mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-22 02:40:11 +01:00
And fix all callers to use the tallbac-based new for exec_node construction. We make ready use of talloc_parent in order to get valid, (and appropriate) talloc owners for everything we construct without having to add new 'ctx' parameters up and down all the call trees. This closes the majority of the memory leaks in the glsl-orangebook-ch06-bump.frag test: total heap usage: 55,623 allocs, 42,672 frees (was 14,533 frees) Now 76.7% leak-free. Woo-hoo!
748 lines
24 KiB
C++
748 lines
24 KiB
C++
/*
|
|
* Copyright © 2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "glsl_symbol_table.h"
|
|
#include "ast.h"
|
|
#include "glsl_types.h"
|
|
#include "ir.h"
|
|
|
|
static unsigned
|
|
process_parameters(exec_list *instructions, exec_list *actual_parameters,
|
|
exec_list *parameters,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
unsigned count = 0;
|
|
|
|
foreach_list (n, parameters) {
|
|
ast_node *const ast = exec_node_data(ast_node, n, link);
|
|
ir_rvalue *result = ast->hir(instructions, state);
|
|
|
|
ir_constant *const constant = result->constant_expression_value();
|
|
if (constant != NULL)
|
|
result = constant;
|
|
|
|
actual_parameters->push_tail(result);
|
|
count++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
static ir_rvalue *
|
|
process_call(exec_list *instructions, ir_function *f,
|
|
YYLTYPE *loc, exec_list *actual_parameters,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
void *ctx = talloc_parent(state);
|
|
|
|
const ir_function_signature *sig =
|
|
f->matching_signature(actual_parameters);
|
|
|
|
/* The instructions param will be used when the FINISHMEs below are done */
|
|
(void) instructions;
|
|
|
|
if (sig != NULL) {
|
|
/* Verify that 'out' and 'inout' actual parameters are lvalues. This
|
|
* isn't done in ir_function::matching_signature because that function
|
|
* cannot generate the necessary diagnostics.
|
|
*/
|
|
exec_list_iterator actual_iter = actual_parameters->iterator();
|
|
exec_list_iterator formal_iter = sig->parameters.iterator();
|
|
|
|
while (actual_iter.has_next()) {
|
|
ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
|
|
ir_variable *formal = (ir_variable *) formal_iter.get();
|
|
|
|
assert(actual != NULL);
|
|
assert(formal != NULL);
|
|
|
|
if ((formal->mode == ir_var_out)
|
|
|| (formal->mode == ir_var_inout)) {
|
|
if (! actual->is_lvalue()) {
|
|
/* FINISHME: Log a better diagnostic here. There is no way
|
|
* FINISHME: to tell the user which parameter is invalid.
|
|
*/
|
|
_mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
|
|
(formal->mode == ir_var_out) ? "out" : "inout");
|
|
}
|
|
}
|
|
|
|
actual_iter.next();
|
|
formal_iter.next();
|
|
}
|
|
|
|
/* FINISHME: The list of actual parameters needs to be modified to
|
|
* FINISHME: include any necessary conversions.
|
|
*/
|
|
return new(ctx) ir_call(sig, actual_parameters);
|
|
} else {
|
|
/* FINISHME: Log a better error message here. G++ will show the types
|
|
* FINISHME: of the actual parameters and the set of candidate
|
|
* FINISHME: functions. A different error should also be logged when
|
|
* FINISHME: multiple functions match.
|
|
*/
|
|
_mesa_glsl_error(loc, state, "no matching function for call to `%s'",
|
|
f->name);
|
|
return ir_call::get_error_instruction();
|
|
}
|
|
}
|
|
|
|
|
|
static ir_rvalue *
|
|
match_function_by_name(exec_list *instructions, const char *name,
|
|
YYLTYPE *loc, exec_list *actual_parameters,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
ir_function *f = state->symbols->get_function(name);
|
|
|
|
if (f == NULL) {
|
|
_mesa_glsl_error(loc, state, "function `%s' undeclared", name);
|
|
return ir_call::get_error_instruction();
|
|
}
|
|
|
|
/* Once we've determined that the function being called might exist, try
|
|
* to find an overload of the function that matches the parameters.
|
|
*/
|
|
return process_call(instructions, f, loc, actual_parameters, state);
|
|
}
|
|
|
|
|
|
/**
|
|
* Perform automatic type conversion of constructor parameters
|
|
*/
|
|
static ir_rvalue *
|
|
convert_component(ir_rvalue *src, const glsl_type *desired_type)
|
|
{
|
|
void *ctx = talloc_parent(src);
|
|
const unsigned a = desired_type->base_type;
|
|
const unsigned b = src->type->base_type;
|
|
ir_expression *result = NULL;
|
|
|
|
if (src->type->is_error())
|
|
return src;
|
|
|
|
assert(a <= GLSL_TYPE_BOOL);
|
|
assert(b <= GLSL_TYPE_BOOL);
|
|
|
|
if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
|
|
return src;
|
|
|
|
switch (a) {
|
|
case GLSL_TYPE_UINT:
|
|
case GLSL_TYPE_INT:
|
|
if (b == GLSL_TYPE_FLOAT)
|
|
result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
|
|
else {
|
|
assert(b == GLSL_TYPE_BOOL);
|
|
result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
|
|
}
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
switch (b) {
|
|
case GLSL_TYPE_UINT:
|
|
result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
|
|
break;
|
|
case GLSL_TYPE_INT:
|
|
result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
|
|
break;
|
|
case GLSL_TYPE_BOOL:
|
|
result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
|
|
break;
|
|
}
|
|
break;
|
|
case GLSL_TYPE_BOOL: {
|
|
ir_constant *zero = NULL;
|
|
|
|
switch (b) {
|
|
case GLSL_TYPE_UINT: zero = new(ctx) ir_constant(unsigned(0)); break;
|
|
case GLSL_TYPE_INT: zero = new(ctx) ir_constant(int(0)); break;
|
|
case GLSL_TYPE_FLOAT: zero = new(ctx) ir_constant(0.0f); break;
|
|
}
|
|
|
|
result = new(ctx) ir_expression(ir_binop_nequal, desired_type, src, zero);
|
|
}
|
|
}
|
|
|
|
assert(result != NULL);
|
|
|
|
ir_constant *const constant = result->constant_expression_value();
|
|
return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
|
|
}
|
|
|
|
|
|
/**
|
|
* Dereference a specific component from a scalar, vector, or matrix
|
|
*/
|
|
static ir_rvalue *
|
|
dereference_component(ir_rvalue *src, unsigned component)
|
|
{
|
|
void *ctx = talloc_parent(src);
|
|
assert(component < src->type->components());
|
|
|
|
/* If the source is a constant, just create a new constant instead of a
|
|
* dereference of the existing constant.
|
|
*/
|
|
ir_constant *constant = src->as_constant();
|
|
if (constant)
|
|
return new(ctx) ir_constant(constant, component);
|
|
|
|
if (src->type->is_scalar()) {
|
|
return src;
|
|
} else if (src->type->is_vector()) {
|
|
return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
|
|
} else {
|
|
assert(src->type->is_matrix());
|
|
|
|
/* Dereference a row of the matrix, then call this function again to get
|
|
* a specific element from that row.
|
|
*/
|
|
const int c = component / src->type->column_type()->vector_elements;
|
|
const int r = component % src->type->column_type()->vector_elements;
|
|
ir_constant *const col_index = new(ctx) ir_constant(c);
|
|
ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
|
|
|
|
col->type = src->type->column_type();
|
|
|
|
return dereference_component(col, r);
|
|
}
|
|
|
|
assert(!"Should not get here.");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static ir_rvalue *
|
|
process_array_constructor(exec_list *instructions,
|
|
const glsl_type *constructor_type,
|
|
YYLTYPE *loc, exec_list *parameters,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
/* Array constructors come in two forms: sized and unsized. Sized array
|
|
* constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
|
|
* variables. In this case the number of parameters must exactly match the
|
|
* specified size of the array.
|
|
*
|
|
* Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
|
|
* are vec4 variables. In this case the size of the array being constructed
|
|
* is determined by the number of parameters.
|
|
*
|
|
* From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
|
|
*
|
|
* "There must be exactly the same number of arguments as the size of
|
|
* the array being constructed. If no size is present in the
|
|
* constructor, then the array is explicitly sized to the number of
|
|
* arguments provided. The arguments are assigned in order, starting at
|
|
* element 0, to the elements of the constructed array. Each argument
|
|
* must be the same type as the element type of the array, or be a type
|
|
* that can be converted to the element type of the array according to
|
|
* Section 4.1.10 "Implicit Conversions.""
|
|
*/
|
|
exec_list actual_parameters;
|
|
const unsigned parameter_count =
|
|
process_parameters(instructions, &actual_parameters, parameters, state);
|
|
|
|
if ((parameter_count == 0)
|
|
|| ((constructor_type->length != 0)
|
|
&& (constructor_type->length != parameter_count))) {
|
|
const unsigned min_param = (constructor_type->length == 0)
|
|
? 1 : constructor_type->length;
|
|
|
|
_mesa_glsl_error(loc, state, "array constructor must have %s %u "
|
|
"parameter%s",
|
|
(constructor_type->length != 0) ? "at least" : "exactly",
|
|
min_param, (min_param <= 1) ? "" : "s");
|
|
return ir_call::get_error_instruction();
|
|
}
|
|
|
|
if (constructor_type->length == 0) {
|
|
constructor_type =
|
|
glsl_type::get_array_instance(constructor_type->element_type(),
|
|
parameter_count);
|
|
assert(constructor_type != NULL);
|
|
assert(constructor_type->length == parameter_count);
|
|
}
|
|
|
|
ir_function *f = state->symbols->get_function(constructor_type->name);
|
|
|
|
/* If the constructor for this type of array does not exist, generate the
|
|
* prototype and add it to the symbol table.
|
|
*/
|
|
if (f == NULL) {
|
|
f = constructor_type->generate_constructor(state->symbols);
|
|
}
|
|
|
|
ir_rvalue *const r =
|
|
process_call(instructions, f, loc, &actual_parameters, state);
|
|
|
|
assert(r != NULL);
|
|
assert(r->type->is_error() || (r->type == constructor_type));
|
|
|
|
return r;
|
|
}
|
|
|
|
|
|
/**
|
|
* Try to convert a record constructor to a constant expression
|
|
*/
|
|
static ir_constant *
|
|
constant_record_constructor(const glsl_type *constructor_type,
|
|
YYLTYPE *loc, exec_list *parameters,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
void *ctx = talloc_parent(state);
|
|
bool all_parameters_are_constant = true;
|
|
|
|
exec_node *node = parameters->head;
|
|
for (unsigned i = 0; i < constructor_type->length; i++) {
|
|
ir_instruction *ir = (ir_instruction *) node;
|
|
|
|
if (node->is_tail_sentinal()) {
|
|
_mesa_glsl_error(loc, state,
|
|
"insufficient parameters to constructor for `%s'",
|
|
constructor_type->name);
|
|
return NULL;
|
|
}
|
|
|
|
if (ir->type != constructor_type->fields.structure[i].type) {
|
|
_mesa_glsl_error(loc, state,
|
|
"parameter type mismatch in constructor for `%s' "
|
|
" (%s vs %s)",
|
|
constructor_type->name,
|
|
ir->type->name,
|
|
constructor_type->fields.structure[i].type->name);
|
|
return NULL;
|
|
}
|
|
|
|
if (ir->as_constant() == NULL)
|
|
all_parameters_are_constant = false;
|
|
|
|
node = node->next;
|
|
}
|
|
|
|
if (!all_parameters_are_constant)
|
|
return NULL;
|
|
|
|
return new(ctx) ir_constant(constructor_type, parameters);
|
|
}
|
|
|
|
|
|
/**
|
|
* Generate data for a constant matrix constructor w/a single scalar parameter
|
|
*
|
|
* Matrix constructors in GLSL can be passed a single scalar of the
|
|
* approriate type. In these cases, the resulting matrix is the identity
|
|
* matrix multipled by the specified scalar. This function generates data for
|
|
* that matrix.
|
|
*
|
|
* \param type Type of the desired matrix.
|
|
* \param initializer Scalar value used to initialize the matrix diagonal.
|
|
* \param data Location to store the resulting matrix.
|
|
*/
|
|
void
|
|
generate_constructor_matrix(const glsl_type *type, ir_constant *initializer,
|
|
ir_constant_data *data)
|
|
{
|
|
switch (type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
case GLSL_TYPE_INT:
|
|
for (unsigned i = 0; i < type->components(); i++)
|
|
data->u[i] = 0;
|
|
|
|
for (unsigned i = 0; i < type->matrix_columns; i++) {
|
|
/* The array offset of the ith row and column of the matrix.
|
|
*/
|
|
const unsigned idx = (i * type->vector_elements) + i;
|
|
|
|
data->u[idx] = initializer->value.u[0];
|
|
}
|
|
break;
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
for (unsigned i = 0; i < type->components(); i++)
|
|
data->f[i] = 0;
|
|
|
|
for (unsigned i = 0; i < type->matrix_columns; i++) {
|
|
/* The array offset of the ith row and column of the matrix.
|
|
*/
|
|
const unsigned idx = (i * type->vector_elements) + i;
|
|
|
|
data->f[idx] = initializer->value.f[0];
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
assert(!"Should not get here.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Generate data for a constant vector constructor w/a single scalar parameter
|
|
*
|
|
* Vector constructors in GLSL can be passed a single scalar of the
|
|
* approriate type. In these cases, the resulting vector contains the specified
|
|
* value in all components. This function generates data for that vector.
|
|
*
|
|
* \param type Type of the desired vector.
|
|
* \param initializer Scalar value used to initialize the vector.
|
|
* \param data Location to store the resulting vector data.
|
|
*/
|
|
void
|
|
generate_constructor_vector(const glsl_type *type, ir_constant *initializer,
|
|
ir_constant_data *data)
|
|
{
|
|
switch (type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
case GLSL_TYPE_INT:
|
|
for (unsigned i = 0; i < type->components(); i++)
|
|
data->u[i] = initializer->value.u[0];
|
|
|
|
break;
|
|
|
|
case GLSL_TYPE_FLOAT:
|
|
for (unsigned i = 0; i < type->components(); i++)
|
|
data->f[i] = initializer->value.f[0];
|
|
|
|
break;
|
|
|
|
case GLSL_TYPE_BOOL:
|
|
for (unsigned i = 0; i < type->components(); i++)
|
|
data->b[i] = initializer->value.b[0];
|
|
|
|
break;
|
|
|
|
default:
|
|
assert(!"Should not get here.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
ir_rvalue *
|
|
ast_function_expression::hir(exec_list *instructions,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
void *ctx = talloc_parent(state);
|
|
/* There are three sorts of function calls.
|
|
*
|
|
* 1. contstructors - The first subexpression is an ast_type_specifier.
|
|
* 2. methods - Only the .length() method of array types.
|
|
* 3. functions - Calls to regular old functions.
|
|
*
|
|
* Method calls are actually detected when the ast_field_selection
|
|
* expression is handled.
|
|
*/
|
|
if (is_constructor()) {
|
|
const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
|
|
YYLTYPE loc = type->get_location();
|
|
const char *name;
|
|
|
|
const glsl_type *const constructor_type = type->glsl_type(& name, state);
|
|
|
|
|
|
/* Constructors for samplers are illegal.
|
|
*/
|
|
if (constructor_type->is_sampler()) {
|
|
_mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
|
|
constructor_type->name);
|
|
return ir_call::get_error_instruction();
|
|
}
|
|
|
|
if (constructor_type->is_array()) {
|
|
if (state->language_version <= 110) {
|
|
_mesa_glsl_error(& loc, state,
|
|
"array constructors forbidden in GLSL 1.10");
|
|
return ir_call::get_error_instruction();
|
|
}
|
|
|
|
return process_array_constructor(instructions, constructor_type,
|
|
& loc, &this->expressions, state);
|
|
}
|
|
|
|
/* There are two kinds of constructor call. Constructors for built-in
|
|
* language types, such as mat4 and vec2, are free form. The only
|
|
* requirement is that the parameters must provide enough values of the
|
|
* correct scalar type. Constructors for arrays and structures must
|
|
* have the exact number of parameters with matching types in the
|
|
* correct order. These constructors follow essentially the same type
|
|
* matching rules as functions.
|
|
*/
|
|
if (constructor_type->is_numeric() || constructor_type->is_boolean()) {
|
|
/* Constructing a numeric type has a couple steps. First all values
|
|
* passed to the constructor are broken into individual parameters
|
|
* and type converted to the base type of the thing being constructed.
|
|
*
|
|
* At that point we have some number of values that match the base
|
|
* type of the thing being constructed. Now the constructor can be
|
|
* treated like a function call. Each numeric type has a small set
|
|
* of constructor functions. The set of new parameters will either
|
|
* match one of those functions or the original constructor is
|
|
* invalid.
|
|
*/
|
|
const glsl_type *const base_type = constructor_type->get_base_type();
|
|
|
|
/* Total number of components of the type being constructed.
|
|
*/
|
|
const unsigned type_components = constructor_type->components();
|
|
|
|
/* Number of components from parameters that have actually been
|
|
* consumed. This is used to perform several kinds of error checking.
|
|
*/
|
|
unsigned components_used = 0;
|
|
|
|
unsigned matrix_parameters = 0;
|
|
unsigned nonmatrix_parameters = 0;
|
|
exec_list actual_parameters;
|
|
|
|
bool all_parameters_are_constant = true;
|
|
|
|
/* This handles invalid constructor calls such as 'vec4 v = vec4();'
|
|
*/
|
|
if (this->expressions.is_empty()) {
|
|
_mesa_glsl_error(& loc, state, "too few components to construct "
|
|
"`%s'",
|
|
constructor_type->name);
|
|
return ir_call::get_error_instruction();
|
|
}
|
|
|
|
foreach_list (n, &this->expressions) {
|
|
ast_node *ast = exec_node_data(ast_node, n, link);
|
|
ir_rvalue *result =
|
|
ast->hir(instructions, state)->as_rvalue();
|
|
ir_variable *result_var = NULL;
|
|
|
|
/* Attempt to convert the parameter to a constant valued expression.
|
|
* After doing so, track whether or not all the parameters to the
|
|
* constructor are trivially constant valued expressions.
|
|
*/
|
|
ir_rvalue *const constant =
|
|
result->constant_expression_value();
|
|
|
|
if (constant != NULL)
|
|
result = constant;
|
|
else
|
|
all_parameters_are_constant = false;
|
|
|
|
/* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
|
|
*
|
|
* "It is an error to provide extra arguments beyond this
|
|
* last used argument."
|
|
*/
|
|
if (components_used >= type_components) {
|
|
_mesa_glsl_error(& loc, state, "too many parameters to `%s' "
|
|
"constructor",
|
|
constructor_type->name);
|
|
return ir_call::get_error_instruction();
|
|
}
|
|
|
|
if (!result->type->is_numeric() && !result->type->is_boolean()) {
|
|
_mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
|
|
"non-numeric data type",
|
|
constructor_type->name);
|
|
return ir_call::get_error_instruction();
|
|
}
|
|
|
|
/* Count the number of matrix and nonmatrix parameters. This
|
|
* is used below to enforce some of the constructor rules.
|
|
*/
|
|
if (result->type->is_matrix())
|
|
matrix_parameters++;
|
|
else
|
|
nonmatrix_parameters++;
|
|
|
|
/* We can't use the same instruction node in the multiple
|
|
* swizzle dereferences that happen, so assign it to a
|
|
* variable and deref that. Plus it saves computation for
|
|
* complicated expressions and handles
|
|
* glsl-vs-constructor-call.shader_test.
|
|
*/
|
|
if (result->type->components() >= 1 && !result->as_constant()) {
|
|
result_var = new(ctx) ir_variable(result->type,
|
|
"constructor_tmp");
|
|
ir_dereference_variable *lhs;
|
|
|
|
lhs = new(ctx) ir_dereference_variable(result_var);
|
|
instructions->push_tail(new(ctx) ir_assignment(lhs,
|
|
result, NULL));
|
|
}
|
|
|
|
/* Process each of the components of the parameter. Dereference
|
|
* each component individually, perform any type conversions, and
|
|
* add it to the parameter list for the constructor.
|
|
*/
|
|
for (unsigned i = 0; i < result->type->components(); i++) {
|
|
if (components_used >= type_components)
|
|
break;
|
|
|
|
ir_rvalue *component;
|
|
|
|
if (result_var) {
|
|
ir_dereference *d = new(ctx) ir_dereference_variable(result_var);
|
|
component = dereference_component(d, i);
|
|
} else {
|
|
component = dereference_component(result, i);
|
|
}
|
|
component = convert_component(component, base_type);
|
|
|
|
/* All cases that could result in component->type being the
|
|
* error type should have already been caught above.
|
|
*/
|
|
assert(component->type == base_type);
|
|
|
|
if (component->as_constant() == NULL)
|
|
all_parameters_are_constant = false;
|
|
|
|
/* Don't actually generate constructor calls for scalars.
|
|
* Instead, do the usual component selection and conversion,
|
|
* and return the single component.
|
|
*/
|
|
if (constructor_type->is_scalar())
|
|
return component;
|
|
|
|
actual_parameters.push_tail(component);
|
|
components_used++;
|
|
}
|
|
}
|
|
|
|
/* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
|
|
*
|
|
* "It is an error to construct matrices from other matrices. This
|
|
* is reserved for future use."
|
|
*/
|
|
if ((state->language_version <= 110) && (matrix_parameters > 0)
|
|
&& constructor_type->is_matrix()) {
|
|
_mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
|
|
"matrix in GLSL 1.10",
|
|
constructor_type->name);
|
|
return ir_call::get_error_instruction();
|
|
}
|
|
|
|
/* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
|
|
*
|
|
* "If a matrix argument is given to a matrix constructor, it is
|
|
* an error to have any other arguments."
|
|
*/
|
|
if ((matrix_parameters > 0)
|
|
&& ((matrix_parameters + nonmatrix_parameters) > 1)
|
|
&& constructor_type->is_matrix()) {
|
|
_mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
|
|
"matrix must be only parameter",
|
|
constructor_type->name);
|
|
return ir_call::get_error_instruction();
|
|
}
|
|
|
|
/* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
|
|
*
|
|
* "In these cases, there must be enough components provided in the
|
|
* arguments to provide an initializer for every component in the
|
|
* constructed value."
|
|
*/
|
|
if ((components_used < type_components) && (components_used != 1)) {
|
|
_mesa_glsl_error(& loc, state, "too few components to construct "
|
|
"`%s'",
|
|
constructor_type->name);
|
|
return ir_call::get_error_instruction();
|
|
}
|
|
|
|
ir_function *f = state->symbols->get_function(constructor_type->name);
|
|
if (f == NULL) {
|
|
_mesa_glsl_error(& loc, state, "no constructor for type `%s'",
|
|
constructor_type->name);
|
|
return ir_call::get_error_instruction();
|
|
}
|
|
|
|
const ir_function_signature *sig =
|
|
f->matching_signature(& actual_parameters);
|
|
if (sig != NULL) {
|
|
/* If all of the parameters are trivially constant, create a
|
|
* constant representing the complete collection of parameters.
|
|
*/
|
|
if (all_parameters_are_constant) {
|
|
if (components_used >= type_components)
|
|
return new(ctx) ir_constant(sig->return_type,
|
|
& actual_parameters);
|
|
|
|
assert(sig->return_type->is_vector()
|
|
|| sig->return_type->is_matrix());
|
|
|
|
/* Constructors with exactly one component are special for
|
|
* vectors and matrices. For vectors it causes all elements of
|
|
* the vector to be filled with the value. For matrices it
|
|
* causes the matrix to be filled with 0 and the diagonal to be
|
|
* filled with the value.
|
|
*/
|
|
ir_constant_data data;
|
|
ir_constant *const initializer =
|
|
(ir_constant *) actual_parameters.head;
|
|
if (sig->return_type->is_matrix())
|
|
generate_constructor_matrix(sig->return_type, initializer,
|
|
&data);
|
|
else
|
|
generate_constructor_vector(sig->return_type, initializer,
|
|
&data);
|
|
|
|
return new(ctx) ir_constant(sig->return_type, &data);
|
|
} else
|
|
return new(ctx) ir_call(sig, & actual_parameters);
|
|
} else {
|
|
/* FINISHME: Log a better error message here. G++ will show the
|
|
* FINSIHME: types of the actual parameters and the set of
|
|
* FINSIHME: candidate functions. A different error should also be
|
|
* FINSIHME: logged when multiple functions match.
|
|
*/
|
|
_mesa_glsl_error(& loc, state, "no matching constructor for `%s'",
|
|
constructor_type->name);
|
|
return ir_call::get_error_instruction();
|
|
}
|
|
}
|
|
|
|
return ir_call::get_error_instruction();
|
|
} else {
|
|
const ast_expression *id = subexpressions[0];
|
|
YYLTYPE loc = id->get_location();
|
|
exec_list actual_parameters;
|
|
|
|
process_parameters(instructions, &actual_parameters, &this->expressions,
|
|
state);
|
|
|
|
const glsl_type *const type =
|
|
state->symbols->get_type(id->primary_expression.identifier);
|
|
|
|
if ((type != NULL) && type->is_record()) {
|
|
ir_constant *constant =
|
|
constant_record_constructor(type, &loc, &actual_parameters, state);
|
|
|
|
if (constant != NULL)
|
|
return constant;
|
|
}
|
|
|
|
return match_function_by_name(instructions,
|
|
id->primary_expression.identifier, & loc,
|
|
&actual_parameters, state);
|
|
}
|
|
|
|
return ir_call::get_error_instruction();
|
|
}
|