mesa/src/glsl/lower_instructions.cpp
Eric Anholt 10ef949424 glsl: Hide many classes local to individual .cpp files in anon namespaces.
This gives the compiler the chance to inline and not export class symbols
even in the absence of LTO.  Saves about 60kb on disk.

Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
Reviewed-by: Ian Romanick <ian.d.romanick@.intel.com>
2013-09-23 12:45:22 -07:00

518 lines
16 KiB
C++

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file lower_instructions.cpp
*
* Many GPUs lack native instructions for certain expression operations, and
* must replace them with some other expression tree. This pass lowers some
* of the most common cases, allowing the lowering code to be implemented once
* rather than in each driver backend.
*
* Currently supported transformations:
* - SUB_TO_ADD_NEG
* - DIV_TO_MUL_RCP
* - INT_DIV_TO_MUL_RCP
* - EXP_TO_EXP2
* - POW_TO_EXP2
* - LOG_TO_LOG2
* - MOD_TO_FRACT
* - LDEXP_TO_ARITH
* - LRP_TO_ARITH
* - BITFIELD_INSERT_TO_BFM_BFI
*
* SUB_TO_ADD_NEG:
* ---------------
* Breaks an ir_binop_sub expression down to add(op0, neg(op1))
*
* This simplifies expression reassociation, and for many backends
* there is no subtract operation separate from adding the negation.
* For backends with native subtract operations, they will probably
* want to recognize add(op0, neg(op1)) or the other way around to
* produce a subtract anyway.
*
* DIV_TO_MUL_RCP and INT_DIV_TO_MUL_RCP:
* --------------------------------------
* Breaks an ir_binop_div expression down to op0 * (rcp(op1)).
*
* Many GPUs don't have a divide instruction (945 and 965 included),
* but they do have an RCP instruction to compute an approximate
* reciprocal. By breaking the operation down, constant reciprocals
* can get constant folded.
*
* DIV_TO_MUL_RCP only lowers floating point division; INT_DIV_TO_MUL_RCP
* handles the integer case, converting to and from floating point so that
* RCP is possible.
*
* EXP_TO_EXP2 and LOG_TO_LOG2:
* ----------------------------
* Many GPUs don't have a base e log or exponent instruction, but they
* do have base 2 versions, so this pass converts exp and log to exp2
* and log2 operations.
*
* POW_TO_EXP2:
* -----------
* Many older GPUs don't have an x**y instruction. For these GPUs, convert
* x**y to 2**(y * log2(x)).
*
* MOD_TO_FRACT:
* -------------
* Breaks an ir_binop_mod expression down to (op1 * fract(op0 / op1))
*
* Many GPUs don't have a MOD instruction (945 and 965 included), and
* if we have to break it down like this anyway, it gives an
* opportunity to do things like constant fold the (1.0 / op1) easily.
*
* LDEXP_TO_ARITH:
* -------------
* Converts ir_binop_ldexp to arithmetic and bit operations.
*
* LRP_TO_ARITH:
* -------------
* Converts ir_triop_lrp to (op0 * (1.0f - op2)) + (op1 * op2).
*
* BITFIELD_INSERT_TO_BFM_BFI:
* ---------------------------
* Breaks ir_quadop_bitfield_insert into ir_binop_bfm (bitfield mask) and
* ir_triop_bfi (bitfield insert).
*
* Many GPUs implement the bitfieldInsert() built-in from ARB_gpu_shader_5
* with a pair of instructions.
*
*/
#include "main/core.h" /* for M_LOG2E */
#include "glsl_types.h"
#include "ir.h"
#include "ir_builder.h"
#include "ir_optimization.h"
using namespace ir_builder;
namespace {
class lower_instructions_visitor : public ir_hierarchical_visitor {
public:
lower_instructions_visitor(unsigned lower)
: progress(false), lower(lower) { }
ir_visitor_status visit_leave(ir_expression *);
bool progress;
private:
unsigned lower; /** Bitfield of which operations to lower */
void sub_to_add_neg(ir_expression *);
void div_to_mul_rcp(ir_expression *);
void int_div_to_mul_rcp(ir_expression *);
void mod_to_fract(ir_expression *);
void exp_to_exp2(ir_expression *);
void pow_to_exp2(ir_expression *);
void log_to_log2(ir_expression *);
void lrp_to_arith(ir_expression *);
void bitfield_insert_to_bfm_bfi(ir_expression *);
void ldexp_to_arith(ir_expression *);
};
} /* anonymous namespace */
/**
* Determine if a particular type of lowering should occur
*/
#define lowering(x) (this->lower & x)
bool
lower_instructions(exec_list *instructions, unsigned what_to_lower)
{
lower_instructions_visitor v(what_to_lower);
visit_list_elements(&v, instructions);
return v.progress;
}
void
lower_instructions_visitor::sub_to_add_neg(ir_expression *ir)
{
ir->operation = ir_binop_add;
ir->operands[1] = new(ir) ir_expression(ir_unop_neg, ir->operands[1]->type,
ir->operands[1], NULL);
this->progress = true;
}
void
lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
{
assert(ir->operands[1]->type->is_float());
/* New expression for the 1.0 / op1 */
ir_rvalue *expr;
expr = new(ir) ir_expression(ir_unop_rcp,
ir->operands[1]->type,
ir->operands[1]);
/* op0 / op1 -> op0 * (1.0 / op1) */
ir->operation = ir_binop_mul;
ir->operands[1] = expr;
this->progress = true;
}
void
lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir)
{
assert(ir->operands[1]->type->is_integer());
/* Be careful with integer division -- we need to do it as a
* float and re-truncate, since rcp(n > 1) of an integer would
* just be 0.
*/
ir_rvalue *op0, *op1;
const struct glsl_type *vec_type;
vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
ir->operands[1]->type->vector_elements,
ir->operands[1]->type->matrix_columns);
if (ir->operands[1]->type->base_type == GLSL_TYPE_INT)
op1 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[1], NULL);
else
op1 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[1], NULL);
op1 = new(ir) ir_expression(ir_unop_rcp, op1->type, op1, NULL);
vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
ir->operands[0]->type->vector_elements,
ir->operands[0]->type->matrix_columns);
if (ir->operands[0]->type->base_type == GLSL_TYPE_INT)
op0 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[0], NULL);
else
op0 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[0], NULL);
vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
ir->type->vector_elements,
ir->type->matrix_columns);
op0 = new(ir) ir_expression(ir_binop_mul, vec_type, op0, op1);
if (ir->operands[1]->type->base_type == GLSL_TYPE_INT) {
ir->operation = ir_unop_f2i;
ir->operands[0] = op0;
} else {
ir->operation = ir_unop_i2u;
ir->operands[0] = new(ir) ir_expression(ir_unop_f2i, op0);
}
ir->operands[1] = NULL;
this->progress = true;
}
void
lower_instructions_visitor::exp_to_exp2(ir_expression *ir)
{
ir_constant *log2_e = new(ir) ir_constant(float(M_LOG2E));
ir->operation = ir_unop_exp2;
ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[0]->type,
ir->operands[0], log2_e);
this->progress = true;
}
void
lower_instructions_visitor::pow_to_exp2(ir_expression *ir)
{
ir_expression *const log2_x =
new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
ir->operands[0]);
ir->operation = ir_unop_exp2;
ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[1]->type,
ir->operands[1], log2_x);
ir->operands[1] = NULL;
this->progress = true;
}
void
lower_instructions_visitor::log_to_log2(ir_expression *ir)
{
ir->operation = ir_binop_mul;
ir->operands[0] = new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
ir->operands[0], NULL);
ir->operands[1] = new(ir) ir_constant(float(1.0 / M_LOG2E));
this->progress = true;
}
void
lower_instructions_visitor::mod_to_fract(ir_expression *ir)
{
ir_variable *temp = new(ir) ir_variable(ir->operands[1]->type, "mod_b",
ir_var_temporary);
this->base_ir->insert_before(temp);
ir_assignment *const assign =
new(ir) ir_assignment(new(ir) ir_dereference_variable(temp),
ir->operands[1], NULL);
this->base_ir->insert_before(assign);
ir_expression *const div_expr =
new(ir) ir_expression(ir_binop_div, ir->operands[0]->type,
ir->operands[0],
new(ir) ir_dereference_variable(temp));
/* Don't generate new IR that would need to be lowered in an additional
* pass.
*/
if (lowering(DIV_TO_MUL_RCP))
div_to_mul_rcp(div_expr);
ir_rvalue *expr = new(ir) ir_expression(ir_unop_fract,
ir->operands[0]->type,
div_expr,
NULL);
ir->operation = ir_binop_mul;
ir->operands[0] = new(ir) ir_dereference_variable(temp);
ir->operands[1] = expr;
this->progress = true;
}
void
lower_instructions_visitor::lrp_to_arith(ir_expression *ir)
{
/* (lrp x y a) -> x*(1-a) + y*a */
/* Save op2 */
ir_variable *temp = new(ir) ir_variable(ir->operands[2]->type, "lrp_factor",
ir_var_temporary);
this->base_ir->insert_before(temp);
this->base_ir->insert_before(assign(temp, ir->operands[2]));
ir_constant *one = new(ir) ir_constant(1.0f);
ir->operation = ir_binop_add;
ir->operands[0] = mul(ir->operands[0], sub(one, temp));
ir->operands[1] = mul(ir->operands[1], temp);
ir->operands[2] = NULL;
this->progress = true;
}
void
lower_instructions_visitor::bitfield_insert_to_bfm_bfi(ir_expression *ir)
{
/* Translates
* ir_quadop_bitfield_insert base insert offset bits
* into
* ir_triop_bfi (ir_binop_bfm bits offset) insert base
*/
ir_rvalue *base_expr = ir->operands[0];
ir->operation = ir_triop_bfi;
ir->operands[0] = new(ir) ir_expression(ir_binop_bfm,
ir->type->get_base_type(),
ir->operands[3],
ir->operands[2]);
/* ir->operands[1] is still the value to insert. */
ir->operands[2] = base_expr;
ir->operands[3] = NULL;
this->progress = true;
}
void
lower_instructions_visitor::ldexp_to_arith(ir_expression *ir)
{
/* Translates
* ir_binop_ldexp x exp
* into
*
* extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
* resulting_biased_exp = extracted_biased_exp + exp;
*
* if (resulting_biased_exp < 1) {
* return copysign(0.0, x);
* }
*
* return bitcast_u2f((bitcast_f2u(x) & sign_mantissa_mask) |
* lshift(i2u(resulting_biased_exp), exp_shift));
*
* which we can't actually implement as such, since the GLSL IR doesn't
* have vectorized if-statements. We actually implement it without branches
* using conditional-select:
*
* extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
* resulting_biased_exp = extracted_biased_exp + exp;
*
* is_not_zero_or_underflow = gequal(resulting_biased_exp, 1);
* x = csel(is_not_zero_or_underflow, x, copysign(0.0f, x));
* resulting_biased_exp = csel(is_not_zero_or_underflow,
* resulting_biased_exp, 0);
*
* return bitcast_u2f((bitcast_f2u(x) & sign_mantissa_mask) |
* lshift(i2u(resulting_biased_exp), exp_shift));
*/
const unsigned vec_elem = ir->type->vector_elements;
/* Types */
const glsl_type *ivec = glsl_type::get_instance(GLSL_TYPE_INT, vec_elem, 1);
const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
/* Constants */
ir_constant *zeroi = ir_constant::zero(ir, ivec);
ir_constant *zerof = ir_constant::zero(ir, ir->type);
ir_constant *sign_mantissa_mask = new(ir) ir_constant(0x807fffffu, vec_elem);
ir_constant *sign_mask = new(ir) ir_constant(0x80000000u, vec_elem);
ir_constant *exp_shift = new(ir) ir_constant(23u, vec_elem);
/* Temporary variables */
ir_variable *x = new(ir) ir_variable(ir->type, "x", ir_var_temporary);
ir_variable *exp = new(ir) ir_variable(ivec, "exp", ir_var_temporary);
ir_variable *zero_sign_x = new(ir) ir_variable(ir->type, "zero_sign_x",
ir_var_temporary);
ir_variable *extracted_biased_exp =
new(ir) ir_variable(ivec, "extracted_biased_exp", ir_var_temporary);
ir_variable *resulting_biased_exp =
new(ir) ir_variable(ivec, "resulting_biased_exp", ir_var_temporary);
ir_variable *is_not_zero_or_underflow =
new(ir) ir_variable(bvec, "is_not_zero_or_underflow", ir_var_temporary);
ir_instruction &i = *base_ir;
/* Copy <x> and <exp> arguments. */
i.insert_before(x);
i.insert_before(assign(x, ir->operands[0]));
i.insert_before(exp);
i.insert_before(assign(exp, ir->operands[1]));
/* Extract the biased exponent from <x>. */
i.insert_before(extracted_biased_exp);
i.insert_before(assign(extracted_biased_exp,
rshift(bitcast_f2i(abs(x)), exp_shift)));
i.insert_before(resulting_biased_exp);
i.insert_before(assign(resulting_biased_exp,
add(extracted_biased_exp, exp)));
/* Test if result is ±0.0, subnormal, or underflow by checking if the
* resulting biased exponent would be less than 0x1. If so, the result is
* 0.0 with the sign of x. (Actually, invert the conditions so that
* immediate values are the second arguments, which is better for i965)
*/
i.insert_before(zero_sign_x);
i.insert_before(assign(zero_sign_x,
bitcast_u2f(bit_or(bit_and(bitcast_f2u(x), sign_mask),
bitcast_f2u(zerof)))));
i.insert_before(is_not_zero_or_underflow);
i.insert_before(assign(is_not_zero_or_underflow,
gequal(resulting_biased_exp,
new(ir) ir_constant(0x1, vec_elem))));
i.insert_before(assign(x, csel(is_not_zero_or_underflow,
x, zero_sign_x)));
i.insert_before(assign(resulting_biased_exp,
csel(is_not_zero_or_underflow,
resulting_biased_exp, zeroi)));
/* We could test for overflows by checking if the resulting biased exponent
* would be greater than 0xFE. Turns out we don't need to because the GLSL
* spec says:
*
* "If this product is too large to be represented in the
* floating-point type, the result is undefined."
*/
ir_constant *exp_shift_clone = exp_shift->clone(ir, NULL);
ir->operation = ir_unop_bitcast_u2f;
ir->operands[0] = bit_or(bit_and(bitcast_f2u(x), sign_mantissa_mask),
lshift(i2u(resulting_biased_exp), exp_shift_clone));
ir->operands[1] = NULL;
this->progress = true;
}
ir_visitor_status
lower_instructions_visitor::visit_leave(ir_expression *ir)
{
switch (ir->operation) {
case ir_binop_sub:
if (lowering(SUB_TO_ADD_NEG))
sub_to_add_neg(ir);
break;
case ir_binop_div:
if (ir->operands[1]->type->is_integer() && lowering(INT_DIV_TO_MUL_RCP))
int_div_to_mul_rcp(ir);
else if (ir->operands[1]->type->is_float() && lowering(DIV_TO_MUL_RCP))
div_to_mul_rcp(ir);
break;
case ir_unop_exp:
if (lowering(EXP_TO_EXP2))
exp_to_exp2(ir);
break;
case ir_unop_log:
if (lowering(LOG_TO_LOG2))
log_to_log2(ir);
break;
case ir_binop_mod:
if (lowering(MOD_TO_FRACT) && ir->type->is_float())
mod_to_fract(ir);
break;
case ir_binop_pow:
if (lowering(POW_TO_EXP2))
pow_to_exp2(ir);
break;
case ir_triop_lrp:
if (lowering(LRP_TO_ARITH))
lrp_to_arith(ir);
break;
case ir_quadop_bitfield_insert:
if (lowering(BITFIELD_INSERT_TO_BFM_BFI))
bitfield_insert_to_bfm_bfi(ir);
break;
case ir_binop_ldexp:
if (lowering(LDEXP_TO_ARITH))
ldexp_to_arith(ir);
break;
default:
return visit_continue;
}
return visit_continue;
}