mesa/src/util/ralloc.h
Caio Oliveira 7b5b164281 util: Add function print information about a ralloc tree
In release mode print the ralloc tree header pointers.  In debug mode,
will look at the child allocations recursively checking for the canary
values.  In most cases this should work and give us extra information
about the type of the subtree (GC, Linear) and the allocation sizes.

For example, calling it at the end of spirv_to_nir() will output the
following tree with a summary at the end (lines elided to focus on the
general structure of the output)

```
0xca8d00 (472 bytes)
  0xdf2c60 (32 bytes)
  0xdf2c00 (32 bytes)
  0xdf2ba0 (32 bytes)
  0xdf2b40 (32 bytes)
  (...)
  0xcde8b0 (64 bytes)
  0xcde760 (72 bytes)
    0xd2de40 (168 bytes)
  0xcce660 (64 bytes)
  0xcce510 (72 bytes)
    0xcce5a0 (120 bytes)
  0xcce490 (64 bytes)
  (...)
  0xcbc450 (456 bytes)
    0xdf55c0 (160 bytes)
      0xdf5730 (72 bytes)
        0xdf57c0 (80 bytes)
      0xdf5530 (72 bytes)
        0xdf56a0 (80 bytes)
    (...)
    0xcbe840 (128 bytes)
      0xcc4310 (4 bytes)
    0xcbc660 (536 bytes) (gc context)
      0xde6b40 (32576 bytes) (gc slab or large block)
      0xddb160 (32704 bytes) (gc slab or large block)
      0xdc8d50 (32704 bytes) (gc slab or large block)
      (...)
      0xcde9a0 (32704 bytes) (gc slab or large block)
      0xcd6720 (32704 bytes) (gc slab or large block)
      0xcce6e0 (32768 bytes) (gc slab or large block)
  0xcbc330 (72 bytes)
    0xd680a0 (208 bytes)
  0xca9010 (78560 bytes)
  0xca8f20 (176 bytes)

==== RALLOC INFO ptr=0xca8d30 info=0xca8d00
ralloc allocations    = 4714
  - linear            = 0
  - gc                = 23
  - other             = 4691
content bytes         = 1055139
ralloc metadata bytes = 226272
linear metadata bytes = 0
====
```

There's a flag to pass so only the summary at the end is printed.

Acked-by: Marek Olšák <marek.olsak@amd.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/25482>
2023-10-07 01:34:13 +00:00

713 lines
26 KiB
C

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file ralloc.h
*
* ralloc: a recursive memory allocator
*
* The ralloc memory allocator creates a hierarchy of allocated
* objects. Every allocation is in reference to some parent, and
* every allocated object can in turn be used as the parent of a
* subsequent allocation. This allows for extremely convenient
* discarding of an entire tree/sub-tree of allocations by calling
* ralloc_free on any particular object to free it and all of its
* children.
*
* The conceptual working of ralloc was directly inspired by Andrew
* Tridgell's talloc, but ralloc is an independent implementation
* released under the MIT license and tuned for Mesa.
*
* talloc is more sophisticated than ralloc in that it includes reference
* counting and useful debugging features. However, it is released under
* a non-permissive open source license.
*/
#ifndef RALLOC_H
#define RALLOC_H
#include <stddef.h>
#include <stdarg.h>
#include <stdbool.h>
#include "macros.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* \def ralloc(ctx, type)
* Allocate a new object chained off of the given context.
*
* This is equivalent to:
* \code
* ((type *) ralloc_size(ctx, sizeof(type))
* \endcode
*/
#define ralloc(ctx, type) ((type *) ralloc_size(ctx, sizeof(type)))
/**
* \def rzalloc(ctx, type)
* Allocate a new object out of the given context and initialize it to zero.
*
* This is equivalent to:
* \code
* ((type *) rzalloc_size(ctx, sizeof(type))
* \endcode
*/
#define rzalloc(ctx, type) ((type *) rzalloc_size(ctx, sizeof(type)))
/**
* Allocate a new ralloc context.
*
* While any ralloc'd pointer can be used as a context, sometimes it is useful
* to simply allocate a context with no associated memory.
*
* It is equivalent to:
* \code
* ((type *) ralloc_size(ctx, 0)
* \endcode
*/
void *ralloc_context(const void *ctx);
/**
* Allocate memory chained off of the given context.
*
* This is the core allocation routine which is used by all others. It
* simply allocates storage for \p size bytes and returns the pointer,
* similar to \c malloc.
*/
void *ralloc_size(const void *ctx, size_t size) MALLOCLIKE;
/**
* Allocate zero-initialized memory chained off of the given context.
*
* This is similar to \c calloc with a size of 1.
*/
void *rzalloc_size(const void *ctx, size_t size) MALLOCLIKE;
/**
* Resize a piece of ralloc-managed memory, preserving data.
*
* Similar to \c realloc. Unlike C89, passing 0 for \p size does not free the
* memory. Instead, it resizes it to a 0-byte ralloc context, just like
* calling ralloc_size(ctx, 0). This is different from talloc.
*
* \param ctx The context to use for new allocation. If \p ptr != NULL,
* it must be the same as ralloc_parent(\p ptr).
* \param ptr Pointer to the memory to be resized. May be NULL.
* \param size The amount of memory to allocate, in bytes.
*/
void *reralloc_size(const void *ctx, void *ptr, size_t size);
/**
* Resize a ralloc-managed array, preserving data and initializing any newly
* allocated data to zero.
*
* Similar to \c realloc. Unlike C89, passing 0 for \p size does not free the
* memory. Instead, it resizes it to a 0-byte ralloc context, just like
* calling ralloc_size(ctx, 0). This is different from talloc.
*
* \param ctx The context to use for new allocation. If \p ptr != NULL,
* it must be the same as ralloc_parent(\p ptr).
* \param ptr Pointer to the memory to be resized. May be NULL.
* \param old_size The amount of memory in the previous allocation, in bytes.
* \param new_size The amount of memory to allocate, in bytes.
*/
void *rerzalloc_size(const void *ctx, void *ptr,
size_t old_size, size_t new_size);
/// \defgroup array Array Allocators @{
/**
* \def ralloc_array(ctx, type, count)
* Allocate an array of objects chained off the given context.
*
* Similar to \c calloc, but does not initialize the memory to zero.
*
* More than a convenience function, this also checks for integer overflow when
* multiplying \c sizeof(type) and \p count. This is necessary for security.
*
* This is equivalent to:
* \code
* ((type *) ralloc_array_size(ctx, sizeof(type), count)
* \endcode
*/
#define ralloc_array(ctx, type, count) \
((type *) ralloc_array_size(ctx, sizeof(type), count))
/**
* \def rzalloc_array(ctx, type, count)
* Allocate a zero-initialized array chained off the given context.
*
* Similar to \c calloc.
*
* More than a convenience function, this also checks for integer overflow when
* multiplying \c sizeof(type) and \p count. This is necessary for security.
*
* This is equivalent to:
* \code
* ((type *) rzalloc_array_size(ctx, sizeof(type), count)
* \endcode
*/
#define rzalloc_array(ctx, type, count) \
((type *) rzalloc_array_size(ctx, sizeof(type), count))
/**
* \def reralloc(ctx, ptr, type, count)
* Resize a ralloc-managed array, preserving data.
*
* Similar to \c realloc. Unlike C89, passing 0 for \p size does not free the
* memory. Instead, it resizes it to a 0-byte ralloc context, just like
* calling ralloc_size(ctx, 0). This is different from talloc.
*
* More than a convenience function, this also checks for integer overflow when
* multiplying \c sizeof(type) and \p count. This is necessary for security.
*
* \param ctx The context to use for new allocation. If \p ptr != NULL,
* it must be the same as ralloc_parent(\p ptr).
* \param ptr Pointer to the array to be resized. May be NULL.
* \param type The element type.
* \param count The number of elements to allocate.
*/
#define reralloc(ctx, ptr, type, count) \
((type *) reralloc_array_size(ctx, ptr, sizeof(type), count))
/**
* \def rerzalloc(ctx, ptr, type, count)
* Resize a ralloc-managed array, preserving data and initializing any newly
* allocated data to zero.
*
* Similar to \c realloc. Unlike C89, passing 0 for \p size does not free the
* memory. Instead, it resizes it to a 0-byte ralloc context, just like
* calling ralloc_size(ctx, 0). This is different from talloc.
*
* More than a convenience function, this also checks for integer overflow when
* multiplying \c sizeof(type) and \p count. This is necessary for security.
*
* \param ctx The context to use for new allocation. If \p ptr != NULL,
* it must be the same as ralloc_parent(\p ptr).
* \param ptr Pointer to the array to be resized. May be NULL.
* \param type The element type.
* \param old_count The number of elements in the previous allocation.
* \param new_count The number of elements to allocate.
*/
#define rerzalloc(ctx, ptr, type, old_count, new_count) \
((type *) rerzalloc_array_size(ctx, ptr, sizeof(type), old_count, new_count))
/**
* Allocate memory for an array chained off the given context.
*
* Similar to \c calloc, but does not initialize the memory to zero.
*
* More than a convenience function, this also checks for integer overflow when
* multiplying \p size and \p count. This is necessary for security.
*/
void *ralloc_array_size(const void *ctx, size_t size, unsigned count) MALLOCLIKE;
/**
* Allocate a zero-initialized array chained off the given context.
*
* Similar to \c calloc.
*
* More than a convenience function, this also checks for integer overflow when
* multiplying \p size and \p count. This is necessary for security.
*/
void *rzalloc_array_size(const void *ctx, size_t size, unsigned count) MALLOCLIKE;
/**
* Resize a ralloc-managed array, preserving data.
*
* Similar to \c realloc. Unlike C89, passing 0 for \p size does not free the
* memory. Instead, it resizes it to a 0-byte ralloc context, just like
* calling ralloc_size(ctx, 0). This is different from talloc.
*
* More than a convenience function, this also checks for integer overflow when
* multiplying \c sizeof(type) and \p count. This is necessary for security.
*
* \param ctx The context to use for new allocation. If \p ptr != NULL,
* it must be the same as ralloc_parent(\p ptr).
* \param ptr Pointer to the array to be resized. May be NULL.
* \param size The size of an individual element.
* \param count The number of elements to allocate.
*
* \return True unless allocation failed.
*/
void *reralloc_array_size(const void *ctx, void *ptr, size_t size,
unsigned count);
/**
* Resize a ralloc-managed array, preserving data and initializing any newly
* allocated data to zero.
*
* Similar to \c realloc. Unlike C89, passing 0 for \p size does not free the
* memory. Instead, it resizes it to a 0-byte ralloc context, just like
* calling ralloc_size(ctx, 0). This is different from talloc.
*
* More than a convenience function, this also checks for integer overflow when
* multiplying \c sizeof(type) and \p count. This is necessary for security.
*
* \param ctx The context to use for new allocation. If \p ptr != NULL,
* it must be the same as ralloc_parent(\p ptr).
* \param ptr Pointer to the array to be resized. May be NULL.
* \param size The size of an individual element.
* \param old_count The number of elements in the previous allocation.
* \param new_count The number of elements to allocate.
*
* \return True unless allocation failed.
*/
void *rerzalloc_array_size(const void *ctx, void *ptr, size_t size,
unsigned old_count, unsigned new_count);
/// @}
/**
* Free a piece of ralloc-managed memory.
*
* This will also free the memory of any children allocated this context.
*/
void ralloc_free(void *ptr);
/**
* "Steal" memory from one context, changing it to another.
*
* This changes \p ptr's context to \p new_ctx. This is quite useful if
* memory is allocated out of a temporary context.
*/
void ralloc_steal(const void *new_ctx, void *ptr);
/**
* Reparent all children from one context to another.
*
* This effectively calls ralloc_steal(new_ctx, child) for all children of \p old_ctx.
*/
void ralloc_adopt(const void *new_ctx, void *old_ctx);
/**
* Return the given pointer's ralloc context.
*/
void *ralloc_parent(const void *ptr);
/**
* Set a callback to occur just before an object is freed.
*/
void ralloc_set_destructor(const void *ptr, void(*destructor)(void *));
/// \defgroup array String Functions @{
/**
* Duplicate a string, allocating the memory from the given context.
*/
char *ralloc_strdup(const void *ctx, const char *str) MALLOCLIKE;
/**
* Duplicate a string, allocating the memory from the given context.
*
* Like \c strndup, at most \p n characters are copied. If \p str is longer
* than \p n characters, \p n are copied, and a termining \c '\0' byte is added.
*/
char *ralloc_strndup(const void *ctx, const char *str, size_t n) MALLOCLIKE;
/**
* Concatenate two strings, allocating the necessary space.
*
* This appends \p str to \p *dest, similar to \c strcat, using ralloc_resize
* to expand \p *dest to the appropriate size. \p dest will be updated to the
* new pointer unless allocation fails.
*
* The result will always be null-terminated.
*
* \return True unless allocation failed.
*/
bool ralloc_strcat(char **dest, const char *str);
/**
* Concatenate two strings, allocating the necessary space.
*
* This appends at most \p n bytes of \p str to \p *dest, using ralloc_resize
* to expand \p *dest to the appropriate size. \p dest will be updated to the
* new pointer unless allocation fails.
*
* The result will always be null-terminated; \p str does not need to be null
* terminated if it is longer than \p n.
*
* \return True unless allocation failed.
*/
bool ralloc_strncat(char **dest, const char *str, size_t n);
/**
* Concatenate two strings, allocating the necessary space.
*
* This appends \p n bytes of \p str to \p *dest, using ralloc_resize
* to expand \p *dest to the appropriate size. \p dest will be updated to the
* new pointer unless allocation fails.
*
* The result will always be null-terminated.
*
* This function differs from ralloc_strcat() and ralloc_strncat() in that it
* does not do any strlen() calls which can become costly on large strings.
*
* \return True unless allocation failed.
*/
bool
ralloc_str_append(char **dest, const char *str,
size_t existing_length, size_t str_size);
/**
* Print to a string.
*
* This is analogous to \c sprintf, but allocates enough space (using \p ctx
* as the context) for the resulting string.
*
* \return The newly allocated string.
*/
char *ralloc_asprintf (const void *ctx, const char *fmt, ...) PRINTFLIKE(2, 3) MALLOCLIKE;
/**
* Print to a string, given a va_list.
*
* This is analogous to \c vsprintf, but allocates enough space (using \p ctx
* as the context) for the resulting string.
*
* \return The newly allocated string.
*/
char *ralloc_vasprintf(const void *ctx, const char *fmt, va_list args) MALLOCLIKE;
/**
* Rewrite the tail of an existing string, starting at a given index.
*
* Overwrites the contents of *str starting at \p start with newly formatted
* text, including a new null-terminator. Allocates more memory as necessary.
*
* This can be used to append formatted text when the length of the existing
* string is already known, saving a strlen() call.
*
* \sa ralloc_asprintf_append
*
* \param str The string to be updated.
* \param start The index to start appending new data at.
* \param fmt A printf-style formatting string
*
* \p str will be updated to the new pointer unless allocation fails.
* \p start will be increased by the length of the newly formatted text.
*
* \return True unless allocation failed.
*/
bool ralloc_asprintf_rewrite_tail(char **str, size_t *start,
const char *fmt, ...)
PRINTFLIKE(3, 4);
/**
* Rewrite the tail of an existing string, starting at a given index.
*
* Overwrites the contents of *str starting at \p start with newly formatted
* text, including a new null-terminator. Allocates more memory as necessary.
*
* This can be used to append formatted text when the length of the existing
* string is already known, saving a strlen() call.
*
* \sa ralloc_vasprintf_append
*
* \param str The string to be updated.
* \param start The index to start appending new data at.
* \param fmt A printf-style formatting string
* \param args A va_list containing the data to be formatted
*
* \p str will be updated to the new pointer unless allocation fails.
* \p start will be increased by the length of the newly formatted text.
*
* \return True unless allocation failed.
*/
bool ralloc_vasprintf_rewrite_tail(char **str, size_t *start, const char *fmt,
va_list args);
/**
* Append formatted text to the supplied string.
*
* This is equivalent to
* \code
* ralloc_asprintf_rewrite_tail(str, strlen(*str), fmt, ...)
* \endcode
*
* \sa ralloc_asprintf
* \sa ralloc_asprintf_rewrite_tail
* \sa ralloc_strcat
*
* \p str will be updated to the new pointer unless allocation fails.
*
* \return True unless allocation failed.
*/
bool ralloc_asprintf_append (char **str, const char *fmt, ...)
PRINTFLIKE(2, 3);
/**
* Append formatted text to the supplied string, given a va_list.
*
* This is equivalent to
* \code
* ralloc_vasprintf_rewrite_tail(str, strlen(*str), fmt, args)
* \endcode
*
* \sa ralloc_vasprintf
* \sa ralloc_vasprintf_rewrite_tail
* \sa ralloc_strcat
*
* \p str will be updated to the new pointer unless allocation fails.
*
* \return True unless allocation failed.
*/
bool ralloc_vasprintf_append(char **str, const char *fmt, va_list args);
/// @}
typedef struct gc_ctx gc_ctx;
/**
* Allocate a new garbage collection context. The children of the
* context are not necessarily ralloc'd pointers and cannot be stolen to a ralloc context. Instead,
* The user should use the mark-and-sweep interface below to free any unused children. Under the
* hood, this restriction lets us manage allocations ourselves, using a freelist. This means that
* GC contexts should be used for scenarios where there are many allocations and frees, most of
* which use only a few different sizes.
*/
gc_ctx *gc_context(const void *parent);
#define gc_alloc(ctx, type, count) gc_alloc_size(ctx, sizeof(type) * (count), alignof(type))
#define gc_zalloc(ctx, type, count) gc_zalloc_size(ctx, sizeof(type) * (count), alignof(type))
#define gc_alloc_zla(ctx, type, type2, count) \
gc_alloc_size(ctx, sizeof(type) + sizeof(type2) * (count), MAX2(alignof(type), alignof(type2)))
#define gc_zalloc_zla(ctx, type, type2, count) \
gc_zalloc_size(ctx, sizeof(type) + sizeof(type2) * (count), MAX2(alignof(type), alignof(type2)))
void *gc_alloc_size(gc_ctx *ctx, size_t size, size_t align) MALLOCLIKE;
void *gc_zalloc_size(gc_ctx *ctx, size_t size, size_t align) MALLOCLIKE;
void gc_free(void *ptr);
gc_ctx *gc_get_context(void *ptr);
void gc_sweep_start(gc_ctx *ctx);
void gc_mark_live(gc_ctx *ctx, const void *mem);
void gc_sweep_end(gc_ctx *ctx);
/**
* Declare C++ new and delete operators which use ralloc.
*
* Placing this macro in the body of a class makes it possible to do:
*
* TYPE *var = new(mem_ctx) TYPE(...);
* delete var;
*
* which is more idiomatic in C++ than calling ralloc.
*/
#define DECLARE_RALLOC_CXX_OPERATORS_TEMPLATE(TYPE, ALLOC_FUNC) \
private: \
static void _ralloc_destructor(void *p) \
{ \
reinterpret_cast<TYPE *>(p)->TYPE::~TYPE(); \
} \
public: \
static void* operator new(size_t size, void *mem_ctx) \
{ \
void *p = ALLOC_FUNC(mem_ctx, size); \
assert(p != NULL); \
if (!HAS_TRIVIAL_DESTRUCTOR(TYPE)) \
ralloc_set_destructor(p, _ralloc_destructor); \
return p; \
} \
\
static void operator delete(void *p) \
{ \
/* The object's destructor is guaranteed to have already been \
* called by the delete operator at this point -- Make sure it's \
* not called again. \
*/ \
if (!HAS_TRIVIAL_DESTRUCTOR(TYPE)) \
ralloc_set_destructor(p, NULL); \
ralloc_free(p); \
}
#define DECLARE_RALLOC_CXX_OPERATORS(type) \
DECLARE_RALLOC_CXX_OPERATORS_TEMPLATE(type, ralloc_size)
#define DECLARE_RZALLOC_CXX_OPERATORS(type) \
DECLARE_RALLOC_CXX_OPERATORS_TEMPLATE(type, rzalloc_size)
#define DECLARE_LINEAR_ALLOC_CXX_OPERATORS_TEMPLATE(TYPE, ALLOC_FUNC) \
public: \
static void* operator new(size_t size, linear_ctx *ctx) \
{ \
void *p = ALLOC_FUNC(ctx, size); \
assert(p != NULL); \
static_assert(HAS_TRIVIAL_DESTRUCTOR(TYPE)); \
return p; \
}
#define DECLARE_LINEAR_ALLOC_CXX_OPERATORS(type) \
DECLARE_LINEAR_ALLOC_CXX_OPERATORS_TEMPLATE(type, linear_alloc_child)
#define DECLARE_LINEAR_ZALLOC_CXX_OPERATORS(type) \
DECLARE_LINEAR_ALLOC_CXX_OPERATORS_TEMPLATE(type, linear_zalloc_child)
typedef struct linear_ctx linear_ctx;
/**
* Do a fast allocation from the linear context, also known as the child node
* from the allocator's point of view. It can't be freed directly. You have
* to free the linear context or the ralloc parent.
*
* \param ctx linear context of the allocator
* \param size size to allocate (max 32 bits)
*/
void *linear_alloc_child(linear_ctx *ctx, unsigned size);
/**
* Allocate a linear context that will internally hold linear buffers.
* Use it for all child node allocations.
*
* \param ralloc_ctx ralloc context, must not be NULL
*/
linear_ctx *linear_context(void *ralloc_ctx);
/**
* Same as linear_alloc_child, but also clears memory.
*/
void *linear_zalloc_child(linear_ctx *ctx, unsigned size) MALLOCLIKE;
/**
* Free a linear context. This will free all child nodes too.
* Alternatively, freeing the ralloc parent will also free
* the linear context.
*/
void linear_free_context(linear_ctx *ctx);
/**
* Same as ralloc_steal, but steals the entire linear context.
*/
void ralloc_steal_linear_context(void *new_ralloc_ctx, linear_ctx *ctx);
/**
* Return the ralloc parent of the linear context.
*/
void *ralloc_parent_of_linear_context(linear_ctx *ctx);
/**
* Do a fast allocation of an array from the linear context and initialize it to zero.
*
* Similar to \c calloc, but does not initialize the memory to zero.
*
* More than a convenience function, this also checks for integer overflow when
* multiplying \p size and \p count. This is necessary for security.
*/
void *linear_alloc_child_array(linear_ctx *ctx, size_t size, unsigned count) MALLOCLIKE;
/**
* Do a fast allocation of an array from the linear context.
*
* Similar to \c calloc.
*
* More than a convenience function, this also checks for integer overflow when
* multiplying \p size and \p count. This is necessary for security.
*/
void *linear_zalloc_child_array(linear_ctx *ctx, size_t size, unsigned count) MALLOCLIKE;
/* The functions below have the same semantics as their ralloc counterparts,
* except that they always allocate a linear child node.
*/
char *linear_strdup(linear_ctx *ctx, const char *str) MALLOCLIKE;
char *linear_asprintf(linear_ctx *ctx, const char *fmt, ...) PRINTFLIKE(2, 3) MALLOCLIKE;
char *linear_vasprintf(linear_ctx *ctx, const char *fmt, va_list args) MALLOCLIKE;
bool linear_asprintf_append(linear_ctx *ctx, char **str, const char *fmt, ...) PRINTFLIKE(3, 4);
bool linear_vasprintf_append(linear_ctx *ctx, char **str, const char *fmt,
va_list args);
bool linear_asprintf_rewrite_tail(linear_ctx *ctx, char **str, size_t *start,
const char *fmt, ...) PRINTFLIKE(4, 5);
bool linear_vasprintf_rewrite_tail(linear_ctx *ctx, char **str, size_t *start,
const char *fmt, va_list args);
bool linear_strcat(linear_ctx *ctx, char **dest, const char *str);
/**
* \def linear_alloc(ctx, type)
* Do a fast allocation from the linear context.
*
* This is equivalent to:
* \code
* ((type *) linear_alloc_child(ctx, sizeof(type))
* \endcode
*/
#define linear_alloc(ctx, type) ((type *) linear_alloc_child(ctx, sizeof(type)))
/**
* \def linear_zalloc(ctx, type)
* Do a fast allocation from the linear context and initialize it to zero.
*
* This is equivalent to:
* \code
* ((type *) linear_zalloc_child(ctx, sizeof(type))
* \endcode
*/
#define linear_zalloc(ctx, type) ((type *) linear_zalloc_child(ctx, sizeof(type)))
/**
* \def linear_alloc_array(ctx, type, count)
* Do a fast allocation of an array from the linear context.
*
* Similar to \c calloc, but does not initialize the memory to zero.
*
* More than a convenience function, this also checks for integer overflow when
* multiplying \c sizeof(type) and \p count. This is necessary for security.
*
* This is equivalent to:
* \code
* ((type *) linear_alloc_child_array(ctx, sizeof(type), count)
* \endcode
*/
#define linear_alloc_array(ctx, type, count) \
((type *) linear_alloc_child_array(ctx, sizeof(type), count))
/**
* \def linear_zalloc_array(ctx, type, count)
* Do a fast allocation of an array from the linear context and initialize it to zero
*
* Similar to \c calloc.
*
* More than a convenience function, this also checks for integer overflow when
* multiplying \c sizeof(type) and \p count. This is necessary for security.
*
* This is equivalent to:
* \code
* ((type *) linear_zalloc_child_array(ctx, sizeof(type), count)
* \endcode
*/
#define linear_zalloc_array(ctx, type, count) \
((type *) linear_zalloc_child_array(ctx, sizeof(type), count))
enum {
RALLOC_PRINT_INFO_SUMMARY_ONLY = 1 << 0,
};
void ralloc_print_info(FILE *f, const void *p, unsigned flags);
#ifdef __cplusplus
} /* end of extern "C" */
#endif
#endif