mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-21 22:20:14 +01:00
This code is compiled out, but has been left in place in case we wanted to use it for debugging something. In the olden days, we'd use it for platform enabling. I can't think of the last time we did that, though. I also used to use it for debugging. If something was misrendering, I'd iterate through shaders 0..N, replacing them with "draw hot pink" until whatever shader was drawing the bad stuff was brightly illuminated. Once it was identified, I'd start investigating that shader. These days, we have frameretrace and renderdoc which are like, actual tools that let you highlight draws and replace shaders. So we don't need to resort iterative driver hacks anymore. Again, I can't think of the last time I actually did that. So, this code is basically just dead. And it's using legacy MRF paths, which we could update...or we could just delete it. Reviewed-by: Caio Oliveira <caio.oliveira@intel.com> Reviewed-by: Emma Anholt <emma@anholt.net> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/20172>
1397 lines
53 KiB
C++
1397 lines
53 KiB
C++
/*
|
|
* Copyright © 2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
/** @file brw_fs_visitor.cpp
|
|
*
|
|
* This file supports generating the FS LIR from the GLSL IR. The LIR
|
|
* makes it easier to do backend-specific optimizations than doing so
|
|
* in the GLSL IR or in the native code.
|
|
*/
|
|
#include "brw_eu.h"
|
|
#include "brw_fs.h"
|
|
#include "brw_nir.h"
|
|
#include "compiler/glsl_types.h"
|
|
|
|
using namespace brw;
|
|
|
|
/* Sample from the MCS surface attached to this multisample texture. */
|
|
fs_reg
|
|
fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
|
|
const fs_reg &texture,
|
|
const fs_reg &texture_handle)
|
|
{
|
|
const fs_reg dest = vgrf(glsl_type::uvec4_type);
|
|
|
|
fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
|
|
srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
|
|
srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
|
|
srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
|
|
srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = texture_handle;
|
|
srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
|
|
srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
|
|
srcs[TEX_LOGICAL_SRC_RESIDENCY] = brw_imm_d(0);
|
|
|
|
fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
|
|
ARRAY_SIZE(srcs));
|
|
|
|
/* We only care about one or two regs of response, but the sampler always
|
|
* writes 4/8.
|
|
*/
|
|
inst->size_written = 4 * dest.component_size(inst->exec_size);
|
|
|
|
return dest;
|
|
}
|
|
|
|
/* Input data is organized with first the per-primitive values, followed
|
|
* by per-vertex values. The per-vertex will have interpolation information
|
|
* associated, so use 4 components for each value.
|
|
*/
|
|
|
|
/* The register location here is relative to the start of the URB
|
|
* data. It will get adjusted to be a real location before
|
|
* generate_code() time.
|
|
*/
|
|
fs_reg
|
|
fs_visitor::interp_reg(int location, int channel)
|
|
{
|
|
assert(stage == MESA_SHADER_FRAGMENT);
|
|
assert(BITFIELD64_BIT(location) & ~nir->info.per_primitive_inputs);
|
|
|
|
const struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
|
|
|
|
assert(prog_data->urb_setup[location] >= 0);
|
|
unsigned nr = prog_data->urb_setup[location];
|
|
channel += prog_data->urb_setup_channel[location];
|
|
|
|
/* Adjust so we start counting from the first per_vertex input. */
|
|
assert(nr >= prog_data->num_per_primitive_inputs);
|
|
nr -= prog_data->num_per_primitive_inputs;
|
|
|
|
const unsigned per_vertex_start = prog_data->num_per_primitive_inputs;
|
|
const unsigned regnr = per_vertex_start + (nr * 4) + channel;
|
|
|
|
return fs_reg(ATTR, regnr, BRW_REGISTER_TYPE_F);
|
|
}
|
|
|
|
/* The register location here is relative to the start of the URB
|
|
* data. It will get adjusted to be a real location before
|
|
* generate_code() time.
|
|
*/
|
|
fs_reg
|
|
fs_visitor::per_primitive_reg(int location, unsigned comp)
|
|
{
|
|
assert(stage == MESA_SHADER_FRAGMENT);
|
|
assert(BITFIELD64_BIT(location) & nir->info.per_primitive_inputs);
|
|
|
|
const struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
|
|
|
|
comp += prog_data->urb_setup_channel[location];
|
|
|
|
assert(prog_data->urb_setup[location] >= 0);
|
|
|
|
const unsigned regnr = prog_data->urb_setup[location] + comp / 4;
|
|
|
|
assert(regnr < prog_data->num_per_primitive_inputs);
|
|
|
|
return component(fs_reg(ATTR, regnr, BRW_REGISTER_TYPE_F), comp % 4);
|
|
}
|
|
|
|
/** Emits the interpolation for the varying inputs. */
|
|
void
|
|
fs_visitor::emit_interpolation_setup_gfx4()
|
|
{
|
|
struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
|
|
|
|
fs_builder abld = bld.annotate("compute pixel centers");
|
|
this->pixel_x = vgrf(glsl_type::uint_type);
|
|
this->pixel_y = vgrf(glsl_type::uint_type);
|
|
this->pixel_x.type = BRW_REGISTER_TYPE_UW;
|
|
this->pixel_y.type = BRW_REGISTER_TYPE_UW;
|
|
abld.ADD(this->pixel_x,
|
|
fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
|
|
fs_reg(brw_imm_v(0x10101010)));
|
|
abld.ADD(this->pixel_y,
|
|
fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
|
|
fs_reg(brw_imm_v(0x11001100)));
|
|
|
|
abld = bld.annotate("compute pixel deltas from v0");
|
|
|
|
this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
|
|
vgrf(glsl_type::vec2_type);
|
|
const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
|
|
const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
|
|
const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
|
|
|
|
if (devinfo->has_pln) {
|
|
for (unsigned i = 0; i < dispatch_width / 8; i++) {
|
|
abld.quarter(i).ADD(quarter(offset(delta_xy, abld, 0), i),
|
|
quarter(this->pixel_x, i), xstart);
|
|
abld.quarter(i).ADD(quarter(offset(delta_xy, abld, 1), i),
|
|
quarter(this->pixel_y, i), ystart);
|
|
}
|
|
} else {
|
|
abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
|
|
abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
|
|
}
|
|
|
|
this->pixel_z = fetch_payload_reg(bld, fs_payload().source_depth_reg);
|
|
|
|
/* The SF program automatically handles doing the perspective correction or
|
|
* not based on wm_prog_data::interp_mode[] so we can use the same pixel
|
|
* offsets for both perspective and non-perspective.
|
|
*/
|
|
this->delta_xy[BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL] =
|
|
this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
|
|
|
|
abld = bld.annotate("compute pos.w and 1/pos.w");
|
|
/* Compute wpos.w. It's always in our setup, since it's needed to
|
|
* interpolate the other attributes.
|
|
*/
|
|
this->wpos_w = vgrf(glsl_type::float_type);
|
|
abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
|
|
component(interp_reg(VARYING_SLOT_POS, 3), 0));
|
|
/* Compute the pixel 1/W value from wpos.w. */
|
|
this->pixel_w = vgrf(glsl_type::float_type);
|
|
abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
|
|
}
|
|
|
|
static unsigned
|
|
brw_rnd_mode_from_nir(unsigned mode, unsigned *mask)
|
|
{
|
|
unsigned brw_mode = 0;
|
|
*mask = 0;
|
|
|
|
if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
|
|
FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
|
|
FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
|
|
mode) {
|
|
brw_mode |= BRW_RND_MODE_RTZ << BRW_CR0_RND_MODE_SHIFT;
|
|
*mask |= BRW_CR0_RND_MODE_MASK;
|
|
}
|
|
if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
|
|
FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
|
|
FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
|
|
mode) {
|
|
brw_mode |= BRW_RND_MODE_RTNE << BRW_CR0_RND_MODE_SHIFT;
|
|
*mask |= BRW_CR0_RND_MODE_MASK;
|
|
}
|
|
if (mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) {
|
|
brw_mode |= BRW_CR0_FP16_DENORM_PRESERVE;
|
|
*mask |= BRW_CR0_FP16_DENORM_PRESERVE;
|
|
}
|
|
if (mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) {
|
|
brw_mode |= BRW_CR0_FP32_DENORM_PRESERVE;
|
|
*mask |= BRW_CR0_FP32_DENORM_PRESERVE;
|
|
}
|
|
if (mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64) {
|
|
brw_mode |= BRW_CR0_FP64_DENORM_PRESERVE;
|
|
*mask |= BRW_CR0_FP64_DENORM_PRESERVE;
|
|
}
|
|
if (mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16)
|
|
*mask |= BRW_CR0_FP16_DENORM_PRESERVE;
|
|
if (mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32)
|
|
*mask |= BRW_CR0_FP32_DENORM_PRESERVE;
|
|
if (mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64)
|
|
*mask |= BRW_CR0_FP64_DENORM_PRESERVE;
|
|
if (mode == FLOAT_CONTROLS_DEFAULT_FLOAT_CONTROL_MODE)
|
|
*mask |= BRW_CR0_FP_MODE_MASK;
|
|
|
|
if (*mask != 0)
|
|
assert((*mask & brw_mode) == brw_mode);
|
|
|
|
return brw_mode;
|
|
}
|
|
|
|
void
|
|
fs_visitor::emit_shader_float_controls_execution_mode()
|
|
{
|
|
unsigned execution_mode = this->nir->info.float_controls_execution_mode;
|
|
if (execution_mode == FLOAT_CONTROLS_DEFAULT_FLOAT_CONTROL_MODE)
|
|
return;
|
|
|
|
fs_builder ubld = bld.exec_all().group(1, 0);
|
|
fs_builder abld = ubld.annotate("shader floats control execution mode");
|
|
unsigned mask, mode = brw_rnd_mode_from_nir(execution_mode, &mask);
|
|
|
|
if (mask == 0)
|
|
return;
|
|
|
|
abld.emit(SHADER_OPCODE_FLOAT_CONTROL_MODE, bld.null_reg_ud(),
|
|
brw_imm_d(mode), brw_imm_d(mask));
|
|
}
|
|
|
|
/** Emits the interpolation for the varying inputs. */
|
|
void
|
|
fs_visitor::emit_interpolation_setup_gfx6()
|
|
{
|
|
fs_builder abld = bld.annotate("compute pixel centers");
|
|
|
|
this->pixel_x = vgrf(glsl_type::float_type);
|
|
this->pixel_y = vgrf(glsl_type::float_type);
|
|
|
|
const struct brw_wm_prog_key *wm_key = (brw_wm_prog_key*) this->key;
|
|
struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
|
|
|
|
fs_reg int_sample_offset_x, int_sample_offset_y; /* Used on Gen12HP+ */
|
|
fs_reg int_sample_offset_xy; /* Used on Gen8+ */
|
|
fs_reg half_int_sample_offset_x, half_int_sample_offset_y;
|
|
if (wm_prog_data->coarse_pixel_dispatch != BRW_ALWAYS) {
|
|
/* The thread payload only delivers subspan locations (ss0, ss1,
|
|
* ss2, ...). Since subspans covers 2x2 pixels blocks, we need to
|
|
* generate 4 pixel coordinates out of each subspan location. We do this
|
|
* by replicating a subspan coordinate 4 times and adding an offset of 1
|
|
* in each direction from the initial top left (tl) location to generate
|
|
* top right (tr = +1 in x), bottom left (bl = +1 in y) and bottom right
|
|
* (br = +1 in x, +1 in y).
|
|
*
|
|
* The locations we build look like this in SIMD8 :
|
|
*
|
|
* ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
|
|
*
|
|
* The value 0x11001010 is a vector of 8 half byte vector. It adds
|
|
* following to generate the 4 pixels coordinates out of the subspan0:
|
|
*
|
|
* 0x
|
|
* 1 : ss0.y + 1 -> ss0.br.y
|
|
* 1 : ss0.y + 1 -> ss0.bl.y
|
|
* 0 : ss0.y + 0 -> ss0.tr.y
|
|
* 0 : ss0.y + 0 -> ss0.tl.y
|
|
* 1 : ss0.x + 1 -> ss0.br.x
|
|
* 0 : ss0.x + 0 -> ss0.bl.x
|
|
* 1 : ss0.x + 1 -> ss0.tr.x
|
|
* 0 : ss0.x + 0 -> ss0.tl.x
|
|
*
|
|
* By doing a SIMD16 add in a SIMD8 shader, we can generate the 8 pixels
|
|
* coordinates out of 2 subspans coordinates in a single ADD instruction
|
|
* (twice the operation above).
|
|
*/
|
|
int_sample_offset_xy = fs_reg(brw_imm_v(0x11001010));
|
|
half_int_sample_offset_x = fs_reg(brw_imm_uw(0));
|
|
half_int_sample_offset_y = fs_reg(brw_imm_uw(0));
|
|
/* On Gfx12.5, because of regioning restrictions, the interpolation code
|
|
* is slightly different and works off X & Y only inputs. The ordering
|
|
* of the half bytes here is a bit odd, with each subspan replicated
|
|
* twice and every other element is discarded :
|
|
*
|
|
* ss0.tl ss0.tl ss0.tr ss0.tr ss0.bl ss0.bl ss0.br ss0.br
|
|
* X offset: 0 0 1 0 0 0 1 0
|
|
* Y offset: 0 0 0 0 1 0 1 0
|
|
*/
|
|
int_sample_offset_x = fs_reg(brw_imm_v(0x01000100));
|
|
int_sample_offset_y = fs_reg(brw_imm_v(0x01010000));
|
|
}
|
|
|
|
fs_reg int_coarse_offset_x, int_coarse_offset_y; /* Used on Gen12HP+ */
|
|
fs_reg int_coarse_offset_xy; /* Used on Gen8+ */
|
|
fs_reg half_int_coarse_offset_x, half_int_coarse_offset_y;
|
|
if (wm_prog_data->coarse_pixel_dispatch != BRW_NEVER) {
|
|
/* In coarse pixel dispatch we have to do the same ADD instruction that
|
|
* we do in normal per pixel dispatch, except this time we're not adding
|
|
* 1 in each direction, but instead the coarse pixel size.
|
|
*
|
|
* The coarse pixel size is delivered as 2 u8 in r1.0
|
|
*/
|
|
struct brw_reg r1_0 = retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, 1, 0), BRW_REGISTER_TYPE_UB);
|
|
|
|
const fs_builder dbld =
|
|
abld.exec_all().group(MIN2(16, dispatch_width) * 2, 0);
|
|
|
|
if (devinfo->verx10 >= 125) {
|
|
/* To build the array of half bytes we do and AND operation with the
|
|
* right mask in X.
|
|
*/
|
|
int_coarse_offset_x = dbld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
dbld.AND(int_coarse_offset_x, byte_offset(r1_0, 0), brw_imm_v(0x0f000f00));
|
|
|
|
/* And the right mask in Y. */
|
|
int_coarse_offset_y = dbld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
dbld.AND(int_coarse_offset_y, byte_offset(r1_0, 1), brw_imm_v(0x0f0f0000));
|
|
} else {
|
|
/* To build the array of half bytes we do and AND operation with the
|
|
* right mask in X.
|
|
*/
|
|
int_coarse_offset_x = dbld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
dbld.AND(int_coarse_offset_x, byte_offset(r1_0, 0), brw_imm_v(0x0000f0f0));
|
|
|
|
/* And the right mask in Y. */
|
|
int_coarse_offset_y = dbld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
dbld.AND(int_coarse_offset_y, byte_offset(r1_0, 1), brw_imm_v(0xff000000));
|
|
|
|
/* Finally OR the 2 registers. */
|
|
int_coarse_offset_xy = dbld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
dbld.OR(int_coarse_offset_xy, int_coarse_offset_x, int_coarse_offset_y);
|
|
}
|
|
|
|
/* Also compute the half coarse size used to center coarses. */
|
|
half_int_coarse_offset_x = bld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
half_int_coarse_offset_y = bld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
|
|
bld.SHR(half_int_coarse_offset_x, suboffset(r1_0, 0), brw_imm_ud(1));
|
|
bld.SHR(half_int_coarse_offset_y, suboffset(r1_0, 1), brw_imm_ud(1));
|
|
}
|
|
|
|
fs_reg int_pixel_offset_x, int_pixel_offset_y; /* Used on Gen12HP+ */
|
|
fs_reg int_pixel_offset_xy; /* Used on Gen8+ */
|
|
fs_reg half_int_pixel_offset_x, half_int_pixel_offset_y;
|
|
switch (wm_prog_data->coarse_pixel_dispatch) {
|
|
case BRW_NEVER:
|
|
int_pixel_offset_x = int_sample_offset_x;
|
|
int_pixel_offset_y = int_sample_offset_y;
|
|
int_pixel_offset_xy = int_sample_offset_xy;
|
|
half_int_pixel_offset_x = half_int_sample_offset_x;
|
|
half_int_pixel_offset_y = half_int_sample_offset_y;
|
|
break;
|
|
|
|
case BRW_SOMETIMES: {
|
|
const fs_builder dbld =
|
|
abld.exec_all().group(MIN2(16, dispatch_width) * 2, 0);
|
|
|
|
check_dynamic_msaa_flag(dbld, wm_prog_data,
|
|
BRW_WM_MSAA_FLAG_COARSE_RT_WRITES);
|
|
|
|
int_pixel_offset_x = dbld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
set_predicate(BRW_PREDICATE_NORMAL,
|
|
dbld.SEL(int_pixel_offset_x,
|
|
int_coarse_offset_x,
|
|
int_sample_offset_x));
|
|
|
|
int_pixel_offset_y = dbld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
set_predicate(BRW_PREDICATE_NORMAL,
|
|
dbld.SEL(int_pixel_offset_y,
|
|
int_coarse_offset_y,
|
|
int_sample_offset_y));
|
|
|
|
int_pixel_offset_xy = dbld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
set_predicate(BRW_PREDICATE_NORMAL,
|
|
dbld.SEL(int_pixel_offset_xy,
|
|
int_coarse_offset_xy,
|
|
int_sample_offset_xy));
|
|
|
|
half_int_pixel_offset_x = bld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
set_predicate(BRW_PREDICATE_NORMAL,
|
|
bld.SEL(half_int_pixel_offset_x,
|
|
half_int_coarse_offset_x,
|
|
half_int_sample_offset_x));
|
|
|
|
half_int_pixel_offset_y = bld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
set_predicate(BRW_PREDICATE_NORMAL,
|
|
bld.SEL(half_int_pixel_offset_y,
|
|
half_int_coarse_offset_y,
|
|
half_int_sample_offset_y));
|
|
break;
|
|
}
|
|
|
|
case BRW_ALWAYS:
|
|
int_pixel_offset_x = int_coarse_offset_x;
|
|
int_pixel_offset_y = int_coarse_offset_y;
|
|
int_pixel_offset_xy = int_coarse_offset_xy;
|
|
half_int_pixel_offset_x = half_int_coarse_offset_x;
|
|
half_int_pixel_offset_y = half_int_coarse_offset_y;
|
|
break;
|
|
}
|
|
|
|
for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
|
|
const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
|
|
struct brw_reg gi_uw = retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UW);
|
|
|
|
if (devinfo->verx10 >= 125) {
|
|
const fs_builder dbld =
|
|
abld.exec_all().group(hbld.dispatch_width() * 2, 0);
|
|
const fs_reg int_pixel_x = dbld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
const fs_reg int_pixel_y = dbld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
|
|
dbld.ADD(int_pixel_x,
|
|
fs_reg(stride(suboffset(gi_uw, 4), 2, 8, 0)),
|
|
int_pixel_offset_x);
|
|
dbld.ADD(int_pixel_y,
|
|
fs_reg(stride(suboffset(gi_uw, 5), 2, 8, 0)),
|
|
int_pixel_offset_y);
|
|
|
|
if (wm_prog_data->coarse_pixel_dispatch != BRW_NEVER) {
|
|
fs_inst *addx = dbld.ADD(int_pixel_x, int_pixel_x,
|
|
horiz_stride(half_int_pixel_offset_x, 0));
|
|
fs_inst *addy = dbld.ADD(int_pixel_y, int_pixel_y,
|
|
horiz_stride(half_int_pixel_offset_y, 0));
|
|
if (wm_prog_data->coarse_pixel_dispatch != BRW_ALWAYS) {
|
|
addx->predicate = BRW_PREDICATE_NORMAL;
|
|
addy->predicate = BRW_PREDICATE_NORMAL;
|
|
}
|
|
}
|
|
|
|
hbld.MOV(offset(pixel_x, hbld, i), horiz_stride(int_pixel_x, 2));
|
|
hbld.MOV(offset(pixel_y, hbld, i), horiz_stride(int_pixel_y, 2));
|
|
|
|
} else if (devinfo->ver >= 8 || dispatch_width == 8) {
|
|
/* The "Register Region Restrictions" page says for BDW (and newer,
|
|
* presumably):
|
|
*
|
|
* "When destination spans two registers, the source may be one or
|
|
* two registers. The destination elements must be evenly split
|
|
* between the two registers."
|
|
*
|
|
* Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16
|
|
* to compute our pixel centers.
|
|
*/
|
|
const fs_builder dbld =
|
|
abld.exec_all().group(hbld.dispatch_width() * 2, 0);
|
|
fs_reg int_pixel_xy = dbld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
|
|
dbld.ADD(int_pixel_xy,
|
|
fs_reg(stride(suboffset(gi_uw, 4), 1, 4, 0)),
|
|
int_pixel_offset_xy);
|
|
|
|
hbld.emit(FS_OPCODE_PIXEL_X, offset(pixel_x, hbld, i), int_pixel_xy,
|
|
horiz_stride(half_int_pixel_offset_x, 0));
|
|
hbld.emit(FS_OPCODE_PIXEL_Y, offset(pixel_y, hbld, i), int_pixel_xy,
|
|
horiz_stride(half_int_pixel_offset_y, 0));
|
|
} else {
|
|
/* The "Register Region Restrictions" page says for SNB, IVB, HSW:
|
|
*
|
|
* "When destination spans two registers, the source MUST span
|
|
* two registers."
|
|
*
|
|
* Since the GRF source of the ADD will only read a single register,
|
|
* we must do two separate ADDs in SIMD16.
|
|
*/
|
|
const fs_reg int_pixel_x = hbld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
const fs_reg int_pixel_y = hbld.vgrf(BRW_REGISTER_TYPE_UW);
|
|
|
|
hbld.ADD(int_pixel_x,
|
|
fs_reg(stride(suboffset(gi_uw, 4), 2, 4, 0)),
|
|
fs_reg(brw_imm_v(0x10101010)));
|
|
hbld.ADD(int_pixel_y,
|
|
fs_reg(stride(suboffset(gi_uw, 5), 2, 4, 0)),
|
|
fs_reg(brw_imm_v(0x11001100)));
|
|
|
|
/* As of gfx6, we can no longer mix float and int sources. We have
|
|
* to turn the integer pixel centers into floats for their actual
|
|
* use.
|
|
*/
|
|
hbld.MOV(offset(pixel_x, hbld, i), int_pixel_x);
|
|
hbld.MOV(offset(pixel_y, hbld, i), int_pixel_y);
|
|
}
|
|
}
|
|
|
|
abld = bld.annotate("compute pos.z");
|
|
fs_reg coarse_z;
|
|
if (wm_prog_data->uses_depth_w_coefficients) {
|
|
/* In coarse pixel mode, the HW doesn't interpolate Z coordinate
|
|
* properly. In the same way we have to add the coarse pixel size to
|
|
* pixels locations, here we recompute the Z value with 2 coefficients
|
|
* in X & Y axis.
|
|
*/
|
|
fs_reg coef_payload = fetch_payload_reg(abld, fs_payload().depth_w_coef_reg, BRW_REGISTER_TYPE_F);
|
|
const fs_reg x_start = brw_vec1_grf(coef_payload.nr, 2);
|
|
const fs_reg y_start = brw_vec1_grf(coef_payload.nr, 6);
|
|
const fs_reg z_cx = brw_vec1_grf(coef_payload.nr, 1);
|
|
const fs_reg z_cy = brw_vec1_grf(coef_payload.nr, 0);
|
|
const fs_reg z_c0 = brw_vec1_grf(coef_payload.nr, 3);
|
|
|
|
const fs_reg float_pixel_x = abld.vgrf(BRW_REGISTER_TYPE_F);
|
|
const fs_reg float_pixel_y = abld.vgrf(BRW_REGISTER_TYPE_F);
|
|
|
|
abld.ADD(float_pixel_x, this->pixel_x, negate(x_start));
|
|
abld.ADD(float_pixel_y, this->pixel_y, negate(y_start));
|
|
|
|
/* r1.0 - 0:7 ActualCoarsePixelShadingSize.X */
|
|
const fs_reg u8_cps_width = fs_reg(retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UB));
|
|
/* r1.0 - 15:8 ActualCoarsePixelShadingSize.Y */
|
|
const fs_reg u8_cps_height = byte_offset(u8_cps_width, 1);
|
|
const fs_reg u32_cps_width = abld.vgrf(BRW_REGISTER_TYPE_UD);
|
|
const fs_reg u32_cps_height = abld.vgrf(BRW_REGISTER_TYPE_UD);
|
|
abld.MOV(u32_cps_width, u8_cps_width);
|
|
abld.MOV(u32_cps_height, u8_cps_height);
|
|
|
|
const fs_reg f_cps_width = abld.vgrf(BRW_REGISTER_TYPE_F);
|
|
const fs_reg f_cps_height = abld.vgrf(BRW_REGISTER_TYPE_F);
|
|
abld.MOV(f_cps_width, u32_cps_width);
|
|
abld.MOV(f_cps_height, u32_cps_height);
|
|
|
|
/* Center in the middle of the coarse pixel. */
|
|
abld.MAD(float_pixel_x, float_pixel_x, brw_imm_f(0.5f), f_cps_width);
|
|
abld.MAD(float_pixel_y, float_pixel_y, brw_imm_f(0.5f), f_cps_height);
|
|
|
|
coarse_z = abld.vgrf(BRW_REGISTER_TYPE_F);
|
|
abld.MAD(coarse_z, z_c0, z_cx, float_pixel_x);
|
|
abld.MAD(coarse_z, coarse_z, z_cy, float_pixel_y);
|
|
}
|
|
|
|
if (wm_prog_data->uses_src_depth)
|
|
this->pixel_z = fetch_payload_reg(bld, fs_payload().source_depth_reg);
|
|
|
|
if (wm_prog_data->uses_depth_w_coefficients ||
|
|
wm_prog_data->uses_src_depth) {
|
|
fs_reg sample_z = this->pixel_z;
|
|
|
|
switch (wm_prog_data->coarse_pixel_dispatch) {
|
|
case BRW_NEVER:
|
|
assert(wm_prog_data->uses_src_depth);
|
|
assert(!wm_prog_data->uses_depth_w_coefficients);
|
|
this->pixel_z = sample_z;
|
|
break;
|
|
|
|
case BRW_SOMETIMES:
|
|
assert(wm_prog_data->uses_src_depth);
|
|
assert(wm_prog_data->uses_depth_w_coefficients);
|
|
this->pixel_z = abld.vgrf(BRW_REGISTER_TYPE_F);
|
|
|
|
/* We re-use the check_dynamic_msaa_flag() call from above */
|
|
set_predicate(BRW_PREDICATE_NORMAL,
|
|
abld.SEL(this->pixel_z, coarse_z, sample_z));
|
|
break;
|
|
|
|
case BRW_ALWAYS:
|
|
assert(!wm_prog_data->uses_src_depth);
|
|
assert(wm_prog_data->uses_depth_w_coefficients);
|
|
this->pixel_z = coarse_z;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (wm_prog_data->uses_src_w) {
|
|
abld = bld.annotate("compute pos.w");
|
|
this->pixel_w = fetch_payload_reg(abld, fs_payload().source_w_reg);
|
|
this->wpos_w = vgrf(glsl_type::float_type);
|
|
abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
|
|
}
|
|
|
|
if (wm_key->persample_interp == BRW_SOMETIMES) {
|
|
assert(!devinfo->needs_unlit_centroid_workaround);
|
|
|
|
const fs_builder ubld = bld.exec_all().group(16, 0);
|
|
bool loaded_flag = false;
|
|
|
|
for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
|
|
if (!(wm_prog_data->barycentric_interp_modes & BITFIELD_BIT(i)))
|
|
continue;
|
|
|
|
/* The sample mode will always be the top bit set in the perspective
|
|
* or non-perspective section. In the case where no SAMPLE mode was
|
|
* requested, wm_prog_data_barycentric_modes() will swap out the top
|
|
* mode for SAMPLE so this works regardless of whether SAMPLE was
|
|
* requested or not.
|
|
*/
|
|
int sample_mode;
|
|
if (BITFIELD_BIT(i) & BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) {
|
|
sample_mode = util_last_bit(wm_prog_data->barycentric_interp_modes &
|
|
BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) - 1;
|
|
} else {
|
|
sample_mode = util_last_bit(wm_prog_data->barycentric_interp_modes &
|
|
BRW_BARYCENTRIC_PERSPECTIVE_BITS) - 1;
|
|
}
|
|
assert(wm_prog_data->barycentric_interp_modes &
|
|
BITFIELD_BIT(sample_mode));
|
|
|
|
if (i == sample_mode)
|
|
continue;
|
|
|
|
uint8_t *barys = fs_payload().barycentric_coord_reg[i];
|
|
|
|
uint8_t *sample_barys = fs_payload().barycentric_coord_reg[sample_mode];
|
|
assert(barys[0] && sample_barys[0]);
|
|
|
|
if (!loaded_flag) {
|
|
check_dynamic_msaa_flag(ubld, wm_prog_data,
|
|
BRW_WM_MSAA_FLAG_PERSAMPLE_INTERP);
|
|
}
|
|
|
|
for (unsigned j = 0; j < dispatch_width / 8; j++) {
|
|
fs_inst *mov =
|
|
ubld.MOV(brw_vec8_grf(barys[j / 2] + (j % 2) * 2, 0),
|
|
brw_vec8_grf(sample_barys[j / 2] + (j % 2) * 2, 0));
|
|
mov->predicate = BRW_PREDICATE_NORMAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
|
|
this->delta_xy[i] = fetch_barycentric_reg(
|
|
bld, fs_payload().barycentric_coord_reg[i]);
|
|
}
|
|
|
|
uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
|
|
(1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
|
|
1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
|
|
|
|
if (devinfo->needs_unlit_centroid_workaround && centroid_modes) {
|
|
/* Get the pixel/sample mask into f0 so that we know which
|
|
* pixels are lit. Then, for each channel that is unlit,
|
|
* replace the centroid data with non-centroid data.
|
|
*/
|
|
for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
|
|
bld.exec_all().group(1, 0)
|
|
.MOV(retype(brw_flag_reg(0, i), BRW_REGISTER_TYPE_UW),
|
|
retype(brw_vec1_grf(1 + i, 7), BRW_REGISTER_TYPE_UW));
|
|
}
|
|
|
|
for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
|
|
if (!(centroid_modes & (1 << i)))
|
|
continue;
|
|
|
|
const fs_reg centroid_delta_xy = delta_xy[i];
|
|
const fs_reg &pixel_delta_xy = delta_xy[i - 1];
|
|
|
|
delta_xy[i] = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
|
|
|
|
for (unsigned c = 0; c < 2; c++) {
|
|
for (unsigned q = 0; q < dispatch_width / 8; q++) {
|
|
set_predicate(BRW_PREDICATE_NORMAL,
|
|
bld.quarter(q).SEL(
|
|
quarter(offset(delta_xy[i], bld, c), q),
|
|
quarter(offset(centroid_delta_xy, bld, c), q),
|
|
quarter(offset(pixel_delta_xy, bld, c), q)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static enum brw_conditional_mod
|
|
cond_for_alpha_func(enum compare_func func)
|
|
{
|
|
switch(func) {
|
|
case COMPARE_FUNC_GREATER:
|
|
return BRW_CONDITIONAL_G;
|
|
case COMPARE_FUNC_GEQUAL:
|
|
return BRW_CONDITIONAL_GE;
|
|
case COMPARE_FUNC_LESS:
|
|
return BRW_CONDITIONAL_L;
|
|
case COMPARE_FUNC_LEQUAL:
|
|
return BRW_CONDITIONAL_LE;
|
|
case COMPARE_FUNC_EQUAL:
|
|
return BRW_CONDITIONAL_EQ;
|
|
case COMPARE_FUNC_NOTEQUAL:
|
|
return BRW_CONDITIONAL_NEQ;
|
|
default:
|
|
unreachable("Not reached");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Alpha test support for when we compile it into the shader instead
|
|
* of using the normal fixed-function alpha test.
|
|
*/
|
|
void
|
|
fs_visitor::emit_alpha_test()
|
|
{
|
|
assert(stage == MESA_SHADER_FRAGMENT);
|
|
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
|
|
const fs_builder abld = bld.annotate("Alpha test");
|
|
|
|
fs_inst *cmp;
|
|
if (key->alpha_test_func == COMPARE_FUNC_ALWAYS)
|
|
return;
|
|
|
|
if (key->alpha_test_func == COMPARE_FUNC_NEVER) {
|
|
/* f0.1 = 0 */
|
|
fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
|
|
BRW_REGISTER_TYPE_UW));
|
|
cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
|
|
BRW_CONDITIONAL_NEQ);
|
|
} else {
|
|
/* RT0 alpha */
|
|
fs_reg color = offset(outputs[0], bld, 3);
|
|
|
|
/* f0.1 &= func(color, ref) */
|
|
cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
|
|
cond_for_alpha_func(key->alpha_test_func));
|
|
}
|
|
cmp->predicate = BRW_PREDICATE_NORMAL;
|
|
cmp->flag_subreg = 1;
|
|
}
|
|
|
|
fs_inst *
|
|
fs_visitor::emit_single_fb_write(const fs_builder &bld,
|
|
fs_reg color0, fs_reg color1,
|
|
fs_reg src0_alpha, unsigned components)
|
|
{
|
|
assert(stage == MESA_SHADER_FRAGMENT);
|
|
struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
|
|
|
|
/* Hand over gl_FragDepth or the payload depth. */
|
|
const fs_reg dst_depth = fetch_payload_reg(bld, fs_payload().dest_depth_reg);
|
|
fs_reg src_depth, src_stencil;
|
|
|
|
if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
|
|
src_depth = frag_depth;
|
|
} else if (source_depth_to_render_target) {
|
|
/* If we got here, we're in one of those strange Gen4-5 cases where
|
|
* we're forced to pass the source depth, unmodified, to the FB write.
|
|
* In this case, we don't want to use pixel_z because we may not have
|
|
* set up interpolation. It's also perfectly safe because it only
|
|
* happens on old hardware (no coarse interpolation) and this is
|
|
* explicitly the pass-through case.
|
|
*/
|
|
assert(devinfo->ver <= 5);
|
|
src_depth = fetch_payload_reg(bld, fs_payload().source_depth_reg);
|
|
}
|
|
|
|
if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
|
|
src_stencil = frag_stencil;
|
|
|
|
const fs_reg sources[] = {
|
|
color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
|
|
(prog_data->uses_omask ? sample_mask : fs_reg()),
|
|
brw_imm_ud(components)
|
|
};
|
|
assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
|
|
fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
|
|
sources, ARRAY_SIZE(sources));
|
|
|
|
if (prog_data->uses_kill) {
|
|
write->predicate = BRW_PREDICATE_NORMAL;
|
|
write->flag_subreg = sample_mask_flag_subreg(this);
|
|
}
|
|
|
|
return write;
|
|
}
|
|
|
|
void
|
|
fs_visitor::do_emit_fb_writes(int nr_color_regions, bool replicate_alpha)
|
|
{
|
|
fs_inst *inst = NULL;
|
|
|
|
for (int target = 0; target < nr_color_regions; target++) {
|
|
/* Skip over outputs that weren't written. */
|
|
if (this->outputs[target].file == BAD_FILE)
|
|
continue;
|
|
|
|
const fs_builder abld = bld.annotate(
|
|
ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
|
|
|
|
fs_reg src0_alpha;
|
|
if (devinfo->ver >= 6 && replicate_alpha && target != 0)
|
|
src0_alpha = offset(outputs[0], bld, 3);
|
|
|
|
inst = emit_single_fb_write(abld, this->outputs[target],
|
|
this->dual_src_output, src0_alpha, 4);
|
|
inst->target = target;
|
|
}
|
|
|
|
if (inst == NULL) {
|
|
/* Even if there's no color buffers enabled, we still need to send
|
|
* alpha out the pipeline to our null renderbuffer to support
|
|
* alpha-testing, alpha-to-coverage, and so on.
|
|
*/
|
|
/* FINISHME: Factor out this frequently recurring pattern into a
|
|
* helper function.
|
|
*/
|
|
const fs_reg srcs[] = { reg_undef, reg_undef,
|
|
reg_undef, offset(this->outputs[0], bld, 3) };
|
|
const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
|
|
bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
|
|
|
|
inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
|
|
inst->target = 0;
|
|
}
|
|
|
|
inst->last_rt = true;
|
|
inst->eot = true;
|
|
}
|
|
|
|
void
|
|
fs_visitor::emit_fb_writes()
|
|
{
|
|
assert(stage == MESA_SHADER_FRAGMENT);
|
|
struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
|
|
brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
|
|
|
|
if (source_depth_to_render_target && devinfo->ver == 6) {
|
|
/* For outputting oDepth on gfx6, SIMD8 writes have to be used. This
|
|
* would require SIMD8 moves of each half to message regs, e.g. by using
|
|
* the SIMD lowering pass. Unfortunately this is more difficult than it
|
|
* sounds because the SIMD8 single-source message lacks channel selects
|
|
* for the second and third subspans.
|
|
*/
|
|
limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
|
|
}
|
|
|
|
if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
|
|
/* From the 'Render Target Write message' section of the docs:
|
|
* "Output Stencil is not supported with SIMD16 Render Target Write
|
|
* Messages."
|
|
*/
|
|
limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
|
|
"in SIMD16+ mode.\n");
|
|
}
|
|
|
|
/* ANV doesn't know about sample mask output during the wm key creation
|
|
* so we compute if we need replicate alpha and emit alpha to coverage
|
|
* workaround here.
|
|
*/
|
|
const bool replicate_alpha = key->alpha_test_replicate_alpha ||
|
|
(key->nr_color_regions > 1 && key->alpha_to_coverage &&
|
|
(sample_mask.file == BAD_FILE || devinfo->ver == 6));
|
|
|
|
prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE &&
|
|
this->outputs[0].file != BAD_FILE);
|
|
assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
|
|
|
|
/* Following condition implements Wa_14017468336:
|
|
*
|
|
* "If dual source blend is enabled do not enable SIMD32 dispatch" and
|
|
* "For a thread dispatched as SIMD32, must not issue SIMD8 message with Last
|
|
* Render Target Select set."
|
|
*/
|
|
if (devinfo->ver >= 11 && devinfo->ver <= 12 &&
|
|
prog_data->dual_src_blend) {
|
|
/* The dual-source RT write messages fail to release the thread
|
|
* dependency on ICL and TGL with SIMD32 dispatch, leading to hangs.
|
|
*
|
|
* XXX - Emit an extra single-source NULL RT-write marked LastRT in
|
|
* order to release the thread dependency without disabling
|
|
* SIMD32.
|
|
*
|
|
* The dual-source RT write messages may lead to hangs with SIMD16
|
|
* dispatch on ICL due some unknown reasons, see
|
|
* https://gitlab.freedesktop.org/mesa/mesa/-/issues/2183
|
|
*/
|
|
limit_dispatch_width(8, "Dual source blending unsupported "
|
|
"in SIMD16 and SIMD32 modes.\n");
|
|
}
|
|
|
|
do_emit_fb_writes(key->nr_color_regions, replicate_alpha);
|
|
}
|
|
|
|
void
|
|
fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
|
|
{
|
|
int slot, urb_offset, length;
|
|
int starting_urb_offset = 0;
|
|
const struct brw_vue_prog_data *vue_prog_data =
|
|
brw_vue_prog_data(this->prog_data);
|
|
const struct brw_vs_prog_key *vs_key =
|
|
(const struct brw_vs_prog_key *) this->key;
|
|
const GLbitfield64 psiz_mask =
|
|
VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ | VARYING_BIT_PRIMITIVE_SHADING_RATE;
|
|
const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
|
|
bool flush;
|
|
fs_reg sources[8];
|
|
fs_reg urb_handle;
|
|
|
|
switch (stage) {
|
|
case MESA_SHADER_VERTEX:
|
|
urb_handle = vs_payload().urb_handles;
|
|
break;
|
|
case MESA_SHADER_TESS_EVAL:
|
|
urb_handle = tes_payload().urb_output;
|
|
break;
|
|
case MESA_SHADER_GEOMETRY:
|
|
urb_handle = gs_payload().urb_handles;
|
|
break;
|
|
default:
|
|
unreachable("invalid stage");
|
|
}
|
|
|
|
fs_reg per_slot_offsets;
|
|
|
|
if (stage == MESA_SHADER_GEOMETRY) {
|
|
const struct brw_gs_prog_data *gs_prog_data =
|
|
brw_gs_prog_data(this->prog_data);
|
|
|
|
/* We need to increment the Global Offset to skip over the control data
|
|
* header and the extra "Vertex Count" field (1 HWord) at the beginning
|
|
* of the VUE. We're counting in OWords, so the units are doubled.
|
|
*/
|
|
starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
|
|
if (gs_prog_data->static_vertex_count == -1)
|
|
starting_urb_offset += 2;
|
|
|
|
/* The URB offset is in 128-bit units, so we need to multiply by 2 */
|
|
const int output_vertex_size_owords =
|
|
gs_prog_data->output_vertex_size_hwords * 2;
|
|
|
|
if (gs_vertex_count.file == IMM) {
|
|
per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
|
|
gs_vertex_count.ud);
|
|
} else {
|
|
per_slot_offsets = vgrf(glsl_type::uint_type);
|
|
bld.MUL(per_slot_offsets, gs_vertex_count,
|
|
brw_imm_ud(output_vertex_size_owords));
|
|
}
|
|
}
|
|
|
|
length = 0;
|
|
urb_offset = starting_urb_offset;
|
|
flush = false;
|
|
|
|
/* SSO shaders can have VUE slots allocated which are never actually
|
|
* written to, so ignore them when looking for the last (written) slot.
|
|
*/
|
|
int last_slot = vue_map->num_slots - 1;
|
|
while (last_slot > 0 &&
|
|
(vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
|
|
outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
|
|
last_slot--;
|
|
}
|
|
|
|
bool urb_written = false;
|
|
for (slot = 0; slot < vue_map->num_slots; slot++) {
|
|
int varying = vue_map->slot_to_varying[slot];
|
|
switch (varying) {
|
|
case VARYING_SLOT_PSIZ: {
|
|
/* The point size varying slot is the vue header and is always in the
|
|
* vue map. But often none of the special varyings that live there
|
|
* are written and in that case we can skip writing to the vue
|
|
* header, provided the corresponding state properly clamps the
|
|
* values further down the pipeline. */
|
|
if ((vue_map->slots_valid & psiz_mask) == 0) {
|
|
assert(length == 0);
|
|
urb_offset++;
|
|
break;
|
|
}
|
|
|
|
fs_reg zero(VGRF, alloc.allocate(dispatch_width / 8),
|
|
BRW_REGISTER_TYPE_UD);
|
|
bld.MOV(zero, brw_imm_ud(0u));
|
|
|
|
if (vue_map->slots_valid & VARYING_BIT_PRIMITIVE_SHADING_RATE &&
|
|
this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE].file != BAD_FILE) {
|
|
sources[length++] = this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE];
|
|
} else if (devinfo->has_coarse_pixel_primitive_and_cb) {
|
|
uint32_t one_fp16 = 0x3C00;
|
|
fs_reg one_by_one_fp16(VGRF, alloc.allocate(dispatch_width / 8),
|
|
BRW_REGISTER_TYPE_UD);
|
|
bld.MOV(one_by_one_fp16, brw_imm_ud((one_fp16 << 16) | one_fp16));
|
|
sources[length++] = one_by_one_fp16;
|
|
} else {
|
|
sources[length++] = zero;
|
|
}
|
|
|
|
if (vue_map->slots_valid & VARYING_BIT_LAYER)
|
|
sources[length++] = this->outputs[VARYING_SLOT_LAYER];
|
|
else
|
|
sources[length++] = zero;
|
|
|
|
if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
|
|
sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
|
|
else
|
|
sources[length++] = zero;
|
|
|
|
if (vue_map->slots_valid & VARYING_BIT_PSIZ)
|
|
sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
|
|
else
|
|
sources[length++] = zero;
|
|
break;
|
|
}
|
|
case BRW_VARYING_SLOT_NDC:
|
|
case VARYING_SLOT_EDGE:
|
|
unreachable("unexpected scalar vs output");
|
|
break;
|
|
|
|
default:
|
|
/* gl_Position is always in the vue map, but isn't always written by
|
|
* the shader. Other varyings (clip distances) get added to the vue
|
|
* map but don't always get written. In those cases, the
|
|
* corresponding this->output[] slot will be invalid we and can skip
|
|
* the urb write for the varying. If we've already queued up a vue
|
|
* slot for writing we flush a mlen 5 urb write, otherwise we just
|
|
* advance the urb_offset.
|
|
*/
|
|
if (varying == BRW_VARYING_SLOT_PAD ||
|
|
this->outputs[varying].file == BAD_FILE) {
|
|
if (length > 0)
|
|
flush = true;
|
|
else
|
|
urb_offset++;
|
|
break;
|
|
}
|
|
|
|
if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
|
|
(varying == VARYING_SLOT_COL0 ||
|
|
varying == VARYING_SLOT_COL1 ||
|
|
varying == VARYING_SLOT_BFC0 ||
|
|
varying == VARYING_SLOT_BFC1)) {
|
|
/* We need to clamp these guys, so do a saturating MOV into a
|
|
* temp register and use that for the payload.
|
|
*/
|
|
for (int i = 0; i < 4; i++) {
|
|
fs_reg reg = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
|
|
outputs[varying].type);
|
|
fs_reg src = offset(this->outputs[varying], bld, i);
|
|
set_saturate(true, bld.MOV(reg, src));
|
|
sources[length++] = reg;
|
|
}
|
|
} else {
|
|
int slot_offset = 0;
|
|
|
|
/* When using Primitive Replication, there may be multiple slots
|
|
* assigned to POS.
|
|
*/
|
|
if (varying == VARYING_SLOT_POS)
|
|
slot_offset = slot - vue_map->varying_to_slot[VARYING_SLOT_POS];
|
|
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
sources[length++] = offset(this->outputs[varying], bld,
|
|
i + (slot_offset * 4));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
const fs_builder abld = bld.annotate("URB write");
|
|
|
|
/* If we've queued up 8 registers of payload (2 VUE slots), if this is
|
|
* the last slot or if we need to flush (see BAD_FILE varying case
|
|
* above), emit a URB write send now to flush out the data.
|
|
*/
|
|
if (length == 8 || (length > 0 && slot == last_slot))
|
|
flush = true;
|
|
if (flush) {
|
|
fs_reg srcs[URB_LOGICAL_NUM_SRCS];
|
|
|
|
srcs[URB_LOGICAL_SRC_HANDLE] = urb_handle;
|
|
srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = per_slot_offsets;
|
|
srcs[URB_LOGICAL_SRC_DATA] = fs_reg(VGRF,
|
|
alloc.allocate((dispatch_width / 8) * length),
|
|
BRW_REGISTER_TYPE_F);
|
|
srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(length);
|
|
abld.LOAD_PAYLOAD(srcs[URB_LOGICAL_SRC_DATA], sources, length, 0);
|
|
|
|
fs_inst *inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
|
|
srcs, ARRAY_SIZE(srcs));
|
|
|
|
/* For ICL Wa_1805992985 one needs additional write in the end. */
|
|
if (devinfo->ver == 11 && stage == MESA_SHADER_TESS_EVAL)
|
|
inst->eot = false;
|
|
else
|
|
inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
|
|
|
|
inst->offset = urb_offset;
|
|
urb_offset = starting_urb_offset + slot + 1;
|
|
length = 0;
|
|
flush = false;
|
|
urb_written = true;
|
|
}
|
|
}
|
|
|
|
/* If we don't have any valid slots to write, just do a minimal urb write
|
|
* send to terminate the shader. This includes 1 slot of undefined data,
|
|
* because it's invalid to write 0 data:
|
|
*
|
|
* From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
|
|
* Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
|
|
* Write Data Payload:
|
|
*
|
|
* "The write data payload can be between 1 and 8 message phases long."
|
|
*/
|
|
if (!urb_written) {
|
|
/* For GS, just turn EmitVertex() into a no-op. We don't want it to
|
|
* end the thread, and emit_gs_thread_end() already emits a SEND with
|
|
* EOT at the end of the program for us.
|
|
*/
|
|
if (stage == MESA_SHADER_GEOMETRY)
|
|
return;
|
|
|
|
fs_reg uniform_urb_handle = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
|
|
BRW_REGISTER_TYPE_UD);
|
|
fs_reg payload = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
|
|
BRW_REGISTER_TYPE_UD);
|
|
|
|
bld.exec_all().MOV(uniform_urb_handle, urb_handle);
|
|
|
|
fs_reg srcs[URB_LOGICAL_NUM_SRCS];
|
|
srcs[URB_LOGICAL_SRC_HANDLE] = uniform_urb_handle;
|
|
srcs[URB_LOGICAL_SRC_DATA] = payload;
|
|
srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(1);
|
|
|
|
fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
|
|
srcs, ARRAY_SIZE(srcs));
|
|
inst->eot = true;
|
|
inst->offset = 1;
|
|
return;
|
|
}
|
|
|
|
/* ICL Wa_1805992985:
|
|
*
|
|
* ICLLP GPU hangs on one of tessellation vkcts tests with DS not done. The
|
|
* send cycle, which is a urb write with an eot must be 4 phases long and
|
|
* all 8 lanes must valid.
|
|
*/
|
|
if (devinfo->ver == 11 && stage == MESA_SHADER_TESS_EVAL) {
|
|
assert(dispatch_width == 8);
|
|
fs_reg uniform_urb_handle = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
|
|
fs_reg uniform_mask = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
|
|
fs_reg payload = fs_reg(VGRF, alloc.allocate(4), BRW_REGISTER_TYPE_UD);
|
|
|
|
/* Workaround requires all 8 channels (lanes) to be valid. This is
|
|
* understood to mean they all need to be alive. First trick is to find
|
|
* a live channel and copy its urb handle for all the other channels to
|
|
* make sure all handles are valid.
|
|
*/
|
|
bld.exec_all().MOV(uniform_urb_handle, bld.emit_uniformize(urb_handle));
|
|
|
|
/* Second trick is to use masked URB write where one can tell the HW to
|
|
* actually write data only for selected channels even though all are
|
|
* active.
|
|
* Third trick is to take advantage of the must-be-zero (MBZ) area in
|
|
* the very beginning of the URB.
|
|
*
|
|
* One masks data to be written only for the first channel and uses
|
|
* offset zero explicitly to land data to the MBZ area avoiding trashing
|
|
* any other part of the URB.
|
|
*
|
|
* Since the WA says that the write needs to be 4 phases long one uses
|
|
* 4 slots data. All are explicitly zeros in order to to keep the MBZ
|
|
* area written as zeros.
|
|
*/
|
|
bld.exec_all().MOV(uniform_mask, brw_imm_ud(0x10000u));
|
|
bld.exec_all().MOV(offset(payload, bld, 0), brw_imm_ud(0u));
|
|
bld.exec_all().MOV(offset(payload, bld, 1), brw_imm_ud(0u));
|
|
bld.exec_all().MOV(offset(payload, bld, 2), brw_imm_ud(0u));
|
|
bld.exec_all().MOV(offset(payload, bld, 3), brw_imm_ud(0u));
|
|
|
|
fs_reg srcs[URB_LOGICAL_NUM_SRCS];
|
|
srcs[URB_LOGICAL_SRC_HANDLE] = uniform_urb_handle;
|
|
srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = uniform_mask;
|
|
srcs[URB_LOGICAL_SRC_DATA] = payload;
|
|
srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(4);
|
|
|
|
fs_inst *inst = bld.exec_all().emit(SHADER_OPCODE_URB_WRITE_LOGICAL,
|
|
reg_undef, srcs, ARRAY_SIZE(srcs));
|
|
inst->eot = true;
|
|
inst->offset = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
fs_visitor::emit_urb_fence()
|
|
{
|
|
fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_UD);
|
|
fs_inst *fence = bld.emit(SHADER_OPCODE_MEMORY_FENCE, dst,
|
|
brw_vec8_grf(0, 0),
|
|
brw_imm_ud(true),
|
|
brw_imm_ud(0));
|
|
fence->sfid = BRW_SFID_URB;
|
|
fence->desc = lsc_fence_msg_desc(devinfo, LSC_FENCE_LOCAL,
|
|
LSC_FLUSH_TYPE_NONE, true);
|
|
|
|
bld.exec_all().group(1, 0).emit(FS_OPCODE_SCHEDULING_FENCE,
|
|
bld.null_reg_ud(),
|
|
&dst,
|
|
1);
|
|
}
|
|
|
|
void
|
|
fs_visitor::emit_cs_terminate()
|
|
{
|
|
assert(devinfo->ver >= 7);
|
|
|
|
/* We can't directly send from g0, since sends with EOT have to use
|
|
* g112-127. So, copy it to a virtual register, The register allocator will
|
|
* make sure it uses the appropriate register range.
|
|
*/
|
|
struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
|
|
fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
|
|
bld.group(8, 0).exec_all().MOV(payload, g0);
|
|
|
|
/* Send a message to the thread spawner to terminate the thread. */
|
|
fs_inst *inst = bld.exec_all()
|
|
.emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
|
|
inst->eot = true;
|
|
}
|
|
|
|
static void
|
|
setup_barrier_message_payload_gfx125(const fs_builder &bld,
|
|
const fs_reg &msg_payload)
|
|
{
|
|
assert(bld.shader->devinfo->verx10 >= 125);
|
|
|
|
/* From BSpec: 54006, mov r0.2[31:24] into m0.2[31:24] and m0.2[23:16] */
|
|
fs_reg m0_10ub = component(retype(msg_payload, BRW_REGISTER_TYPE_UB), 10);
|
|
fs_reg r0_11ub =
|
|
stride(suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UB), 11),
|
|
0, 1, 0);
|
|
bld.exec_all().group(2, 0).MOV(m0_10ub, r0_11ub);
|
|
}
|
|
|
|
void
|
|
fs_visitor::emit_barrier()
|
|
{
|
|
/* We are getting the barrier ID from the compute shader header */
|
|
assert(gl_shader_stage_uses_workgroup(stage));
|
|
|
|
fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
|
|
|
|
/* Clear the message payload */
|
|
bld.exec_all().group(8, 0).MOV(payload, brw_imm_ud(0u));
|
|
|
|
if (devinfo->verx10 >= 125) {
|
|
setup_barrier_message_payload_gfx125(bld, payload);
|
|
} else {
|
|
assert(gl_shader_stage_is_compute(stage));
|
|
|
|
uint32_t barrier_id_mask;
|
|
switch (devinfo->ver) {
|
|
case 7:
|
|
case 8:
|
|
barrier_id_mask = 0x0f000000u; break;
|
|
case 9:
|
|
barrier_id_mask = 0x8f000000u; break;
|
|
case 11:
|
|
case 12:
|
|
barrier_id_mask = 0x7f000000u; break;
|
|
default:
|
|
unreachable("barrier is only available on gen >= 7");
|
|
}
|
|
|
|
/* Copy the barrier id from r0.2 to the message payload reg.2 */
|
|
fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
|
|
bld.exec_all().group(1, 0).AND(component(payload, 2), r0_2,
|
|
brw_imm_ud(barrier_id_mask));
|
|
}
|
|
|
|
/* Emit a gateway "barrier" message using the payload we set up, followed
|
|
* by a wait instruction.
|
|
*/
|
|
bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
|
|
}
|
|
|
|
void
|
|
fs_visitor::emit_tcs_barrier()
|
|
{
|
|
assert(stage == MESA_SHADER_TESS_CTRL);
|
|
struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
|
|
|
|
fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
|
|
fs_reg m0_2 = component(m0, 2);
|
|
|
|
const fs_builder chanbld = bld.exec_all().group(1, 0);
|
|
|
|
/* Zero the message header */
|
|
bld.exec_all().MOV(m0, brw_imm_ud(0u));
|
|
|
|
if (devinfo->verx10 >= 125) {
|
|
setup_barrier_message_payload_gfx125(bld, m0);
|
|
} else if (devinfo->ver >= 11) {
|
|
chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
|
|
brw_imm_ud(INTEL_MASK(30, 24)));
|
|
|
|
/* Set the Barrier Count and the enable bit */
|
|
chanbld.OR(m0_2, m0_2,
|
|
brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
|
|
} else {
|
|
/* Copy "Barrier ID" from r0.2, bits 16:13 */
|
|
chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
|
|
brw_imm_ud(INTEL_MASK(16, 13)));
|
|
|
|
/* Shift it up to bits 27:24. */
|
|
chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
|
|
|
|
/* Set the Barrier Count and the enable bit */
|
|
chanbld.OR(m0_2, m0_2,
|
|
brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
|
|
}
|
|
|
|
bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
|
|
}
|
|
|
|
fs_visitor::fs_visitor(const struct brw_compiler *compiler,
|
|
const struct brw_compile_params *params,
|
|
const brw_base_prog_key *key,
|
|
struct brw_stage_prog_data *prog_data,
|
|
const nir_shader *shader,
|
|
unsigned dispatch_width,
|
|
bool needs_register_pressure,
|
|
bool debug_enabled)
|
|
: backend_shader(compiler, params, shader, prog_data, debug_enabled),
|
|
key(key), gs_compile(NULL), prog_data(prog_data),
|
|
live_analysis(this), regpressure_analysis(this),
|
|
performance_analysis(this),
|
|
needs_register_pressure(needs_register_pressure),
|
|
dispatch_width(dispatch_width),
|
|
api_subgroup_size(brw_nir_api_subgroup_size(shader, dispatch_width)),
|
|
bld(fs_builder(this, dispatch_width).at_end())
|
|
{
|
|
init();
|
|
assert(api_subgroup_size == 0 ||
|
|
api_subgroup_size == 8 ||
|
|
api_subgroup_size == 16 ||
|
|
api_subgroup_size == 32);
|
|
}
|
|
|
|
fs_visitor::fs_visitor(const struct brw_compiler *compiler,
|
|
const struct brw_compile_params *params,
|
|
struct brw_gs_compile *c,
|
|
struct brw_gs_prog_data *prog_data,
|
|
const nir_shader *shader,
|
|
bool needs_register_pressure,
|
|
bool debug_enabled)
|
|
: backend_shader(compiler, params, shader, &prog_data->base.base,
|
|
debug_enabled),
|
|
key(&c->key.base), gs_compile(c),
|
|
prog_data(&prog_data->base.base),
|
|
live_analysis(this), regpressure_analysis(this),
|
|
performance_analysis(this),
|
|
needs_register_pressure(needs_register_pressure),
|
|
dispatch_width(8),
|
|
api_subgroup_size(brw_nir_api_subgroup_size(shader, dispatch_width)),
|
|
bld(fs_builder(this, dispatch_width).at_end())
|
|
{
|
|
init();
|
|
assert(api_subgroup_size == 0 ||
|
|
api_subgroup_size == 8 ||
|
|
api_subgroup_size == 16 ||
|
|
api_subgroup_size == 32);
|
|
}
|
|
|
|
void
|
|
fs_visitor::init()
|
|
{
|
|
if (key)
|
|
this->key_tex = &key->tex;
|
|
else
|
|
this->key_tex = NULL;
|
|
|
|
this->max_dispatch_width = 32;
|
|
this->prog_data = this->stage_prog_data;
|
|
|
|
this->failed = false;
|
|
this->fail_msg = NULL;
|
|
|
|
this->nir_ssa_values = NULL;
|
|
this->nir_resource_insts = NULL;
|
|
this->nir_ssa_bind_infos = NULL;
|
|
this->nir_resource_values = NULL;
|
|
this->nir_system_values = NULL;
|
|
|
|
this->payload_ = NULL;
|
|
this->source_depth_to_render_target = false;
|
|
this->runtime_check_aads_emit = false;
|
|
this->first_non_payload_grf = 0;
|
|
this->max_grf = devinfo->ver >= 7 ? GFX7_MRF_HACK_START : BRW_MAX_GRF;
|
|
|
|
this->uniforms = 0;
|
|
this->last_scratch = 0;
|
|
this->push_constant_loc = NULL;
|
|
|
|
memset(&this->shader_stats, 0, sizeof(this->shader_stats));
|
|
|
|
this->grf_used = 0;
|
|
this->spilled_any_registers = false;
|
|
}
|
|
|
|
fs_visitor::~fs_visitor()
|
|
{
|
|
delete this->payload_;
|
|
}
|