mesa/src/glsl/ir_validate.cpp
Ian Romanick 11d6f1c698 glsl: Add ir_quadop_vector expression
The vector operator collects 2, 3, or 4 scalar components into a
vector.  Doing this has several advantages.  First, it will make
ud-chain tracking for components of vectors much easier.  Second, a
later optimization pass could collect scalars into vectors to allow
generation of SWZ instructions (or similar as operands to other
instructions on R200 and i915).  It also enables an easy way to
generate IR for SWZ instructions in the ARB_vertex_program assembler.
2010-11-19 15:00:26 -08:00

529 lines
16 KiB
C++

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file ir_validate.cpp
*
* Attempts to verify that various invariants of the IR tree are true.
*
* In particular, at the moment it makes sure that no single
* ir_instruction node except for ir_variable appears multiple times
* in the ir tree. ir_variable does appear multiple times: Once as a
* declaration in an exec_list, and multiple times as the endpoint of
* a dereference chain.
*/
#include <inttypes.h>
#include "ir.h"
#include "ir_hierarchical_visitor.h"
#include "program/hash_table.h"
#include "glsl_types.h"
class ir_validate : public ir_hierarchical_visitor {
public:
ir_validate()
{
this->ht = hash_table_ctor(0, hash_table_pointer_hash,
hash_table_pointer_compare);
this->current_function = NULL;
this->callback = ir_validate::validate_ir;
this->data = ht;
}
~ir_validate()
{
hash_table_dtor(this->ht);
}
virtual ir_visitor_status visit(ir_variable *v);
virtual ir_visitor_status visit(ir_dereference_variable *ir);
virtual ir_visitor_status visit(ir_if *ir);
virtual ir_visitor_status visit_leave(ir_loop *ir);
virtual ir_visitor_status visit_enter(ir_function *ir);
virtual ir_visitor_status visit_leave(ir_function *ir);
virtual ir_visitor_status visit_enter(ir_function_signature *ir);
virtual ir_visitor_status visit_leave(ir_expression *ir);
virtual ir_visitor_status visit_leave(ir_swizzle *ir);
virtual ir_visitor_status visit_enter(ir_assignment *ir);
static void validate_ir(ir_instruction *ir, void *data);
ir_function *current_function;
struct hash_table *ht;
};
ir_visitor_status
ir_validate::visit(ir_dereference_variable *ir)
{
if ((ir->var == NULL) || (ir->var->as_variable() == NULL)) {
printf("ir_dereference_variable @ %p does not specify a variable %p\n",
(void *) ir, (void *) ir->var);
abort();
}
if (hash_table_find(ht, ir->var) == NULL) {
printf("ir_dereference_variable @ %p specifies undeclared variable "
"`%s' @ %p\n",
(void *) ir, ir->var->name, (void *) ir->var);
abort();
}
this->validate_ir(ir, this->data);
return visit_continue;
}
ir_visitor_status
ir_validate::visit(ir_if *ir)
{
if (ir->condition->type != glsl_type::bool_type) {
printf("ir_if condition %s type instead of bool.\n",
ir->condition->type->name);
ir->print();
printf("\n");
abort();
}
return visit_continue;
}
ir_visitor_status
ir_validate::visit_leave(ir_loop *ir)
{
if (ir->counter != NULL) {
if ((ir->from == NULL) || (ir->from == NULL) || (ir->increment == NULL)) {
printf("ir_loop has invalid loop controls:\n"
" counter: %p\n"
" from: %p\n"
" to: %p\n"
" increment: %p\n",
(void *) ir->counter, (void *) ir->from, (void *) ir->to,
(void *) ir->increment);
abort();
}
if ((ir->cmp < ir_binop_less) || (ir->cmp > ir_binop_nequal)) {
printf("ir_loop has invalid comparitor %d\n", ir->cmp);
abort();
}
} else {
if ((ir->from != NULL) || (ir->from != NULL) || (ir->increment != NULL)) {
printf("ir_loop has invalid loop controls:\n"
" counter: %p\n"
" from: %p\n"
" to: %p\n"
" increment: %p\n",
(void *) ir->counter, (void *) ir->from, (void *) ir->to,
(void *) ir->increment);
abort();
}
}
return visit_continue;
}
ir_visitor_status
ir_validate::visit_enter(ir_function *ir)
{
/* Function definitions cannot be nested.
*/
if (this->current_function != NULL) {
printf("Function definition nested inside another function "
"definition:\n");
printf("%s %p inside %s %p\n",
ir->name, (void *) ir,
this->current_function->name, (void *) this->current_function);
abort();
}
/* Store the current function hierarchy being traversed. This is used
* by the function signature visitor to ensure that the signatures are
* linked with the correct functions.
*/
this->current_function = ir;
this->validate_ir(ir, this->data);
return visit_continue;
}
ir_visitor_status
ir_validate::visit_leave(ir_function *ir)
{
assert(talloc_parent(ir->name) == ir);
this->current_function = NULL;
return visit_continue;
}
ir_visitor_status
ir_validate::visit_enter(ir_function_signature *ir)
{
if (this->current_function != ir->function()) {
printf("Function signature nested inside wrong function "
"definition:\n");
printf("%p inside %s %p instead of %s %p\n",
(void *) ir,
this->current_function->name, (void *) this->current_function,
ir->function_name(), (void *) ir->function());
abort();
}
this->validate_ir(ir, this->data);
return visit_continue;
}
ir_visitor_status
ir_validate::visit_leave(ir_expression *ir)
{
switch (ir->operation) {
case ir_unop_bit_not:
assert(ir->operands[0]->type == ir->type);
break;
case ir_unop_logic_not:
assert(ir->type->base_type == GLSL_TYPE_BOOL);
assert(ir->operands[0]->type->base_type == GLSL_TYPE_BOOL);
break;
case ir_unop_neg:
case ir_unop_abs:
case ir_unop_sign:
case ir_unop_rcp:
case ir_unop_rsq:
case ir_unop_sqrt:
assert(ir->type == ir->operands[0]->type);
break;
case ir_unop_exp:
case ir_unop_log:
case ir_unop_exp2:
case ir_unop_log2:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
assert(ir->type == ir->operands[0]->type);
break;
case ir_unop_f2i:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
assert(ir->type->base_type == GLSL_TYPE_INT);
break;
case ir_unop_i2f:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
assert(ir->type->base_type == GLSL_TYPE_FLOAT);
break;
case ir_unop_f2b:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
assert(ir->type->base_type == GLSL_TYPE_BOOL);
break;
case ir_unop_b2f:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_BOOL);
assert(ir->type->base_type == GLSL_TYPE_FLOAT);
break;
case ir_unop_i2b:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
assert(ir->type->base_type == GLSL_TYPE_BOOL);
break;
case ir_unop_b2i:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_BOOL);
assert(ir->type->base_type == GLSL_TYPE_INT);
break;
case ir_unop_u2f:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
assert(ir->type->base_type == GLSL_TYPE_FLOAT);
break;
case ir_unop_any:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_BOOL);
assert(ir->type == glsl_type::bool_type);
break;
case ir_unop_trunc:
case ir_unop_round_even:
case ir_unop_ceil:
case ir_unop_floor:
case ir_unop_fract:
case ir_unop_sin:
case ir_unop_cos:
case ir_unop_sin_reduced:
case ir_unop_cos_reduced:
case ir_unop_dFdx:
case ir_unop_dFdy:
assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
assert(ir->operands[0]->type == ir->type);
break;
case ir_unop_noise:
/* XXX what can we assert here? */
break;
case ir_binop_add:
case ir_binop_sub:
case ir_binop_mul:
case ir_binop_div:
case ir_binop_mod:
case ir_binop_min:
case ir_binop_max:
case ir_binop_pow:
if (ir->operands[0]->type->is_scalar())
assert(ir->operands[1]->type == ir->type);
else if (ir->operands[1]->type->is_scalar())
assert(ir->operands[0]->type == ir->type);
else if (ir->operands[0]->type->is_vector() &&
ir->operands[1]->type->is_vector()) {
assert(ir->operands[0]->type == ir->operands[1]->type);
assert(ir->operands[0]->type == ir->type);
}
break;
case ir_binop_less:
case ir_binop_greater:
case ir_binop_lequal:
case ir_binop_gequal:
case ir_binop_equal:
case ir_binop_nequal:
/* The semantics of the IR operators differ from the GLSL <, >, <=, >=,
* ==, and != operators. The IR operators perform a component-wise
* comparison on scalar or vector types and return a boolean scalar or
* vector type of the same size.
*/
assert(ir->type->base_type == GLSL_TYPE_BOOL);
assert(ir->operands[0]->type == ir->operands[1]->type);
assert(ir->operands[0]->type->is_vector()
|| ir->operands[0]->type->is_scalar());
assert(ir->operands[0]->type->vector_elements
== ir->type->vector_elements);
break;
case ir_binop_all_equal:
case ir_binop_any_nequal:
/* GLSL == and != operate on scalars, vectors, matrices and arrays, and
* return a scalar boolean. The IR matches that.
*/
assert(ir->type == glsl_type::bool_type);
assert(ir->operands[0]->type == ir->operands[1]->type);
break;
case ir_binop_lshift:
case ir_binop_rshift:
assert(ir->operands[0]->type->is_integer() &&
ir->operands[1]->type->is_integer());
if (ir->operands[0]->type->is_scalar()) {
assert(ir->operands[1]->type->is_scalar());
}
if (ir->operands[0]->type->is_vector() &&
ir->operands[1]->type->is_vector()) {
assert(ir->operands[0]->type->components() ==
ir->operands[1]->type->components());
}
assert(ir->type == ir->operands[0]->type);
break;
case ir_binop_bit_and:
case ir_binop_bit_xor:
case ir_binop_bit_or:
assert(ir->operands[0]->type->base_type ==
ir->operands[1]->type->base_type);
assert(ir->type->is_integer());
if (ir->operands[0]->type->is_vector() &&
ir->operands[1]->type->is_vector()) {
assert(ir->operands[0]->type->vector_elements ==
ir->operands[1]->type->vector_elements);
}
break;
case ir_binop_logic_and:
case ir_binop_logic_xor:
case ir_binop_logic_or:
assert(ir->type == glsl_type::bool_type);
assert(ir->operands[0]->type == glsl_type::bool_type);
assert(ir->operands[1]->type == glsl_type::bool_type);
break;
case ir_binop_dot:
assert(ir->type == glsl_type::float_type);
assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
assert(ir->operands[0]->type->is_vector());
assert(ir->operands[0]->type == ir->operands[1]->type);
break;
case ir_quadop_vector:
/* The vector operator collects some number of scalars and generates a
* vector from them.
*
* - All of the operands must be scalar.
* - Number of operands must matche the size of the resulting vector.
* - Base type of the operands must match the base type of the result.
*/
assert(ir->type->is_vector());
switch (ir->type->vector_elements) {
case 2:
assert(ir->operands[0]->type->is_scalar());
assert(ir->operands[0]->type->base_type == ir->type->base_type);
assert(ir->operands[1]->type->is_scalar());
assert(ir->operands[1]->type->base_type == ir->type->base_type);
assert(ir->operands[2] == NULL);
assert(ir->operands[3] == NULL);
break;
case 3:
assert(ir->operands[0]->type->is_scalar());
assert(ir->operands[0]->type->base_type == ir->type->base_type);
assert(ir->operands[1]->type->is_scalar());
assert(ir->operands[1]->type->base_type == ir->type->base_type);
assert(ir->operands[2]->type->is_scalar());
assert(ir->operands[2]->type->base_type == ir->type->base_type);
assert(ir->operands[3] == NULL);
break;
case 4:
assert(ir->operands[0]->type->is_scalar());
assert(ir->operands[0]->type->base_type == ir->type->base_type);
assert(ir->operands[1]->type->is_scalar());
assert(ir->operands[1]->type->base_type == ir->type->base_type);
assert(ir->operands[2]->type->is_scalar());
assert(ir->operands[2]->type->base_type == ir->type->base_type);
assert(ir->operands[3]->type->is_scalar());
assert(ir->operands[3]->type->base_type == ir->type->base_type);
break;
default:
/* The is_vector assertion above should prevent execution from ever
* getting here.
*/
assert(!"Should not get here.");
break;
}
}
return visit_continue;
}
ir_visitor_status
ir_validate::visit_leave(ir_swizzle *ir)
{
int chans[4] = {ir->mask.x, ir->mask.y, ir->mask.z, ir->mask.w};
for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
if (chans[i] >= ir->val->type->vector_elements) {
printf("ir_swizzle @ %p specifies a channel not present "
"in the value.\n", (void *) ir);
ir->print();
abort();
}
}
return visit_continue;
}
ir_visitor_status
ir_validate::visit(ir_variable *ir)
{
/* An ir_variable is the one thing that can (and will) appear multiple times
* in an IR tree. It is added to the hashtable so that it can be used
* in the ir_dereference_variable handler to ensure that a variable is
* declared before it is dereferenced.
*/
if (ir->name)
assert(talloc_parent(ir->name) == ir);
hash_table_insert(ht, ir, ir);
return visit_continue;
}
ir_visitor_status
ir_validate::visit_enter(ir_assignment *ir)
{
const ir_dereference *const lhs = ir->lhs;
if (lhs->type->is_scalar() || lhs->type->is_vector()) {
if (ir->write_mask == 0) {
printf("Assignment LHS is %s, but write mask is 0:\n",
lhs->type->is_scalar() ? "scalar" : "vector");
ir->print();
abort();
}
int lhs_components = 0;
for (int i = 0; i < 4; i++) {
if (ir->write_mask & (1 << i))
lhs_components++;
}
if (lhs_components != ir->rhs->type->vector_elements) {
printf("Assignment count of LHS write mask channels enabled not\n"
"matching RHS vector size (%d LHS, %d RHS).\n",
lhs_components, ir->rhs->type->vector_elements);
ir->print();
abort();
}
}
this->validate_ir(ir, this->data);
return visit_continue;
}
void
ir_validate::validate_ir(ir_instruction *ir, void *data)
{
struct hash_table *ht = (struct hash_table *) data;
if (hash_table_find(ht, ir)) {
printf("Instruction node present twice in ir tree:\n");
ir->print();
printf("\n");
abort();
}
hash_table_insert(ht, ir, ir);
}
void
check_node_type(ir_instruction *ir, void *data)
{
(void) data;
if (ir->ir_type <= ir_type_unset || ir->ir_type >= ir_type_max) {
printf("Instruction node with unset type\n");
ir->print(); printf("\n");
}
assert(ir->type != glsl_type::error_type);
}
void
validate_ir_tree(exec_list *instructions)
{
ir_validate v;
v.run(instructions);
foreach_iter(exec_list_iterator, iter, *instructions) {
ir_instruction *ir = (ir_instruction *)iter.get();
visit_tree(ir, check_node_type, NULL);
}
}