mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-20 07:20:10 +01:00
Everything is SSA now.
sed -e 's/nir_ssa_def/nir_def/g' \
-e 's/nir_ssa_undef/nir_undef/g' \
-e 's/nir_ssa_scalar/nir_scalar/g' \
-e 's/nir_src_rewrite_ssa/nir_src_rewrite/g' \
-e 's/nir_gather_ssa_types/nir_gather_types/g' \
-i $(git grep -l nir | grep -v relnotes)
git mv src/compiler/nir/nir_gather_ssa_types.c \
src/compiler/nir/nir_gather_types.c
ninja -C build/ clang-format
cd src/compiler/nir && find *.c *.h -type f -exec clang-format -i \{} \;
Signed-off-by: Alyssa Rosenzweig <alyssa@rosenzweig.io>
Acked-by: Faith Ekstrand <faith.ekstrand@collabora.com>
Acked-by: Emma Anholt <emma@anholt.net>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/24585>
542 lines
20 KiB
C
542 lines
20 KiB
C
/*
|
||
* Copyright © 2023 Valve Corporation
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
* copy of this software and associated documentation files (the "Software"),
|
||
* to deal in the Software without restriction, including without limitation
|
||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
* and/or sell copies of the Software, and to permit persons to whom the
|
||
* Software is furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice (including the next
|
||
* paragraph) shall be included in all copies or substantial portions of the
|
||
* Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
* IN THE SOFTWARE.
|
||
*
|
||
*/
|
||
|
||
#include "ac_nir.h"
|
||
#include "nir_builder.h"
|
||
|
||
/**
|
||
* Build a manual selection sequence for cube face sc/tc coordinates and
|
||
* major axis vector (multiplied by 2 for consistency) for the given
|
||
* vec3 \p coords, for the face implied by \p selcoords.
|
||
*
|
||
* For the major axis, we always adjust the sign to be in the direction of
|
||
* selcoords.ma; i.e., a positive out_ma means that coords is pointed towards
|
||
* the selcoords major axis.
|
||
*/
|
||
static void
|
||
build_cube_select(nir_builder *b, nir_def *ma, nir_def *id, nir_def *deriv,
|
||
nir_def **out_ma, nir_def **out_sc, nir_def **out_tc)
|
||
{
|
||
nir_def *deriv_x = nir_channel(b, deriv, 0);
|
||
nir_def *deriv_y = nir_channel(b, deriv, 1);
|
||
nir_def *deriv_z = nir_channel(b, deriv, 2);
|
||
|
||
nir_def *is_ma_positive = nir_fge_imm(b, ma, 0.0);
|
||
nir_def *sgn_ma =
|
||
nir_bcsel(b, is_ma_positive, nir_imm_float(b, 1.0), nir_imm_float(b, -1.0));
|
||
nir_def *neg_sgn_ma = nir_fneg(b, sgn_ma);
|
||
|
||
nir_def *is_ma_z = nir_fge_imm(b, id, 4.0);
|
||
nir_def *is_ma_y = nir_fge_imm(b, id, 2.0);
|
||
is_ma_y = nir_iand(b, is_ma_y, nir_inot(b, is_ma_z));
|
||
nir_def *is_not_ma_x = nir_ior(b, is_ma_z, is_ma_y);
|
||
|
||
/* Select sc */
|
||
nir_def *tmp = nir_bcsel(b, is_not_ma_x, deriv_x, deriv_z);
|
||
nir_def *sgn =
|
||
nir_bcsel(b, is_ma_y, nir_imm_float(b, 1.0), nir_bcsel(b, is_ma_z, sgn_ma, neg_sgn_ma));
|
||
*out_sc = nir_fmul(b, tmp, sgn);
|
||
|
||
/* Select tc */
|
||
tmp = nir_bcsel(b, is_ma_y, deriv_z, deriv_y);
|
||
sgn = nir_bcsel(b, is_ma_y, sgn_ma, nir_imm_float(b, -1.0));
|
||
*out_tc = nir_fmul(b, tmp, sgn);
|
||
|
||
/* Select ma */
|
||
tmp = nir_bcsel(b, is_ma_z, deriv_z, nir_bcsel(b, is_ma_y, deriv_y, deriv_x));
|
||
*out_ma = nir_fmul_imm(b, nir_fabs(b, tmp), 2.0);
|
||
}
|
||
|
||
static void
|
||
prepare_cube_coords(nir_builder *b, nir_tex_instr *tex, nir_def **coord, nir_src *ddx,
|
||
nir_src *ddy, const ac_nir_lower_tex_options *options)
|
||
{
|
||
nir_def *coords[NIR_MAX_VEC_COMPONENTS] = {0};
|
||
for (unsigned i = 0; i < (*coord)->num_components; i++)
|
||
coords[i] = nir_channel(b, *coord, i);
|
||
|
||
/* Section 8.9 (Texture Functions) of the GLSL 4.50 spec says:
|
||
*
|
||
* "For Array forms, the array layer used will be
|
||
*
|
||
* max(0, min(d−1, floor(layer+0.5)))
|
||
*
|
||
* where d is the depth of the texture array and layer
|
||
* comes from the component indicated in the tables below.
|
||
* Workaroudn for an issue where the layer is taken from a
|
||
* helper invocation which happens to fall on a different
|
||
* layer due to extrapolation."
|
||
*
|
||
* GFX8 and earlier attempt to implement this in hardware by
|
||
* clamping the value of coords[2] = (8 * layer) + face.
|
||
* Unfortunately, this means that the we end up with the wrong
|
||
* face when clamping occurs.
|
||
*
|
||
* Clamp the layer earlier to work around the issue.
|
||
*/
|
||
if (tex->is_array && options->gfx_level <= GFX8 && coords[3])
|
||
coords[3] = nir_fmax(b, coords[3], nir_imm_float(b, 0.0));
|
||
|
||
nir_def *cube_coords = nir_cube_amd(b, nir_vec(b, coords, 3));
|
||
nir_def *sc = nir_channel(b, cube_coords, 1);
|
||
nir_def *tc = nir_channel(b, cube_coords, 0);
|
||
nir_def *ma = nir_channel(b, cube_coords, 2);
|
||
nir_def *invma = nir_frcp(b, nir_fabs(b, ma));
|
||
nir_def *id = nir_channel(b, cube_coords, 3);
|
||
|
||
if (ddx || ddy) {
|
||
sc = nir_fmul(b, sc, invma);
|
||
tc = nir_fmul(b, tc, invma);
|
||
|
||
/* Convert cube derivatives to 2D derivatives. */
|
||
for (unsigned i = 0; i < 2; i++) {
|
||
/* Transform the derivative alongside the texture
|
||
* coordinate. Mathematically, the correct formula is
|
||
* as follows. Assume we're projecting onto the +Z face
|
||
* and denote by dx/dh the derivative of the (original)
|
||
* X texture coordinate with respect to horizontal
|
||
* window coordinates. The projection onto the +Z face
|
||
* plane is:
|
||
*
|
||
* f(x,z) = x/z
|
||
*
|
||
* Then df/dh = df/dx * dx/dh + df/dz * dz/dh
|
||
* = 1/z * dx/dh - x/z * 1/z * dz/dh.
|
||
*
|
||
* This motivatives the implementation below.
|
||
*
|
||
* Whether this actually gives the expected results for
|
||
* apps that might feed in derivatives obtained via
|
||
* finite differences is anyone's guess. The OpenGL spec
|
||
* seems awfully quiet about how textureGrad for cube
|
||
* maps should be handled.
|
||
*/
|
||
nir_def *deriv_ma, *deriv_sc, *deriv_tc;
|
||
build_cube_select(b, ma, id, i ? ddy->ssa : ddx->ssa, &deriv_ma, &deriv_sc, &deriv_tc);
|
||
|
||
deriv_ma = nir_fmul(b, deriv_ma, invma);
|
||
|
||
nir_def *x = nir_fsub(b, nir_fmul(b, deriv_sc, invma), nir_fmul(b, deriv_ma, sc));
|
||
nir_def *y = nir_fsub(b, nir_fmul(b, deriv_tc, invma), nir_fmul(b, deriv_ma, tc));
|
||
|
||
nir_instr_rewrite_src_ssa(&tex->instr, i ? ddy : ddx, nir_vec2(b, x, y));
|
||
}
|
||
|
||
sc = nir_fadd_imm(b, sc, 1.5);
|
||
tc = nir_fadd_imm(b, tc, 1.5);
|
||
} else {
|
||
sc = nir_ffma_imm2(b, sc, invma, 1.5);
|
||
tc = nir_ffma_imm2(b, tc, invma, 1.5);
|
||
}
|
||
|
||
if (tex->is_array && coords[3])
|
||
id = nir_ffma_imm1(b, coords[3], 8.0, id);
|
||
|
||
*coord = nir_vec3(b, sc, tc, id);
|
||
|
||
tex->is_array = true;
|
||
}
|
||
|
||
static bool
|
||
lower_array_layer_round_even(nir_builder *b, nir_tex_instr *tex, nir_def **coords)
|
||
{
|
||
int coord_index = nir_tex_instr_src_index(tex, nir_tex_src_coord);
|
||
if (coord_index < 0 || nir_tex_instr_src_type(tex, coord_index) != nir_type_float)
|
||
return false;
|
||
|
||
unsigned layer = tex->coord_components - 1;
|
||
nir_def *rounded_layer = nir_fround_even(b, nir_channel(b, *coords, layer));
|
||
*coords = nir_vector_insert_imm(b, *coords, rounded_layer, layer);
|
||
return true;
|
||
}
|
||
|
||
static bool
|
||
lower_tex_coords(nir_builder *b, nir_tex_instr *tex, nir_def **coords,
|
||
const ac_nir_lower_tex_options *options)
|
||
{
|
||
bool progress = false;
|
||
if ((options->lower_array_layer_round_even || tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE) &&
|
||
tex->is_array && tex->op != nir_texop_lod)
|
||
progress |= lower_array_layer_round_even(b, tex, coords);
|
||
|
||
if (tex->sampler_dim != GLSL_SAMPLER_DIM_CUBE &&
|
||
!(tex->sampler_dim == GLSL_SAMPLER_DIM_1D && options->gfx_level == GFX9))
|
||
return progress;
|
||
|
||
int ddx_idx = nir_tex_instr_src_index(tex, nir_tex_src_ddx);
|
||
int ddy_idx = nir_tex_instr_src_index(tex, nir_tex_src_ddy);
|
||
nir_src *ddx = ddx_idx >= 0 ? &tex->src[ddx_idx].src : NULL;
|
||
nir_src *ddy = ddy_idx >= 0 ? &tex->src[ddy_idx].src : NULL;
|
||
|
||
if (tex->sampler_dim == GLSL_SAMPLER_DIM_1D) {
|
||
nir_def *y =
|
||
nir_imm_floatN_t(b, tex->op == nir_texop_txf ? 0.0 : 0.5, (*coords)->bit_size);
|
||
if (tex->is_array && (*coords)->num_components > 1) {
|
||
nir_def *x = nir_channel(b, *coords, 0);
|
||
nir_def *idx = nir_channel(b, *coords, 1);
|
||
*coords = nir_vec3(b, x, y, idx);
|
||
} else {
|
||
*coords = nir_vec2(b, *coords, y);
|
||
}
|
||
|
||
int offset_src = nir_tex_instr_src_index(tex, nir_tex_src_offset);
|
||
if (offset_src >= 0) {
|
||
nir_src *offset = &tex->src[offset_src].src;
|
||
nir_def *zero = nir_imm_intN_t(b, 0, offset->ssa->bit_size);
|
||
nir_instr_rewrite_src_ssa(&tex->instr, offset, nir_vec2(b, offset->ssa, zero));
|
||
}
|
||
|
||
if (ddx || ddy) {
|
||
nir_def *def = nir_vec2(b, ddx->ssa, nir_imm_floatN_t(b, 0.0, ddx->ssa->bit_size));
|
||
nir_instr_rewrite_src_ssa(&tex->instr, ddx, def);
|
||
def = nir_vec2(b, ddy->ssa, nir_imm_floatN_t(b, 0.0, ddy->ssa->bit_size));
|
||
nir_instr_rewrite_src_ssa(&tex->instr, ddy, def);
|
||
}
|
||
} else if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
|
||
prepare_cube_coords(b, tex, coords, ddx, ddy, options);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static bool
|
||
lower_tex(nir_builder *b, nir_instr *instr, void *options_)
|
||
{
|
||
const ac_nir_lower_tex_options *options = options_;
|
||
if (instr->type != nir_instr_type_tex)
|
||
return false;
|
||
|
||
nir_tex_instr *tex = nir_instr_as_tex(instr);
|
||
int coord_idx = nir_tex_instr_src_index(tex, nir_tex_src_coord);
|
||
if (coord_idx < 0 || nir_tex_instr_src_index(tex, nir_tex_src_backend1) >= 0)
|
||
return false;
|
||
|
||
b->cursor = nir_before_instr(instr);
|
||
nir_def *coords = tex->src[coord_idx].src.ssa;
|
||
if (lower_tex_coords(b, tex, &coords, options)) {
|
||
tex->coord_components = coords->num_components;
|
||
nir_instr_rewrite_src_ssa(&tex->instr, &tex->src[coord_idx].src, coords);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
typedef struct {
|
||
nir_intrinsic_instr *bary;
|
||
nir_intrinsic_instr *load;
|
||
} coord_info;
|
||
|
||
static bool
|
||
can_move_coord(nir_scalar scalar, coord_info *info)
|
||
{
|
||
if (scalar.def->bit_size != 32)
|
||
return false;
|
||
|
||
if (nir_scalar_is_const(scalar))
|
||
return true;
|
||
|
||
if (scalar.def->parent_instr->type != nir_instr_type_intrinsic)
|
||
return false;
|
||
|
||
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(scalar.def->parent_instr);
|
||
if (intrin->intrinsic == nir_intrinsic_load_input) {
|
||
info->bary = NULL;
|
||
info->load = intrin;
|
||
return true;
|
||
}
|
||
|
||
if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
|
||
return false;
|
||
|
||
nir_scalar coord_x = nir_scalar_resolved(intrin->src[0].ssa, 0);
|
||
nir_scalar coord_y = nir_scalar_resolved(intrin->src[0].ssa, 1);
|
||
if (coord_x.def->parent_instr->type != nir_instr_type_intrinsic || coord_x.comp != 0 ||
|
||
coord_y.def->parent_instr->type != nir_instr_type_intrinsic || coord_y.comp != 1)
|
||
return false;
|
||
|
||
nir_intrinsic_instr *intrin_x = nir_instr_as_intrinsic(coord_x.def->parent_instr);
|
||
nir_intrinsic_instr *intrin_y = nir_instr_as_intrinsic(coord_y.def->parent_instr);
|
||
if (intrin_x->intrinsic != intrin_y->intrinsic ||
|
||
(intrin_x->intrinsic != nir_intrinsic_load_barycentric_sample &&
|
||
intrin_x->intrinsic != nir_intrinsic_load_barycentric_pixel &&
|
||
intrin_x->intrinsic != nir_intrinsic_load_barycentric_centroid) ||
|
||
nir_intrinsic_interp_mode(intrin_x) != nir_intrinsic_interp_mode(intrin_y))
|
||
return false;
|
||
|
||
info->bary = intrin_x;
|
||
info->load = intrin;
|
||
|
||
return true;
|
||
}
|
||
|
||
struct move_tex_coords_state {
|
||
const ac_nir_lower_tex_options *options;
|
||
unsigned num_wqm_vgprs;
|
||
nir_builder toplevel_b;
|
||
};
|
||
|
||
static nir_def *
|
||
build_coordinate(struct move_tex_coords_state *state, nir_scalar scalar, coord_info info)
|
||
{
|
||
nir_builder *b = &state->toplevel_b;
|
||
|
||
if (nir_scalar_is_const(scalar))
|
||
return nir_imm_intN_t(b, nir_scalar_as_uint(scalar), scalar.def->bit_size);
|
||
|
||
ASSERTED nir_src offset = *nir_get_io_offset_src(info.load);
|
||
assert(nir_src_is_const(offset) && !nir_src_as_uint(offset));
|
||
|
||
nir_def *zero = nir_imm_int(b, 0);
|
||
nir_def *res;
|
||
if (info.bary) {
|
||
enum glsl_interp_mode interp_mode = nir_intrinsic_interp_mode(info.bary);
|
||
nir_def *bary = nir_load_system_value(b, info.bary->intrinsic, interp_mode, 2, 32);
|
||
res = nir_load_interpolated_input(b, 1, 32, bary, zero);
|
||
} else {
|
||
res = nir_load_input(b, 1, 32, zero);
|
||
}
|
||
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(res->parent_instr);
|
||
nir_intrinsic_set_base(intrin, nir_intrinsic_base(info.load));
|
||
nir_intrinsic_set_component(intrin, nir_intrinsic_component(info.load) + scalar.comp);
|
||
nir_intrinsic_set_dest_type(intrin, nir_intrinsic_dest_type(info.load));
|
||
nir_intrinsic_set_io_semantics(intrin, nir_intrinsic_io_semantics(info.load));
|
||
return res;
|
||
}
|
||
|
||
static bool
|
||
move_tex_coords(struct move_tex_coords_state *state, nir_function_impl *impl, nir_instr *instr)
|
||
{
|
||
nir_tex_instr *tex = nir_instr_as_tex(instr);
|
||
if (tex->op != nir_texop_tex && tex->op != nir_texop_txb && tex->op != nir_texop_lod)
|
||
return false;
|
||
|
||
switch (tex->sampler_dim) {
|
||
case GLSL_SAMPLER_DIM_1D:
|
||
case GLSL_SAMPLER_DIM_2D:
|
||
case GLSL_SAMPLER_DIM_3D:
|
||
case GLSL_SAMPLER_DIM_CUBE:
|
||
case GLSL_SAMPLER_DIM_EXTERNAL:
|
||
break;
|
||
case GLSL_SAMPLER_DIM_RECT:
|
||
case GLSL_SAMPLER_DIM_BUF:
|
||
case GLSL_SAMPLER_DIM_MS:
|
||
case GLSL_SAMPLER_DIM_SUBPASS:
|
||
case GLSL_SAMPLER_DIM_SUBPASS_MS:
|
||
return false; /* No LOD or can't be sampled. */
|
||
}
|
||
|
||
if (nir_tex_instr_src_index(tex, nir_tex_src_min_lod) != -1)
|
||
return false;
|
||
|
||
nir_tex_src *src = &tex->src[nir_tex_instr_src_index(tex, nir_tex_src_coord)];
|
||
nir_scalar components[NIR_MAX_VEC_COMPONENTS];
|
||
coord_info infos[NIR_MAX_VEC_COMPONENTS];
|
||
bool can_move_all = true;
|
||
for (unsigned i = 0; i < tex->coord_components; i++) {
|
||
components[i] = nir_scalar_resolved(src->src.ssa, i);
|
||
can_move_all &= can_move_coord(components[i], &infos[i]);
|
||
}
|
||
if (!can_move_all)
|
||
return false;
|
||
|
||
int coord_base = 0;
|
||
unsigned linear_vgpr_size = tex->coord_components;
|
||
if (tex->sampler_dim == GLSL_SAMPLER_DIM_1D && state->options->gfx_level == GFX9)
|
||
linear_vgpr_size++;
|
||
if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE && tex->is_array)
|
||
linear_vgpr_size--; /* cube array layer and face are combined */
|
||
for (unsigned i = 0; i < tex->num_srcs; i++) {
|
||
switch (tex->src[i].src_type) {
|
||
case nir_tex_src_offset:
|
||
case nir_tex_src_bias:
|
||
case nir_tex_src_comparator:
|
||
coord_base++;
|
||
linear_vgpr_size++;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (state->num_wqm_vgprs + linear_vgpr_size > state->options->max_wqm_vgprs)
|
||
return false;
|
||
|
||
for (unsigned i = 0; i < tex->coord_components; i++)
|
||
components[i] = nir_get_ssa_scalar(build_coordinate(state, components[i], infos[i]), 0);
|
||
|
||
nir_def *linear_vgpr = nir_vec_scalars(&state->toplevel_b, components, tex->coord_components);
|
||
lower_tex_coords(&state->toplevel_b, tex, &linear_vgpr, state->options);
|
||
|
||
linear_vgpr = nir_strict_wqm_coord_amd(&state->toplevel_b, linear_vgpr, coord_base * 4);
|
||
|
||
nir_tex_instr_remove_src(tex, nir_tex_instr_src_index(tex, nir_tex_src_coord));
|
||
tex->coord_components = 0;
|
||
|
||
nir_tex_instr_add_src(tex, nir_tex_src_backend1, nir_src_for_ssa(linear_vgpr));
|
||
|
||
int offset_src = nir_tex_instr_src_index(tex, nir_tex_src_offset);
|
||
if (offset_src >= 0) /* Workaround requirement in nir_tex_instr_src_size(). */
|
||
tex->src[offset_src].src_type = nir_tex_src_backend2;
|
||
|
||
state->num_wqm_vgprs += linear_vgpr_size;
|
||
|
||
return true;
|
||
}
|
||
|
||
static bool
|
||
move_fddxy(struct move_tex_coords_state *state, nir_function_impl *impl, nir_alu_instr *instr)
|
||
{
|
||
switch (instr->op) {
|
||
case nir_op_fddx:
|
||
case nir_op_fddy:
|
||
case nir_op_fddx_fine:
|
||
case nir_op_fddy_fine:
|
||
case nir_op_fddx_coarse:
|
||
case nir_op_fddy_coarse:
|
||
break;
|
||
default:
|
||
return false;
|
||
}
|
||
|
||
unsigned num_components = instr->dest.dest.ssa.num_components;
|
||
nir_scalar components[NIR_MAX_VEC_COMPONENTS];
|
||
coord_info infos[NIR_MAX_VEC_COMPONENTS];
|
||
bool can_move_all = true;
|
||
for (unsigned i = 0; i < num_components; i++) {
|
||
components[i] = nir_scalar_chase_alu_src(nir_get_ssa_scalar(&instr->dest.dest.ssa, i), 0);
|
||
components[i] = nir_scalar_chase_movs(components[i]);
|
||
can_move_all &= can_move_coord(components[i], &infos[i]);
|
||
}
|
||
if (!can_move_all || state->num_wqm_vgprs + num_components > state->options->max_wqm_vgprs)
|
||
return false;
|
||
|
||
for (unsigned i = 0; i < num_components; i++) {
|
||
nir_def *def = build_coordinate(state, components[i], infos[i]);
|
||
components[i] = nir_get_ssa_scalar(def, 0);
|
||
}
|
||
|
||
nir_def *def = nir_vec_scalars(&state->toplevel_b, components, num_components);
|
||
def = nir_build_alu1(&state->toplevel_b, instr->op, def);
|
||
nir_def_rewrite_uses(&instr->dest.dest.ssa, def);
|
||
|
||
state->num_wqm_vgprs += num_components;
|
||
|
||
return true;
|
||
}
|
||
|
||
static bool
|
||
move_coords_from_divergent_cf(struct move_tex_coords_state *state, nir_function_impl *impl,
|
||
struct exec_list *cf_list, bool *divergent_discard, bool divergent_cf)
|
||
{
|
||
bool progress = false;
|
||
foreach_list_typed (nir_cf_node, cf_node, node, cf_list) {
|
||
switch (cf_node->type) {
|
||
case nir_cf_node_block: {
|
||
nir_block *block = nir_cf_node_as_block(cf_node);
|
||
|
||
bool top_level = cf_list == &impl->body;
|
||
|
||
nir_foreach_instr (instr, block) {
|
||
if (top_level && !*divergent_discard)
|
||
state->toplevel_b.cursor = nir_before_instr(instr);
|
||
|
||
if (instr->type == nir_instr_type_tex && (divergent_cf || *divergent_discard)) {
|
||
progress |= move_tex_coords(state, impl, instr);
|
||
} else if (instr->type == nir_instr_type_alu && (divergent_cf || *divergent_discard)) {
|
||
progress |= move_fddxy(state, impl, nir_instr_as_alu(instr));
|
||
} else if (instr->type == nir_instr_type_intrinsic) {
|
||
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
||
switch (intrin->intrinsic) {
|
||
case nir_intrinsic_discard:
|
||
case nir_intrinsic_terminate:
|
||
if (divergent_cf)
|
||
*divergent_discard = true;
|
||
break;
|
||
case nir_intrinsic_discard_if:
|
||
case nir_intrinsic_terminate_if:
|
||
if (divergent_cf || nir_src_is_divergent(intrin->src[0]))
|
||
*divergent_discard = true;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (top_level && !*divergent_discard)
|
||
state->toplevel_b.cursor = nir_after_block_before_jump(block);
|
||
break;
|
||
}
|
||
case nir_cf_node_if: {
|
||
nir_if *nif = nir_cf_node_as_if(cf_node);
|
||
bool divergent_discard_then = *divergent_discard;
|
||
bool divergent_discard_else = *divergent_discard;
|
||
bool then_else_divergent = divergent_cf || nir_src_is_divergent(nif->condition);
|
||
progress |= move_coords_from_divergent_cf(state, impl, &nif->then_list,
|
||
&divergent_discard_then, then_else_divergent);
|
||
progress |= move_coords_from_divergent_cf(state, impl, &nif->else_list,
|
||
&divergent_discard_else, then_else_divergent);
|
||
*divergent_discard |= divergent_discard_then || divergent_discard_else;
|
||
break;
|
||
}
|
||
case nir_cf_node_loop: {
|
||
nir_loop *loop = nir_cf_node_as_loop(cf_node);
|
||
assert(!nir_loop_has_continue_construct(loop));
|
||
progress |=
|
||
move_coords_from_divergent_cf(state, impl, &loop->body, divergent_discard, true);
|
||
break;
|
||
}
|
||
case nir_cf_node_function:
|
||
unreachable("Invalid cf type");
|
||
}
|
||
}
|
||
|
||
return progress;
|
||
}
|
||
|
||
bool
|
||
ac_nir_lower_tex(nir_shader *nir, const ac_nir_lower_tex_options *options)
|
||
{
|
||
bool progress = false;
|
||
if (options->fix_derivs_in_divergent_cf) {
|
||
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
|
||
|
||
struct move_tex_coords_state state;
|
||
state.toplevel_b = nir_builder_create(impl);
|
||
state.options = options;
|
||
state.num_wqm_vgprs = 0;
|
||
|
||
bool divergent_discard = false;
|
||
if (move_coords_from_divergent_cf(&state, impl, &impl->body, &divergent_discard, false))
|
||
nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance);
|
||
else
|
||
nir_metadata_preserve(impl, nir_metadata_all);
|
||
}
|
||
|
||
progress |= nir_shader_instructions_pass(
|
||
nir, lower_tex, nir_metadata_block_index | nir_metadata_dominance, (void *)options);
|
||
|
||
return progress;
|
||
}
|