mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-21 07:10:09 +01:00
Avoids stack overflows with really large programs. No fossil-db changes. Closes: https://gitlab.freedesktop.org/mesa/mesa/-/issues/8760 Closes: https://gitlab.freedesktop.org/mesa/mesa/-/issues/8701 Reviewed-by: Daniel Schürmann <daniel@schuermann.dev> Cc: mesa-stable Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/23531>
414 lines
16 KiB
C++
414 lines
16 KiB
C++
/*
|
|
* Copyright © 2019 Valve Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "aco_builder.h"
|
|
#include "aco_ir.h"
|
|
|
|
#include "util/enum_operators.h"
|
|
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <vector>
|
|
|
|
namespace aco {
|
|
|
|
enum class pred_defined : uint8_t {
|
|
undef = 0,
|
|
const_1 = 1,
|
|
const_0 = 2,
|
|
temp = 3,
|
|
zero = 4, /* all disabled lanes are zero'd out */
|
|
};
|
|
MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(pred_defined);
|
|
|
|
struct ssa_state {
|
|
bool checked_preds_for_uniform;
|
|
bool all_preds_uniform;
|
|
unsigned loop_nest_depth;
|
|
|
|
std::vector<pred_defined> any_pred_defined;
|
|
std::vector<bool> visited;
|
|
std::vector<Operand> outputs; /* the output per block */
|
|
};
|
|
|
|
Operand get_output(Program* program, unsigned block_idx, ssa_state* state);
|
|
|
|
void
|
|
init_outputs(Program* program, ssa_state* state, unsigned start, unsigned end)
|
|
{
|
|
for (unsigned i = start; i < end; ++i) {
|
|
if (state->visited[i])
|
|
continue;
|
|
state->outputs[i] = get_output(program, i, state);
|
|
state->visited[i] = true;
|
|
}
|
|
}
|
|
|
|
Operand
|
|
get_output(Program* program, unsigned block_idx, ssa_state* state)
|
|
{
|
|
Block& block = program->blocks[block_idx];
|
|
|
|
if (state->any_pred_defined[block_idx] == pred_defined::undef)
|
|
return Operand(program->lane_mask);
|
|
|
|
if (block.loop_nest_depth < state->loop_nest_depth)
|
|
/* loop-carried value for loop exit phis */
|
|
return Operand::zero(program->lane_mask.bytes());
|
|
|
|
size_t num_preds = block.linear_preds.size();
|
|
|
|
if (block.loop_nest_depth > state->loop_nest_depth || num_preds == 1 ||
|
|
block.kind & block_kind_loop_exit)
|
|
return state->outputs[block.linear_preds[0]];
|
|
|
|
Operand output;
|
|
|
|
/* Loop headers can contain back edges, in which case the predecessor
|
|
* outputs aren't yet determined because the predecessor is after the block.
|
|
* The predecessor outputs also depend on the output of the loop header,
|
|
* so allocate a temporary that will store this block's output and use that
|
|
* to calculate the predecessor block output. In this case, we always emit a phi
|
|
* to ensure the allocated temporary is defined. */
|
|
if (block.kind & block_kind_loop_header) {
|
|
unsigned start_idx = block_idx + 1;
|
|
unsigned end_idx = block.linear_preds.back() + 1;
|
|
|
|
state->outputs[block_idx] = Operand(Temp(program->allocateTmp(program->lane_mask)));
|
|
init_outputs(program, state, start_idx, end_idx);
|
|
output = state->outputs[block_idx];
|
|
} else if (std::all_of(block.linear_preds.begin() + 1, block.linear_preds.end(),
|
|
[&](unsigned pred) {
|
|
return state->outputs[pred] == state->outputs[block.linear_preds[0]];
|
|
})) {
|
|
return state->outputs[block.linear_preds[0]];
|
|
} else {
|
|
output = Operand(Temp(program->allocateTmp(program->lane_mask)));
|
|
}
|
|
|
|
/* create phi */
|
|
aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(
|
|
aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)};
|
|
for (unsigned i = 0; i < num_preds; i++)
|
|
phi->operands[i] = state->outputs[block.linear_preds[i]];
|
|
phi->definitions[0] = Definition(output.getTemp());
|
|
block.instructions.emplace(block.instructions.begin(), std::move(phi));
|
|
|
|
assert(output.size() == program->lane_mask.size());
|
|
|
|
return output;
|
|
}
|
|
|
|
void
|
|
insert_before_logical_end(Block* block, aco_ptr<Instruction> instr)
|
|
{
|
|
auto IsLogicalEnd = [](const aco_ptr<Instruction>& inst) -> bool
|
|
{ return inst->opcode == aco_opcode::p_logical_end; };
|
|
auto it = std::find_if(block->instructions.crbegin(), block->instructions.crend(), IsLogicalEnd);
|
|
|
|
if (it == block->instructions.crend()) {
|
|
assert(block->instructions.back()->isBranch());
|
|
block->instructions.insert(std::prev(block->instructions.end()), std::move(instr));
|
|
} else {
|
|
block->instructions.insert(std::prev(it.base()), std::move(instr));
|
|
}
|
|
}
|
|
|
|
void
|
|
build_merge_code(Program* program, ssa_state* state, Block* block, Operand cur)
|
|
{
|
|
unsigned block_idx = block->index;
|
|
Definition dst = Definition(state->outputs[block_idx].getTemp());
|
|
Operand prev = get_output(program, block_idx, state);
|
|
if (cur.isUndefined())
|
|
cur = Operand::zero(program->lane_mask.bytes());
|
|
|
|
Builder bld(program);
|
|
auto IsLogicalEnd = [](const aco_ptr<Instruction>& instr) -> bool
|
|
{ return instr->opcode == aco_opcode::p_logical_end; };
|
|
auto it = std::find_if(block->instructions.rbegin(), block->instructions.rend(), IsLogicalEnd);
|
|
assert(it != block->instructions.rend());
|
|
bld.reset(&block->instructions, std::prev(it.base()));
|
|
|
|
pred_defined defined = state->any_pred_defined[block_idx];
|
|
if (defined == pred_defined::undef) {
|
|
return;
|
|
} else if (defined == pred_defined::const_0) {
|
|
bld.sop2(Builder::s_and, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
|
|
return;
|
|
} else if (defined == pred_defined::const_1) {
|
|
bld.sop2(Builder::s_orn2, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
|
|
return;
|
|
}
|
|
|
|
assert(prev.isTemp());
|
|
/* simpler sequence in case prev has only zeros in disabled lanes */
|
|
if ((defined & pred_defined::zero) == pred_defined::zero) {
|
|
if (cur.isConstant()) {
|
|
if (!cur.constantValue()) {
|
|
bld.copy(dst, prev);
|
|
return;
|
|
}
|
|
cur = Operand(exec, bld.lm);
|
|
} else {
|
|
cur =
|
|
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cur, Operand(exec, bld.lm));
|
|
}
|
|
bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, cur);
|
|
return;
|
|
}
|
|
|
|
if (cur.isConstant()) {
|
|
if (cur.constantValue())
|
|
bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
|
|
else
|
|
bld.sop2(Builder::s_andn2, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
|
|
return;
|
|
}
|
|
prev =
|
|
bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), prev, Operand(exec, bld.lm));
|
|
cur = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cur, Operand(exec, bld.lm));
|
|
bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, cur);
|
|
return;
|
|
}
|
|
|
|
void
|
|
build_const_else_merge_code(Program* program, Block& invert_block, aco_ptr<Instruction>& phi)
|
|
{
|
|
/* When the else-side operand of a binary merge phi is constant,
|
|
* we can use a simpler way to lower the phi by emitting some
|
|
* instructions to the invert block instead.
|
|
* This allows us to actually delete the else block when it's empty.
|
|
*/
|
|
assert(invert_block.kind & block_kind_invert);
|
|
Builder bld(program);
|
|
Operand then = phi->operands[0];
|
|
const Operand els = phi->operands[1];
|
|
|
|
/* Only -1 (all lanes true) and 0 (all lanes false) constants are supported here. */
|
|
assert(!then.isConstant() || then.constantEquals(0) || then.constantEquals(-1));
|
|
assert(els.constantEquals(0) || els.constantEquals(-1));
|
|
|
|
if (!then.isConstant()) {
|
|
/* Left-hand operand is not constant, so we need to emit a phi to access it. */
|
|
bld.reset(&invert_block.instructions, invert_block.instructions.begin());
|
|
then = bld.pseudo(aco_opcode::p_linear_phi, bld.def(bld.lm), then, Operand(bld.lm));
|
|
}
|
|
|
|
auto after_phis =
|
|
std::find_if(invert_block.instructions.begin(), invert_block.instructions.end(),
|
|
[](const aco_ptr<Instruction>& instr) -> bool { return !is_phi(instr.get()); });
|
|
bld.reset(&invert_block.instructions, after_phis);
|
|
|
|
Temp tmp;
|
|
if (then.constantEquals(-1) && els.constantEquals(0)) {
|
|
tmp = bld.copy(bld.def(bld.lm), Operand(exec, bld.lm));
|
|
} else {
|
|
Builder::WaveSpecificOpcode opc = els.constantEquals(0) ? Builder::s_and : Builder::s_orn2;
|
|
tmp = bld.sop2(opc, bld.def(bld.lm), bld.def(s1, scc), then, Operand(exec, bld.lm));
|
|
}
|
|
|
|
/* We can't delete the original phi because that'd invalidate the iterator in lower_phis,
|
|
* so just make it a trivial phi instead.
|
|
*/
|
|
phi->opcode = aco_opcode::p_linear_phi;
|
|
phi->operands[0] = Operand(tmp);
|
|
phi->operands[1] = Operand(tmp);
|
|
}
|
|
|
|
void
|
|
init_state(Program* program, Block* block, ssa_state* state, aco_ptr<Instruction>& phi)
|
|
{
|
|
Builder bld(program);
|
|
|
|
/* do this here to avoid resizing in case of no boolean phis */
|
|
state->visited.resize(program->blocks.size());
|
|
state->outputs.resize(program->blocks.size());
|
|
state->any_pred_defined.resize(program->blocks.size());
|
|
state->loop_nest_depth = block->loop_nest_depth;
|
|
if (block->kind & block_kind_loop_exit)
|
|
state->loop_nest_depth += 1;
|
|
std::fill(state->visited.begin(), state->visited.end(), false);
|
|
std::fill(state->any_pred_defined.begin(), state->any_pred_defined.end(), pred_defined::undef);
|
|
|
|
for (unsigned i = 0; i < block->logical_preds.size(); i++) {
|
|
if (phi->operands[i].isUndefined())
|
|
continue;
|
|
pred_defined defined = pred_defined::temp;
|
|
if (phi->operands[i].isConstant())
|
|
defined = phi->operands[i].constantValue() ? pred_defined::const_1 : pred_defined::const_0;
|
|
for (unsigned succ : program->blocks[block->logical_preds[i]].linear_succs)
|
|
state->any_pred_defined[succ] |= defined;
|
|
}
|
|
|
|
unsigned start = block->logical_preds[0];
|
|
unsigned end = block->index;
|
|
|
|
/* for loop exit phis, start at the loop pre-header */
|
|
if (block->kind & block_kind_loop_exit) {
|
|
while (program->blocks[start].loop_nest_depth >= state->loop_nest_depth)
|
|
start--;
|
|
/* If the loop-header has a back-edge, we need to insert a phi.
|
|
* This will contain a defined value */
|
|
if (program->blocks[start + 1].linear_preds.size() > 1)
|
|
state->any_pred_defined[start + 1] = pred_defined::temp;
|
|
}
|
|
/* for loop header phis, end at the loop exit */
|
|
if (block->kind & block_kind_loop_header) {
|
|
while (program->blocks[end].loop_nest_depth >= state->loop_nest_depth)
|
|
end++;
|
|
/* don't propagate the incoming value */
|
|
state->any_pred_defined[block->index] = pred_defined::undef;
|
|
}
|
|
|
|
/* add dominating zero: this allows to emit simpler merge sequences
|
|
* if we can ensure that all disabled lanes are always zero on incoming values */
|
|
// TODO: find more occasions where pred_defined::zero is beneficial (e.g. with 2+ temp merges)
|
|
if (block->kind & block_kind_loop_exit) {
|
|
/* zero the loop-carried variable */
|
|
if (program->blocks[start + 1].linear_preds.size() > 1) {
|
|
state->any_pred_defined[start + 1] |= pred_defined::zero;
|
|
// TODO: emit this zero explicitly
|
|
state->any_pred_defined[start] = pred_defined::const_0;
|
|
}
|
|
}
|
|
|
|
for (unsigned j = start; j < end; j++) {
|
|
if (state->any_pred_defined[j] == pred_defined::undef)
|
|
continue;
|
|
for (unsigned succ : program->blocks[j].linear_succs)
|
|
state->any_pred_defined[succ] |= state->any_pred_defined[j];
|
|
}
|
|
|
|
state->any_pred_defined[block->index] = pred_defined::undef;
|
|
|
|
for (unsigned i = 0; i < phi->operands.size(); i++) {
|
|
unsigned pred = block->logical_preds[i];
|
|
if (state->any_pred_defined[pred] != pred_defined::undef)
|
|
state->outputs[pred] = Operand(bld.tmp(bld.lm));
|
|
else
|
|
state->outputs[pred] = phi->operands[i];
|
|
assert(state->outputs[pred].size() == bld.lm.size());
|
|
state->visited[pred] = true;
|
|
}
|
|
|
|
init_outputs(program, state, start, end);
|
|
}
|
|
|
|
void
|
|
lower_divergent_bool_phi(Program* program, ssa_state* state, Block* block,
|
|
aco_ptr<Instruction>& phi)
|
|
{
|
|
if (!state->checked_preds_for_uniform) {
|
|
state->all_preds_uniform = !(block->kind & block_kind_merge) &&
|
|
block->linear_preds.size() == block->logical_preds.size();
|
|
for (unsigned pred : block->logical_preds)
|
|
state->all_preds_uniform =
|
|
state->all_preds_uniform && (program->blocks[pred].kind & block_kind_uniform);
|
|
state->checked_preds_for_uniform = true;
|
|
}
|
|
|
|
if (state->all_preds_uniform) {
|
|
phi->opcode = aco_opcode::p_linear_phi;
|
|
return;
|
|
}
|
|
|
|
if (phi->operands.size() == 2 && phi->operands[1].isConstant() &&
|
|
(block->kind & block_kind_merge)) {
|
|
build_const_else_merge_code(program, program->blocks[block->linear_idom], phi);
|
|
return;
|
|
}
|
|
|
|
init_state(program, block, state, phi);
|
|
|
|
for (unsigned i = 0; i < phi->operands.size(); i++)
|
|
build_merge_code(program, state, &program->blocks[block->logical_preds[i]], phi->operands[i]);
|
|
|
|
unsigned num_preds = block->linear_preds.size();
|
|
if (phi->operands.size() != num_preds) {
|
|
Pseudo_instruction* new_phi{create_instruction<Pseudo_instruction>(
|
|
aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)};
|
|
new_phi->definitions[0] = phi->definitions[0];
|
|
phi.reset(new_phi);
|
|
} else {
|
|
phi->opcode = aco_opcode::p_linear_phi;
|
|
}
|
|
assert(phi->operands.size() == num_preds);
|
|
|
|
for (unsigned i = 0; i < num_preds; i++)
|
|
phi->operands[i] = state->outputs[block->linear_preds[i]];
|
|
|
|
return;
|
|
}
|
|
|
|
void
|
|
lower_subdword_phis(Program* program, Block* block, aco_ptr<Instruction>& phi)
|
|
{
|
|
Builder bld(program);
|
|
for (unsigned i = 0; i < phi->operands.size(); i++) {
|
|
if (phi->operands[i].isUndefined())
|
|
continue;
|
|
if (phi->operands[i].regClass() == phi->definitions[0].regClass())
|
|
continue;
|
|
|
|
assert(phi->operands[i].isTemp());
|
|
Block* pred = &program->blocks[block->logical_preds[i]];
|
|
Temp phi_src = phi->operands[i].getTemp();
|
|
|
|
assert(phi_src.regClass().type() == RegType::sgpr);
|
|
Temp tmp = bld.tmp(RegClass(RegType::vgpr, phi_src.size()));
|
|
insert_before_logical_end(pred, bld.copy(Definition(tmp), phi_src).get_ptr());
|
|
Temp new_phi_src = bld.tmp(phi->definitions[0].regClass());
|
|
insert_before_logical_end(pred, bld.pseudo(aco_opcode::p_extract_vector,
|
|
Definition(new_phi_src), tmp, Operand::zero())
|
|
.get_ptr());
|
|
|
|
phi->operands[i].setTemp(new_phi_src);
|
|
}
|
|
return;
|
|
}
|
|
|
|
void
|
|
lower_phis(Program* program)
|
|
{
|
|
ssa_state state;
|
|
|
|
for (Block& block : program->blocks) {
|
|
state.checked_preds_for_uniform = false;
|
|
for (aco_ptr<Instruction>& phi : block.instructions) {
|
|
if (phi->opcode == aco_opcode::p_phi) {
|
|
assert(program->wave_size == 64 ? phi->definitions[0].regClass() != s1
|
|
: phi->definitions[0].regClass() != s2);
|
|
if (phi->definitions[0].regClass() == program->lane_mask)
|
|
lower_divergent_bool_phi(program, &state, &block, phi);
|
|
else if (phi->definitions[0].regClass().is_subdword())
|
|
lower_subdword_phis(program, &block, phi);
|
|
} else if (!is_phi(phi)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace aco
|