mesa/src/glsl/ir.cpp
Eric Anholt 046bef2357 glsl2: Remove the shader_in/shader_out tracking separate from var->mode.
I introduced this for ir_dead_code to distinguish function parameter
outvals from varying outputs.  Only, since ast_to_hir's
current_function is unset when setting up function parameters (they're
needed for making the function signature in the first place), all
function parameter outvals were marked as shader outputs anyway.  This
meant that an inlined function's cloned outval was marked as a shader
output and couldn't be dead-code eliminated.  Instead, since
ir_dead_code doesn't even look at function parameters, just use
var->mode.

The longest Mesa IR coming out of ir_to_mesa for Yo Frankie drops from
725 instructions to 636.
2010-08-04 20:52:33 -07:00

1062 lines
26 KiB
C++

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <string.h>
#include "main/imports.h"
#include "main/macros.h"
#include "ir.h"
#include "ir_visitor.h"
#include "glsl_types.h"
ir_rvalue::ir_rvalue()
{
this->type = glsl_type::error_type;
}
/**
* Modify the swizzle make to move one component to another
*
* \param m IR swizzle to be modified
* \param from Component in the RHS that is to be swizzled
* \param to Desired swizzle location of \c from
*/
static void
update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
{
switch (to) {
case 0: m.x = from; break;
case 1: m.y = from; break;
case 2: m.z = from; break;
case 3: m.w = from; break;
default: assert(!"Should not get here.");
}
m.num_components = MAX2(m.num_components, (to + 1));
}
void
ir_assignment::set_lhs(ir_rvalue *lhs)
{
while (lhs != NULL) {
ir_swizzle *swiz = lhs->as_swizzle();
if (swiz == NULL)
break;
unsigned write_mask = 0;
ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
for (unsigned i = 0; i < swiz->mask.num_components; i++) {
unsigned c = 0;
switch (i) {
case 0: c = swiz->mask.x; break;
case 1: c = swiz->mask.y; break;
case 2: c = swiz->mask.z; break;
case 3: c = swiz->mask.w; break;
default: assert(!"Should not get here.");
}
write_mask |= (((this->write_mask >> i) & 1) << c);
update_rhs_swizzle(rhs_swiz, i, c);
}
this->write_mask = write_mask;
lhs = swiz->val;
this->rhs = new(this) ir_swizzle(this->rhs, rhs_swiz);
}
assert((lhs == NULL) || lhs->as_dereference());
this->lhs = (ir_dereference *) lhs;
}
ir_variable *
ir_assignment::whole_variable_written()
{
ir_variable *v = this->lhs->whole_variable_referenced();
if (v == NULL)
return NULL;
if (v->type->is_scalar())
return v;
if (v->type->is_vector()) {
const unsigned mask = (1U << v->type->vector_elements) - 1;
if (mask != this->write_mask)
return NULL;
}
/* Either all the vector components are assigned or the variable is some
* composite type (and the whole thing is assigned.
*/
return v;
}
ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
ir_rvalue *condition, unsigned write_mask)
{
this->ir_type = ir_type_assignment;
this->condition = condition;
this->rhs = rhs;
this->lhs = lhs;
this->write_mask = write_mask;
}
ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
ir_rvalue *condition)
{
this->ir_type = ir_type_assignment;
this->condition = condition;
this->rhs = rhs;
/* If the RHS is a vector type, assume that all components of the vector
* type are being written to the LHS. The write mask comes from the RHS
* because we can have a case where the LHS is a vec4 and the RHS is a
* vec3. In that case, the assignment is:
*
* (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
*/
if (rhs->type->is_vector())
this->write_mask = (1U << rhs->type->vector_elements) - 1;
else if (rhs->type->is_scalar())
this->write_mask = 1;
else
this->write_mask = 0;
this->set_lhs(lhs);
}
ir_expression::ir_expression(int op, const struct glsl_type *type,
ir_rvalue *op0, ir_rvalue *op1)
{
this->ir_type = ir_type_expression;
this->type = type;
this->operation = ir_expression_operation(op);
this->operands[0] = op0;
this->operands[1] = op1;
}
unsigned int
ir_expression::get_num_operands(ir_expression_operation op)
{
/* Update ir_print_visitor.cpp when updating this list. */
const int num_operands[] = {
1, /* ir_unop_bit_not */
1, /* ir_unop_logic_not */
1, /* ir_unop_neg */
1, /* ir_unop_abs */
1, /* ir_unop_sign */
1, /* ir_unop_rcp */
1, /* ir_unop_rsq */
1, /* ir_unop_sqrt */
1, /* ir_unop_exp */
1, /* ir_unop_log */
1, /* ir_unop_exp2 */
1, /* ir_unop_log2 */
1, /* ir_unop_f2i */
1, /* ir_unop_i2f */
1, /* ir_unop_f2b */
1, /* ir_unop_b2f */
1, /* ir_unop_i2b */
1, /* ir_unop_b2i */
1, /* ir_unop_u2f */
1, /* ir_unop_trunc */
1, /* ir_unop_ceil */
1, /* ir_unop_floor */
1, /* ir_unop_fract */
1, /* ir_unop_sin */
1, /* ir_unop_cos */
1, /* ir_unop_dFdx */
1, /* ir_unop_dFdy */
2, /* ir_binop_add */
2, /* ir_binop_sub */
2, /* ir_binop_mul */
2, /* ir_binop_div */
2, /* ir_binop_mod */
2, /* ir_binop_less */
2, /* ir_binop_greater */
2, /* ir_binop_lequal */
2, /* ir_binop_gequal */
2, /* ir_binop_equal */
2, /* ir_binop_nequal */
2, /* ir_binop_lshift */
2, /* ir_binop_rshift */
2, /* ir_binop_bit_and */
2, /* ir_binop_bit_xor */
2, /* ir_binop_bit_or */
2, /* ir_binop_logic_and */
2, /* ir_binop_logic_xor */
2, /* ir_binop_logic_or */
2, /* ir_binop_dot */
2, /* ir_binop_cross */
2, /* ir_binop_min */
2, /* ir_binop_max */
2, /* ir_binop_pow */
};
assert(sizeof(num_operands) / sizeof(num_operands[0]) == ir_binop_pow + 1);
return num_operands[op];
}
static const char *const operator_strs[] = {
"~",
"!",
"neg",
"abs",
"sign",
"rcp",
"rsq",
"sqrt",
"exp",
"log",
"exp2",
"log2",
"f2i",
"i2f",
"f2b",
"b2f",
"i2b",
"b2i",
"u2f",
"trunc",
"ceil",
"floor",
"fract",
"sin",
"cos",
"dFdx",
"dFdy",
"+",
"-",
"*",
"/",
"%",
"<",
">",
"<=",
">=",
"==",
"!=",
"<<",
">>",
"&",
"^",
"|",
"&&",
"^^",
"||",
"dot",
"cross",
"min",
"max",
"pow",
};
const char *ir_expression::operator_string()
{
assert((unsigned int) operation <=
sizeof(operator_strs) / sizeof(operator_strs[0]));
return operator_strs[operation];
}
ir_expression_operation
ir_expression::get_operator(const char *str)
{
const int operator_count = sizeof(operator_strs) / sizeof(operator_strs[0]);
for (int op = 0; op < operator_count; op++) {
if (strcmp(str, operator_strs[op]) == 0)
return (ir_expression_operation) op;
}
return (ir_expression_operation) -1;
}
ir_constant::ir_constant()
{
this->ir_type = ir_type_constant;
}
ir_constant::ir_constant(const struct glsl_type *type,
const ir_constant_data *data)
{
assert((type->base_type >= GLSL_TYPE_UINT)
&& (type->base_type <= GLSL_TYPE_BOOL));
this->ir_type = ir_type_constant;
this->type = type;
memcpy(& this->value, data, sizeof(this->value));
}
ir_constant::ir_constant(float f)
{
this->ir_type = ir_type_constant;
this->type = glsl_type::float_type;
this->value.f[0] = f;
}
ir_constant::ir_constant(unsigned int u)
{
this->ir_type = ir_type_constant;
this->type = glsl_type::uint_type;
this->value.u[0] = u;
}
ir_constant::ir_constant(int i)
{
this->ir_type = ir_type_constant;
this->type = glsl_type::int_type;
this->value.i[0] = i;
}
ir_constant::ir_constant(bool b)
{
this->ir_type = ir_type_constant;
this->type = glsl_type::bool_type;
this->value.b[0] = b;
}
ir_constant::ir_constant(const ir_constant *c, unsigned i)
{
this->ir_type = ir_type_constant;
this->type = c->type->get_base_type();
switch (this->type->base_type) {
case GLSL_TYPE_UINT: this->value.u[0] = c->value.u[i]; break;
case GLSL_TYPE_INT: this->value.i[0] = c->value.i[i]; break;
case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
case GLSL_TYPE_BOOL: this->value.b[0] = c->value.b[i]; break;
default: assert(!"Should not get here."); break;
}
}
ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
{
this->ir_type = ir_type_constant;
this->type = type;
assert(type->is_scalar() || type->is_vector() || type->is_matrix()
|| type->is_record() || type->is_array());
if (type->is_array()) {
this->array_elements = talloc_array(this, ir_constant *, type->length);
unsigned i = 0;
foreach_list(node, value_list) {
ir_constant *value = (ir_constant *) node;
assert(value->as_constant() != NULL);
this->array_elements[i++] = value;
}
return;
}
/* If the constant is a record, the types of each of the entries in
* value_list must be a 1-for-1 match with the structure components. Each
* entry must also be a constant. Just move the nodes from the value_list
* to the list in the ir_constant.
*/
/* FINISHME: Should there be some type checking and / or assertions here? */
/* FINISHME: Should the new constant take ownership of the nodes from
* FINISHME: value_list, or should it make copies?
*/
if (type->is_record()) {
value_list->move_nodes_to(& this->components);
return;
}
ir_constant *value = (ir_constant *) (value_list->head);
/* Use each component from each entry in the value_list to initialize one
* component of the constant being constructed.
*/
for (unsigned i = 0; i < type->components(); /* empty */) {
assert(value->as_constant() != NULL);
assert(!value->is_tail_sentinel());
for (unsigned j = 0; j < value->type->components(); j++) {
switch (type->base_type) {
case GLSL_TYPE_UINT:
this->value.u[i] = value->get_uint_component(j);
break;
case GLSL_TYPE_INT:
this->value.i[i] = value->get_int_component(j);
break;
case GLSL_TYPE_FLOAT:
this->value.f[i] = value->get_float_component(j);
break;
case GLSL_TYPE_BOOL:
this->value.b[i] = value->get_bool_component(j);
break;
default:
/* FINISHME: What to do? Exceptions are not the answer.
*/
break;
}
i++;
if (i >= type->components())
break;
}
value = (ir_constant *) value->next;
}
}
ir_constant *
ir_constant::zero(void *mem_ctx, const glsl_type *type)
{
assert(type->is_numeric());
ir_constant *c = new(mem_ctx) ir_constant;
c->type = type;
memset(&c->value, 0, sizeof(c->value));
return c;
}
bool
ir_constant::get_bool_component(unsigned i) const
{
switch (this->type->base_type) {
case GLSL_TYPE_UINT: return this->value.u[i] != 0;
case GLSL_TYPE_INT: return this->value.i[i] != 0;
case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
case GLSL_TYPE_BOOL: return this->value.b[i];
default: assert(!"Should not get here."); break;
}
/* Must return something to make the compiler happy. This is clearly an
* error case.
*/
return false;
}
float
ir_constant::get_float_component(unsigned i) const
{
switch (this->type->base_type) {
case GLSL_TYPE_UINT: return (float) this->value.u[i];
case GLSL_TYPE_INT: return (float) this->value.i[i];
case GLSL_TYPE_FLOAT: return this->value.f[i];
case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0 : 0.0;
default: assert(!"Should not get here."); break;
}
/* Must return something to make the compiler happy. This is clearly an
* error case.
*/
return 0.0;
}
int
ir_constant::get_int_component(unsigned i) const
{
switch (this->type->base_type) {
case GLSL_TYPE_UINT: return this->value.u[i];
case GLSL_TYPE_INT: return this->value.i[i];
case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
default: assert(!"Should not get here."); break;
}
/* Must return something to make the compiler happy. This is clearly an
* error case.
*/
return 0;
}
unsigned
ir_constant::get_uint_component(unsigned i) const
{
switch (this->type->base_type) {
case GLSL_TYPE_UINT: return this->value.u[i];
case GLSL_TYPE_INT: return this->value.i[i];
case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
default: assert(!"Should not get here."); break;
}
/* Must return something to make the compiler happy. This is clearly an
* error case.
*/
return 0;
}
ir_constant *
ir_constant::get_array_element(unsigned i) const
{
assert(this->type->is_array());
assert(i < this->type->length);
return array_elements[i];
}
ir_constant *
ir_constant::get_record_field(const char *name)
{
int idx = this->type->field_index(name);
if (idx < 0)
return NULL;
if (this->components.is_empty())
return NULL;
exec_node *node = this->components.head;
for (int i = 0; i < idx; i++) {
node = node->next;
/* If the end of the list is encountered before the element matching the
* requested field is found, return NULL.
*/
if (node->is_tail_sentinel())
return NULL;
}
return (ir_constant *) node;
}
bool
ir_constant::has_value(const ir_constant *c) const
{
if (this->type != c->type)
return false;
if (this->type->is_array()) {
for (unsigned i = 0; i < this->type->length; i++) {
if (this->array_elements[i]->has_value(c->array_elements[i]))
return false;
}
return true;
}
if (this->type->base_type == GLSL_TYPE_STRUCT) {
const exec_node *a_node = this->components.head;
const exec_node *b_node = c->components.head;
while (!a_node->is_tail_sentinel()) {
assert(!b_node->is_tail_sentinel());
const ir_constant *const a_field = (ir_constant *) a_node;
const ir_constant *const b_field = (ir_constant *) b_node;
if (!a_field->has_value(b_field))
return false;
a_node = a_node->next;
b_node = b_node->next;
}
return true;
}
for (unsigned i = 0; i < this->type->components(); i++) {
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
if (this->value.u[i] != c->value.u[i])
return false;
break;
case GLSL_TYPE_INT:
if (this->value.i[i] != c->value.i[i])
return false;
break;
case GLSL_TYPE_FLOAT:
if (this->value.f[i] != c->value.f[i])
return false;
break;
case GLSL_TYPE_BOOL:
if (this->value.b[i] != c->value.b[i])
return false;
break;
default:
assert(!"Should not get here.");
return false;
}
}
return true;
}
ir_dereference_variable::ir_dereference_variable(ir_variable *var)
{
this->ir_type = ir_type_dereference_variable;
this->var = var;
this->type = (var != NULL) ? var->type : glsl_type::error_type;
}
ir_dereference_array::ir_dereference_array(ir_rvalue *value,
ir_rvalue *array_index)
{
this->ir_type = ir_type_dereference_array;
this->array_index = array_index;
this->set_array(value);
}
ir_dereference_array::ir_dereference_array(ir_variable *var,
ir_rvalue *array_index)
{
void *ctx = talloc_parent(var);
this->ir_type = ir_type_dereference_array;
this->array_index = array_index;
this->set_array(new(ctx) ir_dereference_variable(var));
}
void
ir_dereference_array::set_array(ir_rvalue *value)
{
this->array = value;
this->type = glsl_type::error_type;
if (this->array != NULL) {
const glsl_type *const vt = this->array->type;
if (vt->is_array()) {
type = vt->element_type();
} else if (vt->is_matrix()) {
type = vt->column_type();
} else if (vt->is_vector()) {
type = vt->get_base_type();
}
}
}
ir_dereference_record::ir_dereference_record(ir_rvalue *value,
const char *field)
{
this->ir_type = ir_type_dereference_record;
this->record = value;
this->field = talloc_strdup(this, field);
this->type = (this->record != NULL)
? this->record->type->field_type(field) : glsl_type::error_type;
}
ir_dereference_record::ir_dereference_record(ir_variable *var,
const char *field)
{
void *ctx = talloc_parent(var);
this->ir_type = ir_type_dereference_record;
this->record = new(ctx) ir_dereference_variable(var);
this->field = talloc_strdup(this, field);
this->type = (this->record != NULL)
? this->record->type->field_type(field) : glsl_type::error_type;
}
bool
ir_dereference::is_lvalue()
{
ir_variable *var = this->variable_referenced();
/* Every l-value derference chain eventually ends in a variable.
*/
if ((var == NULL) || var->read_only)
return false;
if (this->type->is_array() && !var->array_lvalue)
return false;
return true;
}
const char *tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf" };
const char *ir_texture::opcode_string()
{
assert((unsigned int) op <=
sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]));
return tex_opcode_strs[op];
}
ir_texture_opcode
ir_texture::get_opcode(const char *str)
{
const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
for (int op = 0; op < count; op++) {
if (strcmp(str, tex_opcode_strs[op]) == 0)
return (ir_texture_opcode) op;
}
return (ir_texture_opcode) -1;
}
void
ir_texture::set_sampler(ir_dereference *sampler)
{
assert(sampler != NULL);
this->sampler = sampler;
switch (sampler->type->sampler_type) {
case GLSL_TYPE_FLOAT:
this->type = glsl_type::vec4_type;
break;
case GLSL_TYPE_INT:
this->type = glsl_type::ivec4_type;
break;
case GLSL_TYPE_UINT:
this->type = glsl_type::uvec4_type;
break;
}
}
void
ir_swizzle::init_mask(const unsigned *comp, unsigned count)
{
assert((count >= 1) && (count <= 4));
memset(&this->mask, 0, sizeof(this->mask));
this->mask.num_components = count;
unsigned dup_mask = 0;
switch (count) {
case 4:
assert(comp[3] <= 3);
dup_mask |= (1U << comp[3])
& ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
this->mask.w = comp[3];
case 3:
assert(comp[2] <= 3);
dup_mask |= (1U << comp[2])
& ((1U << comp[0]) | (1U << comp[1]));
this->mask.z = comp[2];
case 2:
assert(comp[1] <= 3);
dup_mask |= (1U << comp[1])
& ((1U << comp[0]));
this->mask.y = comp[1];
case 1:
assert(comp[0] <= 3);
this->mask.x = comp[0];
}
this->mask.has_duplicates = dup_mask != 0;
/* Based on the number of elements in the swizzle and the base type
* (i.e., float, int, unsigned, or bool) of the vector being swizzled,
* generate the type of the resulting value.
*/
type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
}
ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
unsigned w, unsigned count)
: val(val)
{
const unsigned components[4] = { x, y, z, w };
this->ir_type = ir_type_swizzle;
this->init_mask(components, count);
}
ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
unsigned count)
: val(val)
{
this->ir_type = ir_type_swizzle;
this->init_mask(comp, count);
}
ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
{
this->ir_type = ir_type_swizzle;
this->val = val;
this->mask = mask;
this->type = glsl_type::get_instance(val->type->base_type,
mask.num_components, 1);
}
#define X 1
#define R 5
#define S 9
#define I 13
ir_swizzle *
ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
{
void *ctx = talloc_parent(val);
/* For each possible swizzle character, this table encodes the value in
* \c idx_map that represents the 0th element of the vector. For invalid
* swizzle characters (e.g., 'k'), a special value is used that will allow
* detection of errors.
*/
static const unsigned char base_idx[26] = {
/* a b c d e f g h i j k l m */
R, R, I, I, I, I, R, I, I, I, I, I, I,
/* n o p q r s t u v w x y z */
I, I, S, S, R, S, S, I, I, X, X, X, X
};
/* Each valid swizzle character has an entry in the previous table. This
* table encodes the base index encoded in the previous table plus the actual
* index of the swizzle character. When processing swizzles, the first
* character in the string is indexed in the previous table. Each character
* in the string is indexed in this table, and the value found there has the
* value form the first table subtracted. The result must be on the range
* [0,3].
*
* For example, the string "wzyx" will get X from the first table. Each of
* the charcaters will get X+3, X+2, X+1, and X+0 from this table. After
* subtraction, the swizzle values are { 3, 2, 1, 0 }.
*
* The string "wzrg" will get X from the first table. Each of the characters
* will get X+3, X+2, R+0, and R+1 from this table. After subtraction, the
* swizzle values are { 3, 2, 4, 5 }. Since 4 and 5 are outside the range
* [0,3], the error is detected.
*/
static const unsigned char idx_map[26] = {
/* a b c d e f g h i j k l m */
R+3, R+2, 0, 0, 0, 0, R+1, 0, 0, 0, 0, 0, 0,
/* n o p q r s t u v w x y z */
0, 0, S+2, S+3, R+0, S+0, S+1, 0, 0, X+3, X+0, X+1, X+2
};
int swiz_idx[4] = { 0, 0, 0, 0 };
unsigned i;
/* Validate the first character in the swizzle string and look up the base
* index value as described above.
*/
if ((str[0] < 'a') || (str[0] > 'z'))
return NULL;
const unsigned base = base_idx[str[0] - 'a'];
for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
/* Validate the next character, and, as described above, convert it to a
* swizzle index.
*/
if ((str[i] < 'a') || (str[i] > 'z'))
return NULL;
swiz_idx[i] = idx_map[str[i] - 'a'] - base;
if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
return NULL;
}
if (str[i] != '\0')
return NULL;
return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
swiz_idx[3], i);
}
#undef X
#undef R
#undef S
#undef I
ir_variable *
ir_swizzle::variable_referenced()
{
return this->val->variable_referenced();
}
ir_variable::ir_variable(const struct glsl_type *type, const char *name,
ir_variable_mode mode)
: max_array_access(0), read_only(false), centroid(false), invariant(false),
mode(mode), interpolation(ir_var_smooth), array_lvalue(false)
{
this->ir_type = ir_type_variable;
this->type = type;
this->name = talloc_strdup(this, name);
this->location = -1;
this->warn_extension = NULL;
this->constant_value = NULL;
this->origin_upper_left = false;
this->pixel_center_integer = false;
if (type && type->base_type == GLSL_TYPE_SAMPLER)
this->read_only = true;
}
const char *
ir_variable::interpolation_string() const
{
switch (this->interpolation) {
case ir_var_smooth: return "smooth";
case ir_var_flat: return "flat";
case ir_var_noperspective: return "noperspective";
}
assert(!"Should not get here.");
return "";
}
unsigned
ir_variable::component_slots() const
{
/* FINISHME: Sparsely accessed arrays require fewer slots. */
return this->type->component_slots();
}
ir_function_signature::ir_function_signature(const glsl_type *return_type)
: return_type(return_type), is_defined(false), _function(NULL)
{
this->ir_type = ir_type_function_signature;
this->is_built_in = false;
}
const char *
ir_function_signature::qualifiers_match(exec_list *params)
{
exec_list_iterator iter_a = parameters.iterator();
exec_list_iterator iter_b = params->iterator();
/* check that the qualifiers match. */
while (iter_a.has_next()) {
ir_variable *a = (ir_variable *)iter_a.get();
ir_variable *b = (ir_variable *)iter_b.get();
if (a->read_only != b->read_only ||
a->mode != b->mode ||
a->interpolation != b->interpolation ||
a->centroid != b->centroid) {
/* parameter a's qualifiers don't match */
return a->name;
}
iter_a.next();
iter_b.next();
}
return NULL;
}
void
ir_function_signature::replace_parameters(exec_list *new_params)
{
/* Destroy all of the previous parameter information. If the previous
* parameter information comes from the function prototype, it may either
* specify incorrect parameter names or not have names at all.
*/
foreach_iter(exec_list_iterator, iter, parameters) {
assert(((ir_instruction *) iter.get())->as_variable() != NULL);
iter.remove();
}
new_params->move_nodes_to(&parameters);
}
ir_function::ir_function(const char *name)
{
this->ir_type = ir_type_function;
this->name = talloc_strdup(this, name);
}
ir_call *
ir_call::get_error_instruction(void *ctx)
{
ir_call *call = new(ctx) ir_call;
call->type = glsl_type::error_type;
return call;
}
void
ir_call::set_callee(ir_function_signature *sig)
{
assert((this->type == NULL) || (this->type == sig->return_type));
this->callee = sig;
}
void
visit_exec_list(exec_list *list, ir_visitor *visitor)
{
foreach_iter(exec_list_iterator, iter, *list) {
((ir_instruction *)iter.get())->accept(visitor);
}
}
static void
steal_memory(ir_instruction *ir, void *new_ctx)
{
ir_variable *var = ir->as_variable();
ir_constant *constant = ir->as_constant();
if (var != NULL && var->constant_value != NULL)
steal_memory(var->constant_value, ir);
/* The components of aggregate constants are not visited by the normal
* visitor, so steal their values by hand.
*/
if (constant != NULL) {
if (constant->type->is_record()) {
foreach_iter(exec_list_iterator, iter, constant->components) {
ir_constant *field = (ir_constant *)iter.get();
steal_memory(field, ir);
}
} else if (constant->type->is_array()) {
for (unsigned int i = 0; i < constant->type->length; i++) {
steal_memory(constant->array_elements[i], ir);
}
}
}
talloc_steal(new_ctx, ir);
}
void
reparent_ir(exec_list *list, void *mem_ctx)
{
foreach_list(node, list) {
visit_tree((ir_instruction *) node, steal_memory, mem_ctx);
}
}