scale is greater than 1).
* \param height Height bound of the rendering area (already scaled down if \p
* scale is greater than 1).
* \param scale The number of framebuffer samples that could potentially be
* affected by an individual channel of the PS thread. This is
* typically one for single-sampled rendering, but for operations
* like CCS resolves and fast clears a single PS invocation may
* update a huge number of pixels, in which case a finer
* balancing is desirable in order to maximally utilize the
* bandwidth available. UINT_MAX can be used as shorthand for
* "finest hashing mode available".
*/
void
genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
unsigned width, unsigned height, unsigned scale)
{
#if GFX_VER == 9
const struct intel_device_info *devinfo = batch->screen->devinfo;
const unsigned slice_hashing[] = {
/* Because all Gfx9 platforms with more than one slice require
* three-way subslice hashing, a single "normal" 16x16 slice hashing
* block is guaranteed to suffer from substantial imbalance, with one
* subslice receiving twice as much work as the other two in the
* slice.
*
* The performance impact of that would be particularly severe when
* three-way hashing is also in use for slice balancing (which is the
* case for all Gfx9 GT4 platforms), because one of the slices
* receives one every three 16x16 blocks in either direction, which
* is roughly the periodicity of the underlying subslice imbalance
* pattern ("roughly" because in reality the hardware's
* implementation of three-way hashing doesn't do exact modulo 3
* arithmetic, which somewhat decreases the magnitude of this effect
* in practice). This leads to a systematic subslice imbalance
* within that slice regardless of the size of the primitive. The
* 32x32 hashing mode guarantees that the subslice imbalance within a
* single slice hashing block is minimal, largely eliminating this
* effect.
*/
_32x32,
/* Finest slice hashing mode available. */
NORMAL
};
const unsigned subslice_hashing[] = {
/* 16x16 would provide a slight cache locality benefit especially
* visible in the sampler L1 cache efficiency of low-bandwidth
* non-LLC platforms, but it comes at the cost of greater subslice
* imbalance for primitives of dimensions approximately intermediate
* between 16x4 and 16x16.
*/
_16x4,
/* Finest subslice hashing mode available. */
_8x4
};
/* Dimensions of the smallest hashing block of a given hashing mode. If
* the rendering area is smaller than this there can't possibly be any
* benefit from switching to this mode, so we optimize out the
* transition.
*/
const unsigned min_size[][2] = {
{ 16, 4 },
{ 8, 4 }
};
const unsigned idx = scale > 1;
if (width > min_size[idx][0] || height > min_size[idx][1]) {
iris_emit_raw_pipe_control(batch,
"workaround: CS stall before GT_MODE LRI",
PIPE_CONTROL_STALL_AT_SCOREBOARD |
PIPE_CONTROL_CS_STALL,
NULL, 0, 0);
iris_emit_reg(batch, GENX(GT_MODE), reg) {
reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
reg.SubsliceHashing = subslice_hashing[idx];
reg.SubsliceHashingMask = -1;
};
ice->state.current_hash_scale = scale;
}
#endif
}
static void
iris_set_frontend_noop(struct pipe_context *ctx, bool enable)
{
struct iris_context *ice = (struct iris_context *) ctx;
if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_RENDER], enable)) {
ice->state.dirty |= IRIS_ALL_DIRTY_FOR_RENDER;
ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_RENDER;
}
if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_COMPUTE], enable)) {
ice->state.dirty |= IRIS_ALL_DIRTY_FOR_COMPUTE;
ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_COMPUTE;
}
}
void
genX(init_screen_state)(struct iris_screen *screen)
{
assert(screen->devinfo->verx10 == GFX_VERx10);
screen->vtbl.destroy_state = iris_destroy_state;
screen->vtbl.init_render_context = iris_init_render_context;
screen->vtbl.init_compute_context = iris_init_compute_context;
screen->vtbl.init_copy_context = iris_init_copy_context;
screen->vtbl.upload_render_state = iris_upload_render_state;
screen->vtbl.upload_indirect_render_state = iris_upload_indirect_render_state;
screen->vtbl.upload_indirect_shader_render_state = iris_upload_indirect_shader_render_state;
screen->vtbl.update_binder_address = iris_update_binder_address;
screen->vtbl.upload_compute_state = iris_upload_compute_state;
screen->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
screen->vtbl.rewrite_compute_walker_pc = iris_rewrite_compute_walker_pc;
screen->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
screen->vtbl.rebind_buffer = iris_rebind_buffer;
screen->vtbl.load_register_reg32 = iris_load_register_reg32;
screen->vtbl.load_register_reg64 = iris_load_register_reg64;
screen->vtbl.load_register_imm32 = iris_load_register_imm32;
screen->vtbl.load_register_imm64 = iris_load_register_imm64;
screen->vtbl.load_register_mem32 = iris_load_register_mem32;
screen->vtbl.load_register_mem64 = iris_load_register_mem64;
screen->vtbl.store_register_mem32 = iris_store_register_mem32;
screen->vtbl.store_register_mem64 = iris_store_register_mem64;
screen->vtbl.store_data_imm32 = iris_store_data_imm32;
screen->vtbl.store_data_imm64 = iris_store_data_imm64;
screen->vtbl.copy_mem_mem = iris_copy_mem_mem;
screen->vtbl.derived_program_state_size = iris_derived_program_state_size;
screen->vtbl.store_derived_program_state = iris_store_derived_program_state;
screen->vtbl.create_so_decl_list = iris_create_so_decl_list;
screen->vtbl.populate_vs_key = iris_populate_vs_key;
screen->vtbl.populate_tcs_key = iris_populate_tcs_key;
screen->vtbl.populate_tes_key = iris_populate_tes_key;
screen->vtbl.populate_gs_key = iris_populate_gs_key;
screen->vtbl.populate_fs_key = iris_populate_fs_key;
screen->vtbl.populate_cs_key = iris_populate_cs_key;
screen->vtbl.lost_genx_state = iris_lost_genx_state;
screen->vtbl.disable_rhwo_optimization = iris_disable_rhwo_optimization;
}
void
genX(init_state)(struct iris_context *ice)
{
struct pipe_context *ctx = &ice->ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
ctx->create_blend_state = iris_create_blend_state;
ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
ctx->create_rasterizer_state = iris_create_rasterizer_state;
ctx->create_sampler_state = iris_create_sampler_state;
ctx->create_sampler_view = iris_create_sampler_view;
ctx->create_surface = iris_create_surface;
ctx->create_vertex_elements_state = iris_create_vertex_elements;
ctx->bind_blend_state = iris_bind_blend_state;
ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
ctx->bind_sampler_states = iris_bind_sampler_states;
ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
ctx->delete_blend_state = iris_delete_state;
ctx->delete_depth_stencil_alpha_state = iris_delete_state;
ctx->delete_rasterizer_state = iris_delete_state;
ctx->delete_sampler_state = iris_delete_state;
ctx->delete_vertex_elements_state = iris_delete_state;
ctx->set_blend_color = iris_set_blend_color;
ctx->set_clip_state = iris_set_clip_state;
ctx->set_constant_buffer = iris_set_constant_buffer;
ctx->set_shader_buffers = iris_set_shader_buffers;
ctx->set_shader_images = iris_set_shader_images;
ctx->set_sampler_views = iris_set_sampler_views;
ctx->set_global_binding = iris_set_global_binding;
ctx->set_tess_state = iris_set_tess_state;
ctx->set_patch_vertices = iris_set_patch_vertices;
ctx->set_framebuffer_state = iris_set_framebuffer_state;
ctx->set_polygon_stipple = iris_set_polygon_stipple;
ctx->set_sample_mask = iris_set_sample_mask;
ctx->set_scissor_states = iris_set_scissor_states;
ctx->set_stencil_ref = iris_set_stencil_ref;
ctx->set_vertex_buffers = iris_set_vertex_buffers;
ctx->set_viewport_states = iris_set_viewport_states;
ctx->sampler_view_destroy = iris_sampler_view_destroy;
ctx->sampler_view_release = u_default_sampler_view_release;
ctx->resource_release = u_default_resource_release;
ctx->surface_destroy = iris_surface_destroy;
ctx->draw_vbo = iris_draw_vbo;
ctx->launch_grid = iris_launch_grid;
ctx->create_stream_output_target = iris_create_stream_output_target;
ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
ctx->set_stream_output_targets = iris_set_stream_output_targets;
ctx->set_frontend_noop = iris_set_frontend_noop;
ice->state.dirty = ~0ull;
ice->state.stage_dirty = ~0ull;
ice->state.statistics_counters_enabled = true;
ice->state.sample_mask = 0xffff;
ice->state.num_viewports = 1;
ice->state.prim_mode = MESA_PRIM_COUNT;
ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
ice->draw.derived_params.drawid = -1;
#if GFX_VERx10 >= 120
ice->state.genx->object_preemption = true;
#endif
/* Make a 1x1x1 null surface for unbound textures */
void *null_surf_map =
upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
4 * GENX(RENDER_SURFACE_STATE_length), 64);
isl_null_fill_state(&screen->isl_dev, null_surf_map,
.size = isl_extent3d(1, 1, 1));
ice->state.unbound_tex.offset +=
iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
/* Default all scissor rectangles to be empty regions. */
for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
ice->state.scissors[i] = (struct iris_scissor_state) {
.minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
};
}
}