mesa/src/intel/vulkan/genX_gpu_memcpy.c
Jason Ekstrand dda54890f3 anv: Disable VF statistics for blorp and SOL memcpy
In order to get accurate statistics, we need to disable statistics for
blits, clears, and the surface state memcpy at the top of each secondary
command buffer.  There are two possible approaches to this:

 1) Disable before the blit/memcpy and re-enable afterwards

 2) Move emitting 3DSTATE_VF_STATISTICS from initialization and make it
    part of pipeline state and then just disabale statistics before
    blits and memcpy operations.

Emitting 3DSTATE_VF_STATISTICS should be fairly cheap so it doesn't
really matter which path we take.  We choose the second option as it's
more consistent with the way the rest of the statistics are enabled and
disabled.

Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
2017-03-17 12:12:50 -07:00

236 lines
8.1 KiB
C

/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "anv_private.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
#include "common/gen_l3_config.h"
/**
* This file implements some lightweight memcpy/memset operations on the GPU
* using a vertex buffer and streamout.
*/
/**
* Returns the greatest common divisor of a and b that is a power of two.
*/
static inline uint64_t
gcd_pow2_u64(uint64_t a, uint64_t b)
{
assert(a > 0 || b > 0);
unsigned a_log2 = ffsll(a) - 1;
unsigned b_log2 = ffsll(b) - 1;
/* If either a or b is 0, then a_log2 or b_log2 will be UINT_MAX in which
* case, the MIN2() will take the other one. If both are 0 then we will
* hit the assert above.
*/
return 1 << MIN2(a_log2, b_log2);
}
void
genX(cmd_buffer_gpu_memcpy)(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *dst, uint32_t dst_offset,
struct anv_bo *src, uint32_t src_offset,
uint32_t size)
{
if (size == 0)
return;
assert(dst_offset + size <= dst->size);
assert(src_offset + size <= src->size);
/* The maximum copy block size is 4 32-bit components at a time. */
unsigned bs = 16;
bs = gcd_pow2_u64(bs, src_offset);
bs = gcd_pow2_u64(bs, dst_offset);
bs = gcd_pow2_u64(bs, size);
enum isl_format format;
switch (bs) {
case 4: format = ISL_FORMAT_R32_UINT; break;
case 8: format = ISL_FORMAT_R32G32_UINT; break;
case 16: format = ISL_FORMAT_R32G32B32A32_UINT; break;
default:
unreachable("Invalid size");
}
if (!cmd_buffer->state.current_l3_config) {
const struct gen_l3_config *cfg =
gen_get_default_l3_config(&cmd_buffer->device->info);
genX(cmd_buffer_config_l3)(cmd_buffer, cfg);
}
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
genX(flush_pipeline_select_3d)(cmd_buffer);
uint32_t *dw;
dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(3DSTATE_VERTEX_BUFFERS));
GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, dw + 1,
&(struct GENX(VERTEX_BUFFER_STATE)) {
.VertexBufferIndex = 32, /* Reserved for this */
.AddressModifyEnable = true,
.BufferStartingAddress = { src, src_offset },
.BufferPitch = bs,
#if (GEN_GEN >= 8)
.MemoryObjectControlState = GENX(MOCS),
.BufferSize = size,
#else
.VertexBufferMemoryObjectControlState = GENX(MOCS),
.EndAddress = { src, src_offset + size - 1 },
#endif
});
dw = anv_batch_emitn(&cmd_buffer->batch, 3, GENX(3DSTATE_VERTEX_ELEMENTS));
GENX(VERTEX_ELEMENT_STATE_pack)(&cmd_buffer->batch, dw + 1,
&(struct GENX(VERTEX_ELEMENT_STATE)) {
.VertexBufferIndex = 32,
.Valid = true,
.SourceElementFormat = format,
.SourceElementOffset = 0,
.Component0Control = (bs >= 4) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
.Component1Control = (bs >= 8) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
.Component2Control = (bs >= 12) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
.Component3Control = (bs >= 16) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
});
#if GEN_GEN >= 8
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_SGVS), sgvs);
#endif
/* Disable all shader stages */
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VS), vs);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HS), hs);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_TE), te);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DS), DS);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_GS), gs);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_PS), gs);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SBE), sbe) {
sbe.VertexURBEntryReadOffset = 1;
sbe.NumberofSFOutputAttributes = 1;
sbe.VertexURBEntryReadLength = 1;
#if GEN_GEN >= 8
sbe.ForceVertexURBEntryReadLength = true;
sbe.ForceVertexURBEntryReadOffset = true;
#endif
#if GEN_GEN >= 9
for (unsigned i = 0; i < 32; i++)
sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
#endif
}
/* Emit URB setup. We tell it that the VS is active because we want it to
* allocate space for the VS. Even though one isn't run, we need VUEs to
* store the data that VF is going to pass to SOL.
*/
const unsigned entry_size[4] = { DIV_ROUND_UP(32, 64), 1, 1, 1 };
genX(emit_urb_setup)(cmd_buffer->device, &cmd_buffer->batch,
cmd_buffer->state.current_l3_config,
VK_SHADER_STAGE_VERTEX_BIT, entry_size);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
sob.SOBufferIndex = 0;
sob.SOBufferObjectControlState = GENX(MOCS);
sob.SurfaceBaseAddress = (struct anv_address) { dst, dst_offset };
#if GEN_GEN >= 8
sob.SOBufferEnable = true;
sob.SurfaceSize = size - 1;
#else
sob.SurfacePitch = bs;
sob.SurfaceEndAddress = sob.SurfaceBaseAddress;
sob.SurfaceEndAddress.offset += size;
#endif
#if GEN_GEN >= 8
/* As SOL writes out data, it updates the SO_WRITE_OFFSET registers with
* the end position of the stream. We need to reset this value to 0 at
* the beginning of the run or else SOL will start at the offset from
* the previous draw.
*/
sob.StreamOffsetWriteEnable = true;
sob.StreamOffset = 0;
#endif
}
#if GEN_GEN <= 7
/* The hardware can do this for us on BDW+ (see above) */
anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), load) {
load.RegisterOffset = GENX(SO_WRITE_OFFSET0_num);
load.DataDWord = 0;
}
#endif
dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(3DSTATE_SO_DECL_LIST),
.StreamtoBufferSelects0 = (1 << 0),
.NumEntries0 = 1);
GENX(SO_DECL_ENTRY_pack)(&cmd_buffer->batch, dw + 3,
&(struct GENX(SO_DECL_ENTRY)) {
.Stream0Decl = {
.OutputBufferSlot = 0,
.RegisterIndex = 0,
.ComponentMask = (1 << (bs / 4)) - 1,
},
});
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STREAMOUT), so) {
so.SOFunctionEnable = true;
so.RenderingDisable = true;
so.Stream0VertexReadOffset = 0;
so.Stream0VertexReadLength = DIV_ROUND_UP(32, 64);
#if GEN_GEN >= 8
so.Buffer0SurfacePitch = bs;
#else
so.SOBufferEnable0 = true;
#endif
}
#if GEN_GEN >= 8
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
topo.PrimitiveTopologyType = _3DPRIM_POINTLIST;
}
#endif
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_STATISTICS), vf) {
vf.StatisticsEnable = false;
}
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.VertexAccessType = SEQUENTIAL;
prim.PrimitiveTopologyType = _3DPRIM_POINTLIST;
prim.VertexCountPerInstance = size / bs;
prim.StartVertexLocation = 0;
prim.InstanceCount = 1;
prim.StartInstanceLocation = 0;
prim.BaseVertexLocation = 0;
}
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE;
}