mesa/src/intel/vulkan/gfx7_cmd_buffer.c
Vadym Shovkoplias 732cfa525f anv: Include viewport size in scissor rectangle
Prevent drawing outside the viewport when viewport size
is smaller than framebuffer size.

v2: (Jason Ekstrand)
- re-emit scissor on viewport change
- do the same calculations for other platforms

Closes: https://gitlab.freedesktop.org/mesa/mesa/-/issues/5515
Signed-off-by: Vadym Shovkoplias <vadym.shovkoplias@globallogic.com>
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/13594>
2021-11-03 17:48:10 +00:00

481 lines
19 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
#include "vk_format.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
#if GFX_VERx10 == 70
static int64_t
clamp_int64(int64_t x, int64_t min, int64_t max)
{
if (x < min)
return min;
else if (x < max)
return x;
else
return max;
}
void
gfx7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
uint32_t count = cmd_buffer->state.gfx.dynamic.scissor.count;
const VkRect2D *scissors = cmd_buffer->state.gfx.dynamic.scissor.scissors;
const VkViewport *viewports =
cmd_buffer->state.gfx.dynamic.viewport.viewports;
/* Wa_1409725701:
* "The viewport-specific state used by the SF unit (SCISSOR_RECT) is
* stored as an array of up to 16 elements. The location of first
* element of the array, as specified by Pointer to SCISSOR_RECT, should
* be aligned to a 64-byte boundary.
*/
uint32_t alignment = 64;
struct anv_state scissor_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, alignment);
for (uint32_t i = 0; i < count; i++) {
const VkRect2D *s = &scissors[i];
const VkViewport *vp = &viewports[i];
/* Since xmax and ymax are inclusive, we have to have xmax < xmin or
* ymax < ymin for empty clips. In case clip x, y, width height are all
* 0, the clamps below produce 0 for xmin, ymin, xmax, ymax, which isn't
* what we want. Just special case empty clips and produce a canonical
* empty clip. */
static const struct GFX7_SCISSOR_RECT empty_scissor = {
.ScissorRectangleYMin = 1,
.ScissorRectangleXMin = 1,
.ScissorRectangleYMax = 0,
.ScissorRectangleXMax = 0
};
const int max = 0xffff;
uint32_t y_min = MAX2(s->offset.y, MIN2(vp->y, vp->y + vp->height));
uint32_t x_min = MAX2(s->offset.x, vp->x);
uint32_t y_max = MIN2(s->offset.y + s->extent.height - 1,
MAX2(vp->y, vp->y + vp->height) - 1);
uint32_t x_max = MIN2(s->offset.x + s->extent.width - 1,
vp->x + vp->width - 1);
/* Do this math using int64_t so overflow gets clamped correctly. */
if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
y_min = clamp_int64((uint64_t) y_min,
cmd_buffer->state.render_area.offset.y, max);
x_min = clamp_int64((uint64_t) x_min,
cmd_buffer->state.render_area.offset.x, max);
y_max = clamp_int64((uint64_t) y_max, 0,
cmd_buffer->state.render_area.offset.y +
cmd_buffer->state.render_area.extent.height - 1);
x_max = clamp_int64((uint64_t) x_max, 0,
cmd_buffer->state.render_area.offset.x +
cmd_buffer->state.render_area.extent.width - 1);
} else if (fb) {
y_min = clamp_int64((uint64_t) y_min, 0, max);
x_min = clamp_int64((uint64_t) x_min, 0, max);
y_max = clamp_int64((uint64_t) y_max, 0, fb->height - 1);
x_max = clamp_int64((uint64_t) x_max, 0, fb->width - 1);
}
struct GFX7_SCISSOR_RECT scissor = {
.ScissorRectangleYMin = y_min,
.ScissorRectangleXMin = x_min,
.ScissorRectangleYMax = y_max,
.ScissorRectangleXMax = x_max
};
if (s->extent.width <= 0 || s->extent.height <= 0) {
GFX7_SCISSOR_RECT_pack(NULL, scissor_state.map + i * 8,
&empty_scissor);
} else {
GFX7_SCISSOR_RECT_pack(NULL, scissor_state.map + i * 8, &scissor);
}
}
anv_batch_emit(&cmd_buffer->batch,
GFX7_3DSTATE_SCISSOR_STATE_POINTERS, ssp) {
ssp.ScissorRectPointer = scissor_state.offset;
}
}
#endif
static uint32_t vk_to_intel_index_type(VkIndexType type)
{
switch (type) {
case VK_INDEX_TYPE_UINT8_EXT:
return INDEX_BYTE;
case VK_INDEX_TYPE_UINT16:
return INDEX_WORD;
case VK_INDEX_TYPE_UINT32:
return INDEX_DWORD;
default:
unreachable("invalid index type");
}
}
static uint32_t restart_index_for_type(VkIndexType type)
{
switch (type) {
case VK_INDEX_TYPE_UINT8_EXT:
return UINT8_MAX;
case VK_INDEX_TYPE_UINT16:
return UINT16_MAX;
case VK_INDEX_TYPE_UINT32:
return UINT32_MAX;
default:
unreachable("invalid index type");
}
}
void genX(CmdBindIndexBuffer)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkIndexType indexType)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER;
if (GFX_VERx10 == 75)
cmd_buffer->state.restart_index = restart_index_for_type(indexType);
cmd_buffer->state.gfx.gfx7.index_buffer = buffer;
cmd_buffer->state.gfx.gfx7.index_type = vk_to_intel_index_type(indexType);
cmd_buffer->state.gfx.gfx7.index_offset = offset;
}
static uint32_t
get_depth_format(struct anv_cmd_buffer *cmd_buffer)
{
const struct anv_render_pass *pass = cmd_buffer->state.pass;
const struct anv_subpass *subpass = cmd_buffer->state.subpass;
if (!subpass->depth_stencil_attachment)
return D16_UNORM;
struct anv_render_pass_attachment *att =
&pass->attachments[subpass->depth_stencil_attachment->attachment];
switch (att->format) {
case VK_FORMAT_D16_UNORM:
case VK_FORMAT_D16_UNORM_S8_UINT:
return D16_UNORM;
case VK_FORMAT_X8_D24_UNORM_PACK32:
case VK_FORMAT_D24_UNORM_S8_UINT:
return D24_UNORM_X8_UINT;
case VK_FORMAT_D32_SFLOAT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
return D32_FLOAT;
default:
return D16_UNORM;
}
}
void
genX(cmd_buffer_flush_dynamic_state)(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
struct anv_dynamic_state *d = &cmd_buffer->state.gfx.dynamic;
if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY) {
uint32_t topology;
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
topology = pipeline->topology;
else
topology = genX(vk_to_intel_primitive_type)[d->primitive_topology];
cmd_buffer->state.gfx.primitive_topology = topology;
}
if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_RENDER_TARGETS |
ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH |
ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS |
ANV_CMD_DIRTY_DYNAMIC_CULL_MODE |
ANV_CMD_DIRTY_DYNAMIC_FRONT_FACE |
ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS_ENABLE |
ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY)) {
/* Take dynamic primitive topology in to account with
* 3DSTATE_SF::MultisampleRasterizationMode
*/
uint32_t ms_rast_mode = 0;
if (cmd_buffer->state.gfx.pipeline->dynamic_states &
ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY) {
VkPrimitiveTopology primitive_topology =
cmd_buffer->state.gfx.dynamic.primitive_topology;
VkPolygonMode dynamic_raster_mode =
genX(raster_polygon_mode)(cmd_buffer->state.gfx.pipeline,
primitive_topology);
ms_rast_mode =
genX(ms_rasterization_mode)(pipeline, dynamic_raster_mode);
}
uint32_t sf_dw[GENX(3DSTATE_SF_length)];
struct GENX(3DSTATE_SF) sf = {
GENX(3DSTATE_SF_header),
.DepthBufferSurfaceFormat = get_depth_format(cmd_buffer),
.LineWidth = d->line_width,
.GlobalDepthOffsetConstant = d->depth_bias.bias,
.GlobalDepthOffsetScale = d->depth_bias.slope,
.GlobalDepthOffsetClamp = d->depth_bias.clamp,
.FrontWinding = genX(vk_to_intel_front_face)[d->front_face],
.CullMode = genX(vk_to_intel_cullmode)[d->cull_mode],
.GlobalDepthOffsetEnableSolid = d->depth_bias_enable,
.GlobalDepthOffsetEnableWireframe = d->depth_bias_enable,
.GlobalDepthOffsetEnablePoint = d->depth_bias_enable,
.MultisampleRasterizationMode = ms_rast_mode,
};
GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf);
anv_batch_emit_merge(&cmd_buffer->batch, sf_dw, pipeline->gfx7.sf);
}
if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
struct anv_state cc_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
GENX(COLOR_CALC_STATE_length) * 4,
64);
struct GENX(COLOR_CALC_STATE) cc = {
.BlendConstantColorRed = d->blend_constants[0],
.BlendConstantColorGreen = d->blend_constants[1],
.BlendConstantColorBlue = d->blend_constants[2],
.BlendConstantColorAlpha = d->blend_constants[3],
.StencilReferenceValue = d->stencil_reference.front & 0xff,
.BackfaceStencilReferenceValue = d->stencil_reference.back & 0xff,
};
GENX(COLOR_CALC_STATE_pack)(NULL, cc_state.map, &cc);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), ccp) {
ccp.ColorCalcStatePointer = cc_state.offset;
}
}
if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_LINE_STIPPLE), ls) {
ls.LineStipplePattern = d->line_stipple.pattern;
ls.LineStippleInverseRepeatCount =
1.0f / MAX2(1, d->line_stipple.factor);
ls.LineStippleRepeatCount = d->line_stipple.factor;
}
}
if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_RENDER_TARGETS |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK |
ANV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE |
ANV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE |
ANV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_OP)) {
uint32_t depth_stencil_dw[GENX(DEPTH_STENCIL_STATE_length)];
struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
.StencilTestMask = d->stencil_compare_mask.front & 0xff,
.StencilWriteMask = d->stencil_write_mask.front & 0xff,
.BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff,
.BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff,
.StencilBufferWriteEnable =
(d->stencil_write_mask.front || d->stencil_write_mask.back) &&
d->stencil_test_enable,
.DepthTestEnable = d->depth_test_enable,
.DepthBufferWriteEnable = d->depth_test_enable && d->depth_write_enable,
.DepthTestFunction = genX(vk_to_intel_compare_op)[d->depth_compare_op],
.StencilTestEnable = d->stencil_test_enable,
.StencilFailOp = genX(vk_to_intel_stencil_op)[d->stencil_op.front.fail_op],
.StencilPassDepthPassOp = genX(vk_to_intel_stencil_op)[d->stencil_op.front.pass_op],
.StencilPassDepthFailOp = genX(vk_to_intel_stencil_op)[d->stencil_op.front.depth_fail_op],
.StencilTestFunction = genX(vk_to_intel_compare_op)[d->stencil_op.front.compare_op],
.BackfaceStencilFailOp = genX(vk_to_intel_stencil_op)[d->stencil_op.back.fail_op],
.BackfaceStencilPassDepthPassOp = genX(vk_to_intel_stencil_op)[d->stencil_op.back.pass_op],
.BackfaceStencilPassDepthFailOp = genX(vk_to_intel_stencil_op)[d->stencil_op.back.depth_fail_op],
.BackfaceStencilTestFunction = genX(vk_to_intel_compare_op)[d->stencil_op.back.compare_op],
};
GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
struct anv_state ds_state =
anv_cmd_buffer_merge_dynamic(cmd_buffer, depth_stencil_dw,
pipeline->gfx7.depth_stencil_state,
GENX(DEPTH_STENCIL_STATE_length), 64);
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), dsp) {
dsp.PointertoDEPTH_STENCIL_STATE = ds_state.offset;
}
}
if (cmd_buffer->state.gfx.gfx7.index_buffer &&
cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_INDEX_BUFFER |
ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_RESTART_ENABLE)) {
struct anv_buffer *buffer = cmd_buffer->state.gfx.gfx7.index_buffer;
uint32_t offset = cmd_buffer->state.gfx.gfx7.index_offset;
#if GFX_VERx10 == 75
anv_batch_emit(&cmd_buffer->batch, GFX75_3DSTATE_VF, vf) {
vf.IndexedDrawCutIndexEnable = d->primitive_restart_enable;
vf.CutIndex = cmd_buffer->state.restart_index;
}
#endif
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
#if GFX_VERx10 != 75
ib.CutIndexEnable = d->primitive_restart_enable;
#endif
ib.IndexFormat = cmd_buffer->state.gfx.gfx7.index_type;
ib.MOCS = anv_mocs(cmd_buffer->device,
buffer->address.bo,
ISL_SURF_USAGE_INDEX_BUFFER_BIT);
ib.BufferStartingAddress = anv_address_add(buffer->address, offset);
ib.BufferEndingAddress = anv_address_add(buffer->address,
buffer->size);
}
}
/* 3DSTATE_WM in the hope we can avoid spawning fragment shaders
* threads or if we have dirty dynamic primitive topology state and
* need to toggle 3DSTATE_WM::MultisampleRasterizationMode dynamically.
*/
if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_COLOR_BLEND_STATE ||
cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY) {
const uint8_t color_writes = cmd_buffer->state.gfx.dynamic.color_writes;
bool dirty_color_blend =
cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_COLOR_BLEND_STATE;
bool dirty_primitive_topology =
cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY;
VkPolygonMode dynamic_raster_mode;
VkPrimitiveTopology primitive_topology =
cmd_buffer->state.gfx.dynamic.primitive_topology;
dynamic_raster_mode =
genX(raster_polygon_mode)(cmd_buffer->state.gfx.pipeline,
primitive_topology);
if (dirty_color_blend || dirty_primitive_topology) {
uint32_t dwords[GENX(3DSTATE_WM_length)];
struct GENX(3DSTATE_WM) wm = {
GENX(3DSTATE_WM_header),
.ThreadDispatchEnable = pipeline->force_fragment_thread_dispatch ||
color_writes,
.MultisampleRasterizationMode =
genX(ms_rasterization_mode)(pipeline, dynamic_raster_mode),
};
GENX(3DSTATE_WM_pack)(NULL, dwords, &wm);
anv_batch_emit_merge(&cmd_buffer->batch, dwords, pipeline->gfx7.wm);
}
}
if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_SAMPLE_LOCATIONS) {
genX(emit_multisample)(&cmd_buffer->batch,
cmd_buffer->state.gfx.dynamic.sample_locations.samples,
cmd_buffer->state.gfx.dynamic.sample_locations.locations);
}
if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_COLOR_BLEND_STATE ||
cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_LOGIC_OP) {
const uint8_t color_writes = cmd_buffer->state.gfx.dynamic.color_writes;
bool dirty_color_blend =
cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_COLOR_BLEND_STATE;
/* Blend states of each RT */
uint32_t surface_count = 0;
struct anv_pipeline_bind_map *map;
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
surface_count = map->surface_count;
}
uint32_t blend_dws[GENX(BLEND_STATE_length) +
MAX_RTS * GENX(BLEND_STATE_ENTRY_length)];
uint32_t *dws = blend_dws;
memset(blend_dws, 0, sizeof(blend_dws));
/* Skip this part */
dws += GENX(BLEND_STATE_length);
bool dirty_logic_op =
cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_LOGIC_OP;
for (uint32_t i = 0; i < surface_count; i++) {
struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
bool write_disabled =
dirty_color_blend && (color_writes & (1u << binding->index)) == 0;
struct GENX(BLEND_STATE_ENTRY) entry = {
.WriteDisableAlpha = write_disabled,
.WriteDisableRed = write_disabled,
.WriteDisableGreen = write_disabled,
.WriteDisableBlue = write_disabled,
.LogicOpFunction =
dirty_logic_op ? genX(vk_to_intel_logic_op)[d->logic_op] : 0,
};
GENX(BLEND_STATE_ENTRY_pack)(NULL, dws, &entry);
dws += GENX(BLEND_STATE_ENTRY_length);
}
uint32_t num_dwords = GENX(BLEND_STATE_length) +
GENX(BLEND_STATE_ENTRY_length) * surface_count;
struct anv_state blend_states =
anv_cmd_buffer_merge_dynamic(cmd_buffer, blend_dws,
pipeline->gfx7.blend_state, num_dwords, 64);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
bsp.BlendStatePointer = blend_states.offset;
}
}
cmd_buffer->state.gfx.dirty = 0;
}
void
genX(cmd_buffer_enable_pma_fix)(struct anv_cmd_buffer *cmd_buffer,
bool enable)
{
/* The NP PMA fix doesn't exist on gfx7 */
}