mesa/src/amd/compiler/aco_live_var_analysis.cpp
Samuel Pitoiset 2f424c83e0 aco: only break SMEM clauses if XNACK is enabled (mostly APUs)
According to LLVM, it seems only required for APUs like RAVEN, but
we still ensure that SMEM stores are in their own clause.

pipeline-db (VEGA10):
Totals from affected shaders:
SGPRS: 1775364 -> 1775364 (0.00 %)
VGPRS: 1287176 -> 1287176 (0.00 %)
Spilled SGPRs: 725 -> 725 (0.00 %)
Spilled VGPRs: 0 -> 0 (0.00 %)
Code Size: 65386620 -> 65107460 (-0.43 %) bytes
Max Waves: 287099 -> 287099 (0.00 %)

pipeline-db (POLARIS10):
Totals from affected shaders:
SGPRS: 1797743 -> 1797743 (0.00 %)
VGPRS: 1271108 -> 1271108 (0.00 %)
Spilled SGPRs: 730 -> 730 (0.00 %)
Spilled VGPRs: 0 -> 0 (0.00 %)
Code Size: 64046244 -> 63782324 (-0.41 %) bytes
Max Waves: 254875 -> 254875 (0.00 %)

This only affects GFX6-GFX9 chips because the compiler uses a
different pass for GFX10.

Signed-off-by: Samuel Pitoiset <samuel.pitoiset@gmail.com>
Reviewed-by: Daniel Schürmann <daniel@schuermann.dev>
Tested-by: Marge Bot <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4349>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4349>
2020-04-01 17:50:31 +00:00

440 lines
15 KiB
C++

/*
* Copyright © 2018 Valve Corporation
* Copyright © 2018 Google
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
* Bas Nieuwenhuizen (bas@basnieuwenhuizen.nl)
*
*/
#include "aco_ir.h"
#include "util/u_math.h"
#include <set>
#include <vector>
#include "vulkan/radv_shader.h"
namespace aco {
RegisterDemand get_live_changes(aco_ptr<Instruction>& instr)
{
RegisterDemand changes;
for (const Definition& def : instr->definitions) {
if (!def.isTemp() || def.isKill())
continue;
changes += def.getTemp();
}
for (const Operand& op : instr->operands) {
if (!op.isTemp() || !op.isFirstKill())
continue;
changes -= op.getTemp();
}
return changes;
}
RegisterDemand get_temp_registers(aco_ptr<Instruction>& instr)
{
RegisterDemand temp_registers;
for (Definition def : instr->definitions) {
if (!def.isTemp())
continue;
if (def.isKill())
temp_registers += def.getTemp();
}
for (Operand op : instr->operands) {
if (op.isTemp() && op.isLateKill() && op.isFirstKill())
temp_registers += op.getTemp();
}
return temp_registers;
}
RegisterDemand get_demand_before(RegisterDemand demand, aco_ptr<Instruction>& instr, aco_ptr<Instruction>& instr_before)
{
demand -= get_live_changes(instr);
demand -= get_temp_registers(instr);
if (instr_before)
demand += get_temp_registers(instr_before);
return demand;
}
namespace {
void process_live_temps_per_block(Program *program, live& lives, Block* block,
std::set<unsigned>& worklist, std::vector<uint16_t>& phi_sgpr_ops)
{
std::vector<RegisterDemand>& register_demand = lives.register_demand[block->index];
RegisterDemand new_demand;
register_demand.resize(block->instructions.size());
block->register_demand = RegisterDemand();
std::set<Temp> live_sgprs;
std::set<Temp> live_vgprs;
/* add the live_out_exec to live */
bool exec_live = false;
if (block->live_out_exec != Temp()) {
live_sgprs.insert(block->live_out_exec);
new_demand.sgpr += program->lane_mask.size();
exec_live = true;
}
/* split the live-outs from this block into the temporary sets */
std::vector<std::set<Temp>>& live_temps = lives.live_out;
for (const Temp temp : live_temps[block->index]) {
const bool inserted = temp.is_linear()
? live_sgprs.insert(temp).second
: live_vgprs.insert(temp).second;
if (inserted) {
new_demand += temp;
}
}
new_demand.sgpr -= phi_sgpr_ops[block->index];
/* traverse the instructions backwards */
int idx;
for (idx = block->instructions.size() -1; idx >= 0; idx--) {
Instruction *insn = block->instructions[idx].get();
if (is_phi(insn))
break;
/* substract the 1 or 2 sgprs from exec */
if (exec_live)
assert(new_demand.sgpr >= (int16_t) program->lane_mask.size());
register_demand[idx] = RegisterDemand(new_demand.vgpr, new_demand.sgpr - (exec_live ? program->lane_mask.size() : 0));
/* KILL */
for (Definition& definition : insn->definitions) {
if (!definition.isTemp()) {
continue;
}
if ((definition.isFixed() || definition.hasHint()) && definition.physReg() == vcc)
program->needs_vcc = true;
const Temp temp = definition.getTemp();
size_t n = 0;
if (temp.is_linear())
n = live_sgprs.erase(temp);
else
n = live_vgprs.erase(temp);
if (n) {
new_demand -= temp;
definition.setKill(false);
} else {
register_demand[idx] += temp;
definition.setKill(true);
}
if (definition.isFixed() && definition.physReg() == exec)
exec_live = false;
}
/* GEN */
if (insn->opcode == aco_opcode::p_logical_end) {
new_demand.sgpr += phi_sgpr_ops[block->index];
} else {
/* we need to do this in a separate loop because the next one can
* setKill() for several operands at once and we don't want to
* overwrite that in a later iteration */
for (Operand& op : insn->operands)
op.setKill(false);
for (unsigned i = 0; i < insn->operands.size(); ++i)
{
Operand& operand = insn->operands[i];
if (!operand.isTemp())
continue;
if (operand.isFixed() && operand.physReg() == vcc)
program->needs_vcc = true;
const Temp temp = operand.getTemp();
const bool inserted = temp.is_linear()
? live_sgprs.insert(temp).second
: live_vgprs.insert(temp).second;
if (inserted) {
operand.setFirstKill(true);
for (unsigned j = i + 1; j < insn->operands.size(); ++j) {
if (insn->operands[j].isTemp() && insn->operands[j].tempId() == operand.tempId()) {
insn->operands[j].setFirstKill(false);
insn->operands[j].setKill(true);
}
}
if (operand.isLateKill())
register_demand[idx] += temp;
new_demand += temp;
}
if (operand.isFixed() && operand.physReg() == exec)
exec_live = true;
}
}
block->register_demand.update(register_demand[idx]);
}
/* update block's register demand for a last time */
if (exec_live)
assert(new_demand.sgpr >= (int16_t) program->lane_mask.size());
new_demand.sgpr -= exec_live ? program->lane_mask.size() : 0;
block->register_demand.update(new_demand);
/* handle phi definitions */
int phi_idx = idx;
while (phi_idx >= 0) {
register_demand[phi_idx] = new_demand;
Instruction *insn = block->instructions[phi_idx].get();
assert(is_phi(insn));
assert(insn->definitions.size() == 1 && insn->definitions[0].isTemp());
Definition& definition = insn->definitions[0];
if ((definition.isFixed() || definition.hasHint()) && definition.physReg() == vcc)
program->needs_vcc = true;
const Temp temp = definition.getTemp();
size_t n = 0;
if (temp.is_linear())
n = live_sgprs.erase(temp);
else
n = live_vgprs.erase(temp);
if (n)
definition.setKill(false);
else
definition.setKill(true);
phi_idx--;
}
/* now, we have the live-in sets and need to merge them into the live-out sets */
for (unsigned pred_idx : block->logical_preds) {
for (Temp vgpr : live_vgprs) {
auto it = live_temps[pred_idx].insert(vgpr);
if (it.second)
worklist.insert(pred_idx);
}
}
for (unsigned pred_idx : block->linear_preds) {
for (Temp sgpr : live_sgprs) {
auto it = live_temps[pred_idx].insert(sgpr);
if (it.second)
worklist.insert(pred_idx);
}
}
/* handle phi operands */
phi_idx = idx;
while (phi_idx >= 0) {
Instruction *insn = block->instructions[phi_idx].get();
assert(is_phi(insn));
/* directly insert into the predecessors live-out set */
std::vector<unsigned>& preds = insn->opcode == aco_opcode::p_phi
? block->logical_preds
: block->linear_preds;
for (unsigned i = 0; i < preds.size(); ++i) {
Operand &operand = insn->operands[i];
if (!operand.isTemp())
continue;
if (operand.isFixed() && operand.physReg() == vcc)
program->needs_vcc = true;
/* check if we changed an already processed block */
const bool inserted = live_temps[preds[i]].insert(operand.getTemp()).second;
if (inserted) {
operand.setKill(true);
worklist.insert(preds[i]);
if (insn->opcode == aco_opcode::p_phi && operand.getTemp().type() == RegType::sgpr)
phi_sgpr_ops[preds[i]] += operand.size();
}
}
phi_idx--;
}
if ((block->logical_preds.empty() && !live_vgprs.empty()) ||
(block->linear_preds.empty() && !live_sgprs.empty())) {
aco_print_program(program, stderr);
fprintf(stderr, "These temporaries are never defined or are defined after use:\n");
for (Temp vgpr : live_vgprs)
fprintf(stderr, "%%%d\n", vgpr.id());
for (Temp sgpr : live_sgprs)
fprintf(stderr, "%%%d\n", sgpr.id());
abort();
}
assert(block->index != 0 || new_demand == RegisterDemand());
}
unsigned calc_waves_per_workgroup(Program *program)
{
/* When workgroup size is not known, just go with wave_size */
unsigned workgroup_size = program->workgroup_size == UINT_MAX
? program->wave_size
: program->workgroup_size;
return align(workgroup_size, program->wave_size) / program->wave_size;
}
} /* end namespace */
uint16_t get_extra_sgprs(Program *program)
{
if (program->chip_class >= GFX10) {
assert(!program->needs_flat_scr);
assert(!program->xnack_enabled);
return 2;
} else if (program->chip_class >= GFX8) {
if (program->needs_flat_scr)
return 6;
else if (program->xnack_enabled)
return 4;
else if (program->needs_vcc)
return 2;
else
return 0;
} else {
assert(!program->xnack_enabled);
if (program->needs_flat_scr)
return 4;
else if (program->needs_vcc)
return 2;
else
return 0;
}
}
uint16_t get_sgpr_alloc(Program *program, uint16_t addressable_sgprs)
{
assert(addressable_sgprs <= program->sgpr_limit);
uint16_t sgprs = addressable_sgprs + get_extra_sgprs(program);
uint16_t granule = program->sgpr_alloc_granule + 1;
return align(std::max(sgprs, granule), granule);
}
uint16_t get_vgpr_alloc(Program *program, uint16_t addressable_vgprs)
{
assert(addressable_vgprs <= program->vgpr_limit);
uint16_t granule = program->vgpr_alloc_granule + 1;
return align(std::max(addressable_vgprs, granule), granule);
}
uint16_t get_addr_sgpr_from_waves(Program *program, uint16_t max_waves)
{
uint16_t sgprs = program->physical_sgprs / max_waves & ~program->sgpr_alloc_granule;
sgprs -= get_extra_sgprs(program);
return std::min(sgprs, program->sgpr_limit);
}
uint16_t get_addr_vgpr_from_waves(Program *program, uint16_t max_waves)
{
uint16_t vgprs = 256 / max_waves & ~program->vgpr_alloc_granule;
return std::min(vgprs, program->vgpr_limit);
}
void calc_min_waves(Program* program)
{
unsigned waves_per_workgroup = calc_waves_per_workgroup(program);
/* currently min_waves is in wave64 waves */
if (program->wave_size == 32)
waves_per_workgroup = DIV_ROUND_UP(waves_per_workgroup, 2);
unsigned simd_per_cu = 4; /* TODO: different on Navi */
bool wgp = program->chip_class >= GFX10; /* assume WGP is used on Navi */
unsigned simd_per_cu_wgp = wgp ? simd_per_cu * 2 : simd_per_cu;
program->min_waves = DIV_ROUND_UP(waves_per_workgroup, simd_per_cu_wgp);
}
void update_vgpr_sgpr_demand(Program* program, const RegisterDemand new_demand)
{
/* TODO: max_waves_per_simd, simd_per_cu and the number of physical vgprs for Navi */
unsigned max_waves_per_simd = 10;
unsigned simd_per_cu = 4;
bool wgp = program->chip_class >= GFX10; /* assume WGP is used on Navi */
unsigned simd_per_cu_wgp = wgp ? simd_per_cu * 2 : simd_per_cu;
unsigned lds_limit = wgp ? program->lds_limit * 2 : program->lds_limit;
/* this won't compile, register pressure reduction necessary */
if (new_demand.vgpr > program->vgpr_limit || new_demand.sgpr > program->sgpr_limit) {
program->num_waves = 0;
program->max_reg_demand = new_demand;
} else {
program->num_waves = program->physical_sgprs / get_sgpr_alloc(program, new_demand.sgpr);
program->num_waves = std::min<uint16_t>(program->num_waves, 256 / get_vgpr_alloc(program, new_demand.vgpr));
program->max_waves = max_waves_per_simd;
/* adjust max_waves for workgroup and LDS limits */
unsigned waves_per_workgroup = calc_waves_per_workgroup(program);
unsigned workgroups_per_cu_wgp = max_waves_per_simd * simd_per_cu_wgp / waves_per_workgroup;
if (program->config->lds_size) {
unsigned lds = program->config->lds_size * program->lds_alloc_granule;
workgroups_per_cu_wgp = std::min(workgroups_per_cu_wgp, lds_limit / lds);
}
if (waves_per_workgroup > 1 && program->chip_class < GFX10)
workgroups_per_cu_wgp = std::min(workgroups_per_cu_wgp, 16u); /* TODO: is this a SI-only limit? what about Navi? */
/* in cases like waves_per_workgroup=3 or lds=65536 and
* waves_per_workgroup=1, we want the maximum possible number of waves per
* SIMD and not the minimum. so DIV_ROUND_UP is used */
program->max_waves = std::min<uint16_t>(program->max_waves, DIV_ROUND_UP(workgroups_per_cu_wgp * waves_per_workgroup, simd_per_cu_wgp));
/* incorporate max_waves and calculate max_reg_demand */
program->num_waves = std::min<uint16_t>(program->num_waves, program->max_waves);
program->max_reg_demand.vgpr = get_addr_vgpr_from_waves(program, program->num_waves);
program->max_reg_demand.sgpr = get_addr_sgpr_from_waves(program, program->num_waves);
}
}
live live_var_analysis(Program* program,
const struct radv_nir_compiler_options *options)
{
live result;
result.live_out.resize(program->blocks.size());
result.register_demand.resize(program->blocks.size());
std::set<unsigned> worklist;
std::vector<uint16_t> phi_sgpr_ops(program->blocks.size());
RegisterDemand new_demand;
program->needs_vcc = false;
/* this implementation assumes that the block idx corresponds to the block's position in program->blocks vector */
for (Block& block : program->blocks)
worklist.insert(block.index);
while (!worklist.empty()) {
std::set<unsigned>::reverse_iterator b_it = worklist.rbegin();
unsigned block_idx = *b_it;
worklist.erase(block_idx);
process_live_temps_per_block(program, result, &program->blocks[block_idx], worklist, phi_sgpr_ops);
new_demand.update(program->blocks[block_idx].register_demand);
}
/* calculate the program's register demand and number of waves */
update_vgpr_sgpr_demand(program, new_demand);
return result;
}
}