mesa/src/intel/compiler/brw_vec4_gs_visitor.cpp
Kenneth Graunke f11780779f intel/compiler: Use nir's info when checking uses_streams.
Vulkan and Gallium don't use Mesa's gl_program data structure, so they
can't poke at 'prog'.  But we can simply use the copy of the shader info
stored with the NIR shader, which is guaranteed to exist.

Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Reviewed-by: Iago Toral Quiroga <itoral@igalia.com>
2018-11-28 13:35:29 -08:00

970 lines
39 KiB
C++

/*
* Copyright © 2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file brw_vec4_gs_visitor.cpp
*
* Geometry-shader-specific code derived from the vec4_visitor class.
*/
#include "brw_vec4_gs_visitor.h"
#include "gen6_gs_visitor.h"
#include "brw_cfg.h"
#include "brw_fs.h"
#include "brw_nir.h"
#include "common/gen_debug.h"
namespace brw {
vec4_gs_visitor::vec4_gs_visitor(const struct brw_compiler *compiler,
void *log_data,
struct brw_gs_compile *c,
struct brw_gs_prog_data *prog_data,
const nir_shader *shader,
void *mem_ctx,
bool no_spills,
int shader_time_index)
: vec4_visitor(compiler, log_data, &c->key.tex,
&prog_data->base, shader, mem_ctx,
no_spills, shader_time_index),
c(c),
gs_prog_data(prog_data)
{
}
static inline struct brw_reg
attribute_to_hw_reg(int attr, brw_reg_type type, bool interleaved)
{
struct brw_reg reg;
unsigned width = REG_SIZE / 2 / MAX2(4, type_sz(type));
if (interleaved) {
reg = stride(brw_vecn_grf(width, attr / 2, (attr % 2) * 4), 0, width, 1);
} else {
reg = brw_vecn_grf(width, attr, 0);
}
reg.type = type;
return reg;
}
/**
* Replace each register of type ATTR in this->instructions with a reference
* to a fixed HW register.
*
* If interleaved is true, then each attribute takes up half a register, with
* register N containing attribute 2*N in its first half and attribute 2*N+1
* in its second half (this corresponds to the payload setup used by geometry
* shaders in "single" or "dual instanced" dispatch mode). If interleaved is
* false, then each attribute takes up a whole register, with register N
* containing attribute N (this corresponds to the payload setup used by
* vertex shaders, and by geometry shaders in "dual object" dispatch mode).
*/
int
vec4_gs_visitor::setup_varying_inputs(int payload_reg,
int attributes_per_reg)
{
/* For geometry shaders there are N copies of the input attributes, where N
* is the number of input vertices. attribute_map[BRW_VARYING_SLOT_COUNT *
* i + j] represents attribute j for vertex i.
*
* Note that GS inputs are read from the VUE 256 bits (2 vec4's) at a time,
* so the total number of input slots that will be delivered to the GS (and
* thus the stride of the input arrays) is urb_read_length * 2.
*/
const unsigned num_input_vertices = nir->info.gs.vertices_in;
assert(num_input_vertices <= MAX_GS_INPUT_VERTICES);
unsigned input_array_stride = prog_data->urb_read_length * 2;
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
for (int i = 0; i < 3; i++) {
if (inst->src[i].file != ATTR)
continue;
assert(inst->src[i].offset % REG_SIZE == 0);
int grf = payload_reg * attributes_per_reg +
inst->src[i].nr + inst->src[i].offset / REG_SIZE;
struct brw_reg reg =
attribute_to_hw_reg(grf, inst->src[i].type, attributes_per_reg > 1);
reg.swizzle = inst->src[i].swizzle;
if (inst->src[i].abs)
reg = brw_abs(reg);
if (inst->src[i].negate)
reg = negate(reg);
inst->src[i] = reg;
}
}
int regs_used = ALIGN(input_array_stride * num_input_vertices,
attributes_per_reg) / attributes_per_reg;
return payload_reg + regs_used;
}
void
vec4_gs_visitor::setup_payload()
{
/* If we are in dual instanced or single mode, then attributes are going
* to be interleaved, so one register contains two attribute slots.
*/
int attributes_per_reg =
prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT ? 1 : 2;
int reg = 0;
/* The payload always contains important data in r0, which contains
* the URB handles that are passed on to the URB write at the end
* of the thread.
*/
reg++;
/* If the shader uses gl_PrimitiveIDIn, that goes in r1. */
if (gs_prog_data->include_primitive_id)
reg++;
reg = setup_uniforms(reg);
reg = setup_varying_inputs(reg, attributes_per_reg);
this->first_non_payload_grf = reg;
}
void
vec4_gs_visitor::emit_prolog()
{
/* In vertex shaders, r0.2 is guaranteed to be initialized to zero. In
* geometry shaders, it isn't (it contains a bunch of information we don't
* need, like the input primitive type). We need r0.2 to be zero in order
* to build scratch read/write messages correctly (otherwise this value
* will be interpreted as a global offset, causing us to do our scratch
* reads/writes to garbage memory). So just set it to zero at the top of
* the shader.
*/
this->current_annotation = "clear r0.2";
dst_reg r0(retype(brw_vec4_grf(0, 0), BRW_REGISTER_TYPE_UD));
vec4_instruction *inst = emit(GS_OPCODE_SET_DWORD_2, r0, brw_imm_ud(0u));
inst->force_writemask_all = true;
/* Create a virtual register to hold the vertex count */
this->vertex_count = src_reg(this, glsl_type::uint_type);
/* Initialize the vertex_count register to 0 */
this->current_annotation = "initialize vertex_count";
inst = emit(MOV(dst_reg(this->vertex_count), brw_imm_ud(0u)));
inst->force_writemask_all = true;
if (c->control_data_header_size_bits > 0) {
/* Create a virtual register to hold the current set of control data
* bits.
*/
this->control_data_bits = src_reg(this, glsl_type::uint_type);
/* If we're outputting more than 32 control data bits, then EmitVertex()
* will set control_data_bits to 0 after emitting the first vertex.
* Otherwise, we need to initialize it to 0 here.
*/
if (c->control_data_header_size_bits <= 32) {
this->current_annotation = "initialize control data bits";
inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
inst->force_writemask_all = true;
}
}
this->current_annotation = NULL;
}
void
vec4_gs_visitor::emit_thread_end()
{
if (c->control_data_header_size_bits > 0) {
/* During shader execution, we only ever call emit_control_data_bits()
* just prior to outputting a vertex. Therefore, the control data bits
* corresponding to the most recently output vertex still need to be
* emitted.
*/
current_annotation = "thread end: emit control data bits";
emit_control_data_bits();
}
/* MRF 0 is reserved for the debugger, so start with message header
* in MRF 1.
*/
int base_mrf = 1;
bool static_vertex_count = gs_prog_data->static_vertex_count != -1;
/* If the previous instruction was a URB write, we don't need to issue
* a second one - we can just set the EOT bit on the previous write.
*
* Skip this on Gen8+ unless there's a static vertex count, as we also
* need to write the vertex count out, and combining the two may not be
* possible (or at least not straightforward).
*/
vec4_instruction *last = (vec4_instruction *) instructions.get_tail();
if (last && last->opcode == GS_OPCODE_URB_WRITE &&
!(INTEL_DEBUG & DEBUG_SHADER_TIME) &&
devinfo->gen >= 8 && static_vertex_count) {
last->urb_write_flags = BRW_URB_WRITE_EOT | last->urb_write_flags;
return;
}
current_annotation = "thread end";
dst_reg mrf_reg(MRF, base_mrf);
src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
vec4_instruction *inst = emit(MOV(mrf_reg, r0));
inst->force_writemask_all = true;
if (devinfo->gen < 8 || !static_vertex_count)
emit(GS_OPCODE_SET_VERTEX_COUNT, mrf_reg, this->vertex_count);
if (INTEL_DEBUG & DEBUG_SHADER_TIME)
emit_shader_time_end();
inst = emit(GS_OPCODE_THREAD_END);
inst->base_mrf = base_mrf;
inst->mlen = devinfo->gen >= 8 && !static_vertex_count ? 2 : 1;
}
void
vec4_gs_visitor::emit_urb_write_header(int mrf)
{
/* The SEND instruction that writes the vertex data to the VUE will use
* per_slot_offset=true, which means that DWORDs 3 and 4 of the message
* header specify an offset (in multiples of 256 bits) into the URB entry
* at which the write should take place.
*
* So we have to prepare a message header with the appropriate offset
* values.
*/
dst_reg mrf_reg(MRF, mrf);
src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
this->current_annotation = "URB write header";
vec4_instruction *inst = emit(MOV(mrf_reg, r0));
inst->force_writemask_all = true;
emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, this->vertex_count,
brw_imm_ud(gs_prog_data->output_vertex_size_hwords));
}
vec4_instruction *
vec4_gs_visitor::emit_urb_write_opcode(bool complete)
{
/* We don't care whether the vertex is complete, because in general
* geometry shaders output multiple vertices, and we don't terminate the
* thread until all vertices are complete.
*/
(void) complete;
vec4_instruction *inst = emit(GS_OPCODE_URB_WRITE);
inst->offset = gs_prog_data->control_data_header_size_hwords;
/* We need to increment Global Offset by 1 to make room for Broadwell's
* extra "Vertex Count" payload at the beginning of the URB entry.
*/
if (devinfo->gen >= 8 && gs_prog_data->static_vertex_count == -1)
inst->offset++;
inst->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET;
return inst;
}
/**
* Write out a batch of 32 control data bits from the control_data_bits
* register to the URB.
*
* The current value of the vertex_count register determines which DWORD in
* the URB receives the control data bits. The control_data_bits register is
* assumed to contain the correct data for the vertex that was most recently
* output, and all previous vertices that share the same DWORD.
*
* This function takes care of ensuring that if no vertices have been output
* yet, no control bits are emitted.
*/
void
vec4_gs_visitor::emit_control_data_bits()
{
assert(c->control_data_bits_per_vertex != 0);
/* Since the URB_WRITE_OWORD message operates with 128-bit (vec4 sized)
* granularity, we need to use two tricks to ensure that the batch of 32
* control data bits is written to the appropriate DWORD in the URB. To
* select which vec4 we are writing to, we use the "slot {0,1} offset"
* fields of the message header. To select which DWORD in the vec4 we are
* writing to, we use the channel mask fields of the message header. To
* avoid penalizing geometry shaders that emit a small number of vertices
* with extra bookkeeping, we only do each of these tricks when
* c->prog_data.control_data_header_size_bits is large enough to make it
* necessary.
*
* Note: this means that if we're outputting just a single DWORD of control
* data bits, we'll actually replicate it four times since we won't do any
* channel masking. But that's not a problem since in this case the
* hardware only pays attention to the first DWORD.
*/
enum brw_urb_write_flags urb_write_flags = BRW_URB_WRITE_OWORD;
if (c->control_data_header_size_bits > 32)
urb_write_flags = urb_write_flags | BRW_URB_WRITE_USE_CHANNEL_MASKS;
if (c->control_data_header_size_bits > 128)
urb_write_flags = urb_write_flags | BRW_URB_WRITE_PER_SLOT_OFFSET;
/* If we are using either channel masks or a per-slot offset, then we
* need to figure out which DWORD we are trying to write to, using the
* formula:
*
* dword_index = (vertex_count - 1) * bits_per_vertex / 32
*
* Since bits_per_vertex is a power of two, and is known at compile
* time, this can be optimized to:
*
* dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
*/
src_reg dword_index(this, glsl_type::uint_type);
if (urb_write_flags) {
src_reg prev_count(this, glsl_type::uint_type);
emit(ADD(dst_reg(prev_count), this->vertex_count,
brw_imm_ud(0xffffffffu)));
unsigned log2_bits_per_vertex =
util_last_bit(c->control_data_bits_per_vertex);
emit(SHR(dst_reg(dword_index), prev_count,
brw_imm_ud(6 - log2_bits_per_vertex)));
}
/* Start building the URB write message. The first MRF gets a copy of
* R0.
*/
int base_mrf = 1;
dst_reg mrf_reg(MRF, base_mrf);
src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
vec4_instruction *inst = emit(MOV(mrf_reg, r0));
inst->force_writemask_all = true;
if (urb_write_flags & BRW_URB_WRITE_PER_SLOT_OFFSET) {
/* Set the per-slot offset to dword_index / 4, to that we'll write to
* the appropriate OWORD within the control data header.
*/
src_reg per_slot_offset(this, glsl_type::uint_type);
emit(SHR(dst_reg(per_slot_offset), dword_index, brw_imm_ud(2u)));
emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, per_slot_offset,
brw_imm_ud(1u));
}
if (urb_write_flags & BRW_URB_WRITE_USE_CHANNEL_MASKS) {
/* Set the channel masks to 1 << (dword_index % 4), so that we'll
* write to the appropriate DWORD within the OWORD. We need to do
* this computation with force_writemask_all, otherwise garbage data
* from invocation 0 might clobber the mask for invocation 1 when
* GS_OPCODE_PREPARE_CHANNEL_MASKS tries to OR the two masks
* together.
*/
src_reg channel(this, glsl_type::uint_type);
inst = emit(AND(dst_reg(channel), dword_index, brw_imm_ud(3u)));
inst->force_writemask_all = true;
src_reg one(this, glsl_type::uint_type);
inst = emit(MOV(dst_reg(one), brw_imm_ud(1u)));
inst->force_writemask_all = true;
src_reg channel_mask(this, glsl_type::uint_type);
inst = emit(SHL(dst_reg(channel_mask), one, channel));
inst->force_writemask_all = true;
emit(GS_OPCODE_PREPARE_CHANNEL_MASKS, dst_reg(channel_mask),
channel_mask);
emit(GS_OPCODE_SET_CHANNEL_MASKS, mrf_reg, channel_mask);
}
/* Store the control data bits in the message payload and send it. */
dst_reg mrf_reg2(MRF, base_mrf + 1);
inst = emit(MOV(mrf_reg2, this->control_data_bits));
inst->force_writemask_all = true;
inst = emit(GS_OPCODE_URB_WRITE);
inst->urb_write_flags = urb_write_flags;
/* We need to increment Global Offset by 256-bits to make room for
* Broadwell's extra "Vertex Count" payload at the beginning of the
* URB entry. Since this is an OWord message, Global Offset is counted
* in 128-bit units, so we must set it to 2.
*/
if (devinfo->gen >= 8 && gs_prog_data->static_vertex_count == -1)
inst->offset = 2;
inst->base_mrf = base_mrf;
inst->mlen = 2;
}
void
vec4_gs_visitor::set_stream_control_data_bits(unsigned stream_id)
{
/* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
/* Note: we are calling this *before* increasing vertex_count, so
* this->vertex_count == vertex_count - 1 in the formula above.
*/
/* Stream mode uses 2 bits per vertex */
assert(c->control_data_bits_per_vertex == 2);
/* Must be a valid stream */
assert(stream_id < MAX_VERTEX_STREAMS);
/* Control data bits are initialized to 0 so we don't have to set any
* bits when sending vertices to stream 0.
*/
if (stream_id == 0)
return;
/* reg::sid = stream_id */
src_reg sid(this, glsl_type::uint_type);
emit(MOV(dst_reg(sid), brw_imm_ud(stream_id)));
/* reg:shift_count = 2 * (vertex_count - 1) */
src_reg shift_count(this, glsl_type::uint_type);
emit(SHL(dst_reg(shift_count), this->vertex_count, brw_imm_ud(1u)));
/* Note: we're relying on the fact that the GEN SHL instruction only pays
* attention to the lower 5 bits of its second source argument, so on this
* architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
* stream_id << ((2 * (vertex_count - 1)) % 32).
*/
src_reg mask(this, glsl_type::uint_type);
emit(SHL(dst_reg(mask), sid, shift_count));
emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
}
void
vec4_gs_visitor::gs_emit_vertex(int stream_id)
{
this->current_annotation = "emit vertex: safety check";
/* Haswell and later hardware ignores the "Render Stream Select" bits
* from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
* and instead sends all primitives down the pipeline for rasterization.
* If the SOL stage is enabled, "Render Stream Select" is honored and
* primitives bound to non-zero streams are discarded after stream output.
*
* Since the only purpose of primives sent to non-zero streams is to
* be recorded by transform feedback, we can simply discard all geometry
* bound to these streams when transform feedback is disabled.
*/
if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
return;
/* If we're outputting 32 control data bits or less, then we can wait
* until the shader is over to output them all. Otherwise we need to
* output them as we go. Now is the time to do it, since we're about to
* output the vertex_count'th vertex, so it's guaranteed that the
* control data bits associated with the (vertex_count - 1)th vertex are
* correct.
*/
if (c->control_data_header_size_bits > 32) {
this->current_annotation = "emit vertex: emit control data bits";
/* Only emit control data bits if we've finished accumulating a batch
* of 32 bits. This is the case when:
*
* (vertex_count * bits_per_vertex) % 32 == 0
*
* (in other words, when the last 5 bits of vertex_count *
* bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
* integer n (which is always the case, since bits_per_vertex is
* always 1 or 2), this is equivalent to requiring that the last 5-n
* bits of vertex_count are 0:
*
* vertex_count & (2^(5-n) - 1) == 0
*
* 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
* equivalent to:
*
* vertex_count & (32 / bits_per_vertex - 1) == 0
*/
vec4_instruction *inst =
emit(AND(dst_null_ud(), this->vertex_count,
brw_imm_ud(32 / c->control_data_bits_per_vertex - 1)));
inst->conditional_mod = BRW_CONDITIONAL_Z;
emit(IF(BRW_PREDICATE_NORMAL));
{
/* If vertex_count is 0, then no control data bits have been
* accumulated yet, so we skip emitting them.
*/
emit(CMP(dst_null_ud(), this->vertex_count, brw_imm_ud(0u),
BRW_CONDITIONAL_NEQ));
emit(IF(BRW_PREDICATE_NORMAL));
emit_control_data_bits();
emit(BRW_OPCODE_ENDIF);
/* Reset control_data_bits to 0 so we can start accumulating a new
* batch.
*
* Note: in the case where vertex_count == 0, this neutralizes the
* effect of any call to EndPrimitive() that the shader may have
* made before outputting its first vertex.
*/
inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
inst->force_writemask_all = true;
}
emit(BRW_OPCODE_ENDIF);
}
this->current_annotation = "emit vertex: vertex data";
emit_vertex();
/* In stream mode we have to set control data bits for all vertices
* unless we have disabled control data bits completely (which we do
* do for GL_POINTS outputs that don't use streams).
*/
if (c->control_data_header_size_bits > 0 &&
gs_prog_data->control_data_format ==
GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
this->current_annotation = "emit vertex: Stream control data bits";
set_stream_control_data_bits(stream_id);
}
this->current_annotation = NULL;
}
void
vec4_gs_visitor::gs_end_primitive()
{
/* We can only do EndPrimitive() functionality when the control data
* consists of cut bits. Fortunately, the only time it isn't is when the
* output type is points, in which case EndPrimitive() is a no-op.
*/
if (gs_prog_data->control_data_format !=
GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
return;
}
if (c->control_data_header_size_bits == 0)
return;
/* Cut bits use one bit per vertex. */
assert(c->control_data_bits_per_vertex == 1);
/* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
* vertex n, 0 otherwise. So all we need to do here is mark bit
* (vertex_count - 1) % 32 in the cut_bits register to indicate that
* EndPrimitive() was called after emitting vertex (vertex_count - 1);
* vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
*
* Note that if EndPrimitve() is called before emitting any vertices, this
* will cause us to set bit 31 of the control_data_bits register to 1.
* That's fine because:
*
* - If max_vertices < 32, then vertex number 31 (zero-based) will never be
* output, so the hardware will ignore cut bit 31.
*
* - If max_vertices == 32, then vertex number 31 is guaranteed to be the
* last vertex, so setting cut bit 31 has no effect (since the primitive
* is automatically ended when the GS terminates).
*
* - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
* control_data_bits register to 0 when the first vertex is emitted.
*/
/* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
src_reg one(this, glsl_type::uint_type);
emit(MOV(dst_reg(one), brw_imm_ud(1u)));
src_reg prev_count(this, glsl_type::uint_type);
emit(ADD(dst_reg(prev_count), this->vertex_count, brw_imm_ud(0xffffffffu)));
src_reg mask(this, glsl_type::uint_type);
/* Note: we're relying on the fact that the GEN SHL instruction only pays
* attention to the lower 5 bits of its second source argument, so on this
* architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
* ((vertex_count - 1) % 32).
*/
emit(SHL(dst_reg(mask), one, prev_count));
emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
}
static const GLuint gl_prim_to_hw_prim[GL_TRIANGLE_STRIP_ADJACENCY+1] = {
[GL_POINTS] =_3DPRIM_POINTLIST,
[GL_LINES] = _3DPRIM_LINELIST,
[GL_LINE_LOOP] = _3DPRIM_LINELOOP,
[GL_LINE_STRIP] = _3DPRIM_LINESTRIP,
[GL_TRIANGLES] = _3DPRIM_TRILIST,
[GL_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[GL_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[GL_QUADS] = _3DPRIM_QUADLIST,
[GL_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
[GL_POLYGON] = _3DPRIM_POLYGON,
[GL_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
[GL_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
[GL_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
[GL_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
};
extern "C" const unsigned *
brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
const struct brw_gs_prog_key *key,
struct brw_gs_prog_data *prog_data,
nir_shader *shader,
struct gl_program *prog,
int shader_time_index,
char **error_str)
{
struct brw_gs_compile c;
memset(&c, 0, sizeof(c));
c.key = *key;
const bool is_scalar = compiler->scalar_stage[MESA_SHADER_GEOMETRY];
/* The GLSL linker will have already matched up GS inputs and the outputs
* of prior stages. The driver does extend VS outputs in some cases, but
* only for legacy OpenGL or Gen4-5 hardware, neither of which offer
* geometry shader support. So we can safely ignore that.
*
* For SSO pipelines, we use a fixed VUE map layout based on variable
* locations, so we can rely on rendezvous-by-location making this work.
*/
GLbitfield64 inputs_read = shader->info.inputs_read;
brw_compute_vue_map(compiler->devinfo,
&c.input_vue_map, inputs_read,
shader->info.separate_shader);
shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar);
brw_nir_lower_vue_inputs(shader, &c.input_vue_map);
brw_nir_lower_vue_outputs(shader);
shader = brw_postprocess_nir(shader, compiler, is_scalar);
prog_data->base.clip_distance_mask =
((1 << shader->info.clip_distance_array_size) - 1);
prog_data->base.cull_distance_mask =
((1 << shader->info.cull_distance_array_size) - 1) <<
shader->info.clip_distance_array_size;
prog_data->include_primitive_id =
(shader->info.system_values_read & (1 << SYSTEM_VALUE_PRIMITIVE_ID)) != 0;
prog_data->invocations = shader->info.gs.invocations;
if (compiler->devinfo->gen >= 8)
prog_data->static_vertex_count = nir_gs_count_vertices(shader);
if (compiler->devinfo->gen >= 7) {
if (shader->info.gs.output_primitive == GL_POINTS) {
/* When the output type is points, the geometry shader may output data
* to multiple streams, and EndPrimitive() has no effect. So we
* configure the hardware to interpret the control data as stream ID.
*/
prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
/* We only have to emit control bits if we are using streams */
if (shader->info.gs.uses_streams)
c.control_data_bits_per_vertex = 2;
else
c.control_data_bits_per_vertex = 0;
} else {
/* When the output type is triangle_strip or line_strip, EndPrimitive()
* may be used to terminate the current strip and start a new one
* (similar to primitive restart), and outputting data to multiple
* streams is not supported. So we configure the hardware to interpret
* the control data as EndPrimitive information (a.k.a. "cut bits").
*/
prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
/* We only need to output control data if the shader actually calls
* EndPrimitive().
*/
c.control_data_bits_per_vertex =
shader->info.gs.uses_end_primitive ? 1 : 0;
}
} else {
/* There are no control data bits in gen6. */
c.control_data_bits_per_vertex = 0;
}
c.control_data_header_size_bits =
shader->info.gs.vertices_out * c.control_data_bits_per_vertex;
/* 1 HWORD = 32 bytes = 256 bits */
prog_data->control_data_header_size_hwords =
ALIGN(c.control_data_header_size_bits, 256) / 256;
/* Compute the output vertex size.
*
* From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
* Size (p168):
*
* [0,62] indicating [1,63] 16B units
*
* Specifies the size of each vertex stored in the GS output entry
* (following any Control Header data) as a number of 128-bit units
* (minus one).
*
* Programming Restrictions: The vertex size must be programmed as a
* multiple of 32B units with the following exception: Rendering is
* disabled (as per SOL stage state) and the vertex size output by the
* GS thread is 16B.
*
* If rendering is enabled (as per SOL state) the vertex size must be
* programmed as a multiple of 32B units. In other words, the only time
* software can program a vertex size with an odd number of 16B units
* is when rendering is disabled.
*
* Note: B=bytes in the above text.
*
* It doesn't seem worth the extra trouble to optimize the case where the
* vertex size is 16B (especially since this would require special-casing
* the GEN assembly that writes to the URB). So we just set the vertex
* size to a multiple of 32B (2 vec4's) in all cases.
*
* The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
* budget that as follows:
*
* 512 bytes for varyings (a varying component is 4 bytes and
* gl_MaxGeometryOutputComponents = 128)
* 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
* bytes)
* 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
* even if it's not used)
* 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
* whenever clip planes are enabled, even if the shader doesn't
* write to gl_ClipDistance)
* 16 bytes overhead since the VUE size must be a multiple of 32 bytes
* (see below)--this causes up to 1 VUE slot to be wasted
* 400 bytes available for varying packing overhead
*
* Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
* per interpolation type, so this is plenty.
*
*/
unsigned output_vertex_size_bytes = prog_data->base.vue_map.num_slots * 16;
assert(compiler->devinfo->gen == 6 ||
output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
prog_data->output_vertex_size_hwords =
ALIGN(output_vertex_size_bytes, 32) / 32;
/* Compute URB entry size. The maximum allowed URB entry size is 32k.
* That divides up as follows:
*
* 64 bytes for the control data header (cut indices or StreamID bits)
* 4096 bytes for varyings (a varying component is 4 bytes and
* gl_MaxGeometryTotalOutputComponents = 1024)
* 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
* bytes/vertex and gl_MaxGeometryOutputVertices is 256)
* 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
* even if it's not used)
* 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
* whenever clip planes are enabled, even if the shader doesn't
* write to gl_ClipDistance)
* 4096 bytes overhead since the VUE size must be a multiple of 32
* bytes (see above)--this causes up to 1 VUE slot to be wasted
* 8128 bytes available for varying packing overhead
*
* Worst-case varying packing overhead is 3/4 of a varying slot per
* interpolation type, which works out to 3072 bytes, so this would allow
* us to accommodate 2 interpolation types without any danger of running
* out of URB space.
*
* In practice, the risk of running out of URB space is very small, since
* the above figures are all worst-case, and most of them scale with the
* number of output vertices. So we'll just calculate the amount of space
* we need, and if it's too large, fail to compile.
*
* The above is for gen7+ where we have a single URB entry that will hold
* all the output. In gen6, we will have to allocate URB entries for every
* vertex we emit, so our URB entries only need to be large enough to hold
* a single vertex. Also, gen6 does not have a control data header.
*/
unsigned output_size_bytes;
if (compiler->devinfo->gen >= 7) {
output_size_bytes =
prog_data->output_vertex_size_hwords * 32 * shader->info.gs.vertices_out;
output_size_bytes += 32 * prog_data->control_data_header_size_hwords;
} else {
output_size_bytes = prog_data->output_vertex_size_hwords * 32;
}
/* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
* which comes before the control header.
*/
if (compiler->devinfo->gen >= 8)
output_size_bytes += 32;
/* Shaders can technically set max_vertices = 0, at which point we
* may have a URB size of 0 bytes. Nothing good can come from that,
* so enforce a minimum size.
*/
if (output_size_bytes == 0)
output_size_bytes = 1;
unsigned max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
if (compiler->devinfo->gen == 6)
max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
if (output_size_bytes > max_output_size_bytes)
return NULL;
/* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
* a multiple of 128 bytes in gen6.
*/
if (compiler->devinfo->gen >= 7) {
prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
/* On Cannonlake software shall not program an allocation size that
* specifies a size that is a multiple of 3 64B (512-bit) cachelines.
*/
if (compiler->devinfo->gen == 10 &&
prog_data->base.urb_entry_size % 3 == 0)
prog_data->base.urb_entry_size++;
} else {
prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
}
assert(shader->info.gs.output_primitive < ARRAY_SIZE(gl_prim_to_hw_prim));
prog_data->output_topology =
gl_prim_to_hw_prim[shader->info.gs.output_primitive];
prog_data->vertices_in = shader->info.gs.vertices_in;
/* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
* need to program a URB read length of ceiling(num_slots / 2).
*/
prog_data->base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
/* Now that prog_data setup is done, we are ready to actually compile the
* program.
*/
if (unlikely(INTEL_DEBUG & DEBUG_GS)) {
fprintf(stderr, "GS Input ");
brw_print_vue_map(stderr, &c.input_vue_map);
fprintf(stderr, "GS Output ");
brw_print_vue_map(stderr, &prog_data->base.vue_map);
}
if (is_scalar) {
fs_visitor v(compiler, log_data, mem_ctx, &c, prog_data, shader,
shader_time_index);
if (v.run_gs()) {
prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
fs_generator g(compiler, log_data, mem_ctx,
&prog_data->base.base, v.promoted_constants,
false, MESA_SHADER_GEOMETRY);
if (unlikely(INTEL_DEBUG & DEBUG_GS)) {
const char *label =
shader->info.label ? shader->info.label : "unnamed";
char *name = ralloc_asprintf(mem_ctx, "%s geometry shader %s",
label, shader->info.name);
g.enable_debug(name);
}
g.generate_code(v.cfg, 8);
return g.get_assembly();
}
}
if (compiler->devinfo->gen >= 7) {
/* Compile the geometry shader in DUAL_OBJECT dispatch mode, if we can do
* so without spilling. If the GS invocations count > 1, then we can't use
* dual object mode.
*/
if (prog_data->invocations <= 1 &&
likely(!(INTEL_DEBUG & DEBUG_NO_DUAL_OBJECT_GS))) {
prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
vec4_gs_visitor v(compiler, log_data, &c, prog_data, shader,
mem_ctx, true /* no_spills */, shader_time_index);
/* Backup 'nr_params' and 'param' as they can be modified by the
* the DUAL_OBJECT visitor. If it fails, we will run the fallback
* (DUAL_INSTANCED or SINGLE mode) and we need to restore original
* values.
*/
const unsigned param_count = prog_data->base.base.nr_params;
uint32_t *param = ralloc_array(NULL, uint32_t, param_count);
memcpy(param, prog_data->base.base.param,
sizeof(uint32_t) * param_count);
if (v.run()) {
/* Success! Backup is not needed */
ralloc_free(param);
return brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
shader, &prog_data->base, v.cfg);
} else {
/* These variables could be modified by the execution of the GS
* visitor if it packed the uniforms in the push constant buffer.
* As it failed, we need restore them so we can start again with
* DUAL_INSTANCED or SINGLE mode.
*
* FIXME: Could more variables be modified by this execution?
*/
memcpy(prog_data->base.base.param, param,
sizeof(uint32_t) * param_count);
prog_data->base.base.nr_params = param_count;
prog_data->base.base.nr_pull_params = 0;
ralloc_free(param);
}
}
}
/* Either we failed to compile in DUAL_OBJECT mode (probably because it
* would have required spilling) or DUAL_OBJECT mode is disabled. So fall
* back to DUAL_INSTANCED or SINGLE mode, which consumes fewer registers.
*
* FIXME: Single dispatch mode requires that the driver can handle
* interleaving of input registers, but this is already supported (dual
* instance mode has the same requirement). However, to take full advantage
* of single dispatch mode to reduce register pressure we would also need to
* do interleaved outputs, but currently, the vec4 visitor and generator
* classes do not support this, so at the moment register pressure in
* single and dual instance modes is the same.
*
* From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 "3DSTATE_GS"
* "If InstanceCount>1, DUAL_OBJECT mode is invalid. Software will likely
* want to use DUAL_INSTANCE mode for higher performance, but SINGLE mode
* is also supported. When InstanceCount=1 (one instance per object) software
* can decide which dispatch mode to use. DUAL_OBJECT mode would likely be
* the best choice for performance, followed by SINGLE mode."
*
* So SINGLE mode is more performant when invocations == 1 and DUAL_INSTANCE
* mode is more performant when invocations > 1. Gen6 only supports
* SINGLE mode.
*/
if (prog_data->invocations <= 1 || compiler->devinfo->gen < 7)
prog_data->base.dispatch_mode = DISPATCH_MODE_4X1_SINGLE;
else
prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_INSTANCE;
vec4_gs_visitor *gs = NULL;
const unsigned *ret = NULL;
if (compiler->devinfo->gen >= 7)
gs = new vec4_gs_visitor(compiler, log_data, &c, prog_data,
shader, mem_ctx, false /* no_spills */,
shader_time_index);
else
gs = new gen6_gs_visitor(compiler, log_data, &c, prog_data, prog,
shader, mem_ctx, false /* no_spills */,
shader_time_index);
if (!gs->run()) {
if (error_str)
*error_str = ralloc_strdup(mem_ctx, gs->fail_msg);
} else {
ret = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, shader,
&prog_data->base, gs->cfg);
}
delete gs;
return ret;
}
} /* namespace brw */