mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-24 21:50:12 +01:00
On Gen12+, we can enable additional caches in certain usage situations. This routes that decision making to a central place in ISL, based on surface usage flags, and updates both drivers to use it. (i965 doesn't need to change because it doesn't support Gen12.) We continue handling the "external" decision via an anv_mocs() wrapper for now, since we store that flag in anv_bo, which isl doesn't know about. (We could introduce an ISL_SURF_USAGE_EXTERNAL, but I'm not actually sure that would be cleaner.) This patch should not have any functional nor performance effects, as we continue selecting the exact same MOCS values for now. Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/7104>
4678 lines
175 KiB
C
4678 lines
175 KiB
C
/*
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include "drm-uapi/drm_fourcc.h"
|
|
#include "drm-uapi/drm.h"
|
|
#include <xf86drm.h>
|
|
|
|
#include "anv_private.h"
|
|
#include "util/debug.h"
|
|
#include "util/build_id.h"
|
|
#include "util/disk_cache.h"
|
|
#include "util/mesa-sha1.h"
|
|
#include "util/os_file.h"
|
|
#include "util/os_misc.h"
|
|
#include "util/u_atomic.h"
|
|
#include "util/u_string.h"
|
|
#include "util/driconf.h"
|
|
#include "git_sha1.h"
|
|
#include "vk_util.h"
|
|
#include "common/gen_aux_map.h"
|
|
#include "common/gen_defines.h"
|
|
#include "common/gen_uuid.h"
|
|
#include "compiler/glsl_types.h"
|
|
|
|
#include "genxml/gen7_pack.h"
|
|
|
|
static const driOptionDescription anv_dri_options[] = {
|
|
DRI_CONF_SECTION_PERFORMANCE
|
|
DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
|
|
DRI_CONF_VK_X11_STRICT_IMAGE_COUNT(false)
|
|
DRI_CONF_SECTION_END
|
|
|
|
DRI_CONF_SECTION_DEBUG
|
|
DRI_CONF_ALWAYS_FLUSH_CACHE(false)
|
|
DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST(false)
|
|
DRI_CONF_SECTION_END
|
|
};
|
|
|
|
/* This is probably far to big but it reflects the max size used for messages
|
|
* in OpenGLs KHR_debug.
|
|
*/
|
|
#define MAX_DEBUG_MESSAGE_LENGTH 4096
|
|
|
|
/* Render engine timestamp register */
|
|
#define TIMESTAMP 0x2358
|
|
|
|
/* The "RAW" clocks on Linux are called "FAST" on FreeBSD */
|
|
#if !defined(CLOCK_MONOTONIC_RAW) && defined(CLOCK_MONOTONIC_FAST)
|
|
#define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC_FAST
|
|
#endif
|
|
|
|
static void
|
|
compiler_debug_log(void *data, const char *fmt, ...)
|
|
{
|
|
char str[MAX_DEBUG_MESSAGE_LENGTH];
|
|
struct anv_device *device = (struct anv_device *)data;
|
|
struct anv_instance *instance = device->physical->instance;
|
|
|
|
if (list_is_empty(&instance->debug_report_callbacks.callbacks))
|
|
return;
|
|
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
(void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
|
|
va_end(args);
|
|
|
|
vk_debug_report(&instance->debug_report_callbacks,
|
|
VK_DEBUG_REPORT_DEBUG_BIT_EXT,
|
|
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
|
|
0, 0, 0, "anv", str);
|
|
}
|
|
|
|
static void
|
|
compiler_perf_log(void *data, const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
|
|
if (INTEL_DEBUG & DEBUG_PERF)
|
|
mesa_logd_v(fmt, args);
|
|
|
|
va_end(args);
|
|
}
|
|
|
|
static uint64_t
|
|
anv_compute_heap_size(int fd, uint64_t gtt_size)
|
|
{
|
|
/* Query the total ram from the system */
|
|
uint64_t total_ram;
|
|
if (!os_get_total_physical_memory(&total_ram))
|
|
return 0;
|
|
|
|
/* We don't want to burn too much ram with the GPU. If the user has 4GiB
|
|
* or less, we use at most half. If they have more than 4GiB, we use 3/4.
|
|
*/
|
|
uint64_t available_ram;
|
|
if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
|
|
available_ram = total_ram / 2;
|
|
else
|
|
available_ram = total_ram * 3 / 4;
|
|
|
|
/* We also want to leave some padding for things we allocate in the driver,
|
|
* so don't go over 3/4 of the GTT either.
|
|
*/
|
|
uint64_t available_gtt = gtt_size * 3 / 4;
|
|
|
|
return MIN2(available_ram, available_gtt);
|
|
}
|
|
|
|
static VkResult
|
|
anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
|
|
{
|
|
if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
|
|
&device->gtt_size) == -1) {
|
|
/* If, for whatever reason, we can't actually get the GTT size from the
|
|
* kernel (too old?) fall back to the aperture size.
|
|
*/
|
|
anv_perf_warn(NULL, NULL,
|
|
"Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
|
|
|
|
if (gen_get_aperture_size(fd, &device->gtt_size) == -1) {
|
|
return vk_errorfi(device->instance, NULL,
|
|
VK_ERROR_INITIALIZATION_FAILED,
|
|
"failed to get aperture size: %m");
|
|
}
|
|
}
|
|
|
|
/* We only allow 48-bit addresses with softpin because knowing the actual
|
|
* address is required for the vertex cache flush workaround.
|
|
*/
|
|
device->supports_48bit_addresses = (device->info.gen >= 8) &&
|
|
device->has_softpin &&
|
|
device->gtt_size > (4ULL << 30 /* GiB */);
|
|
|
|
uint64_t heap_size = anv_compute_heap_size(fd, device->gtt_size);
|
|
|
|
if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
|
|
/* When running with an overridden PCI ID, we may get a GTT size from
|
|
* the kernel that is greater than 2 GiB but the execbuf check for 48bit
|
|
* address support can still fail. Just clamp the address space size to
|
|
* 2 GiB if we don't have 48-bit support.
|
|
*/
|
|
mesa_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
|
|
"not support for 48-bit addresses",
|
|
__FILE__, __LINE__);
|
|
heap_size = 2ull << 30;
|
|
}
|
|
|
|
device->memory.heap_count = 1;
|
|
device->memory.heaps[0] = (struct anv_memory_heap) {
|
|
.size = heap_size,
|
|
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
|
|
};
|
|
|
|
uint32_t type_count = 0;
|
|
for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
|
|
if (device->info.has_llc) {
|
|
/* Big core GPUs share LLC with the CPU and thus one memory type can be
|
|
* both cached and coherent at the same time.
|
|
*/
|
|
device->memory.types[type_count++] = (struct anv_memory_type) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
|
|
.heapIndex = heap,
|
|
};
|
|
} else {
|
|
/* The spec requires that we expose a host-visible, coherent memory
|
|
* type, but Atom GPUs don't share LLC. Thus we offer two memory types
|
|
* to give the application a choice between cached, but not coherent and
|
|
* coherent but uncached (WC though).
|
|
*/
|
|
device->memory.types[type_count++] = (struct anv_memory_type) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
.heapIndex = heap,
|
|
};
|
|
device->memory.types[type_count++] = (struct anv_memory_type) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
|
|
.heapIndex = heap,
|
|
};
|
|
}
|
|
}
|
|
device->memory.type_count = type_count;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static VkResult
|
|
anv_physical_device_init_uuids(struct anv_physical_device *device)
|
|
{
|
|
const struct build_id_note *note =
|
|
build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
|
|
if (!note) {
|
|
return vk_errorfi(device->instance, NULL,
|
|
VK_ERROR_INITIALIZATION_FAILED,
|
|
"Failed to find build-id");
|
|
}
|
|
|
|
unsigned build_id_len = build_id_length(note);
|
|
if (build_id_len < 20) {
|
|
return vk_errorfi(device->instance, NULL,
|
|
VK_ERROR_INITIALIZATION_FAILED,
|
|
"build-id too short. It needs to be a SHA");
|
|
}
|
|
|
|
memcpy(device->driver_build_sha1, build_id_data(note), 20);
|
|
|
|
struct mesa_sha1 sha1_ctx;
|
|
uint8_t sha1[20];
|
|
STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
|
|
|
|
/* The pipeline cache UUID is used for determining when a pipeline cache is
|
|
* invalid. It needs both a driver build and the PCI ID of the device.
|
|
*/
|
|
_mesa_sha1_init(&sha1_ctx);
|
|
_mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
|
|
_mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
|
|
sizeof(device->info.chipset_id));
|
|
_mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
|
|
sizeof(device->always_use_bindless));
|
|
_mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
|
|
sizeof(device->has_a64_buffer_access));
|
|
_mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
|
|
sizeof(device->has_bindless_images));
|
|
_mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
|
|
sizeof(device->has_bindless_samplers));
|
|
_mesa_sha1_final(&sha1_ctx, sha1);
|
|
memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
|
|
|
|
gen_uuid_compute_driver_id(device->driver_uuid, &device->info, VK_UUID_SIZE);
|
|
gen_uuid_compute_device_id(device->device_uuid, &device->isl_dev, VK_UUID_SIZE);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static void
|
|
anv_physical_device_init_disk_cache(struct anv_physical_device *device)
|
|
{
|
|
#ifdef ENABLE_SHADER_CACHE
|
|
char renderer[10];
|
|
ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
|
|
device->info.chipset_id);
|
|
assert(len == sizeof(renderer) - 2);
|
|
|
|
char timestamp[41];
|
|
_mesa_sha1_format(timestamp, device->driver_build_sha1);
|
|
|
|
const uint64_t driver_flags =
|
|
brw_get_compiler_config_value(device->compiler);
|
|
device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
|
|
#else
|
|
device->disk_cache = NULL;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
anv_physical_device_free_disk_cache(struct anv_physical_device *device)
|
|
{
|
|
#ifdef ENABLE_SHADER_CACHE
|
|
if (device->disk_cache)
|
|
disk_cache_destroy(device->disk_cache);
|
|
#else
|
|
assert(device->disk_cache == NULL);
|
|
#endif
|
|
}
|
|
|
|
static VkResult
|
|
anv_physical_device_try_create(struct anv_instance *instance,
|
|
drmDevicePtr drm_device,
|
|
struct anv_physical_device **device_out)
|
|
{
|
|
const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
|
|
const char *path = drm_device->nodes[DRM_NODE_RENDER];
|
|
VkResult result;
|
|
int fd;
|
|
int master_fd = -1;
|
|
|
|
brw_process_intel_debug_variable();
|
|
|
|
fd = open(path, O_RDWR | O_CLOEXEC);
|
|
if (fd < 0) {
|
|
if (errno == ENOMEM) {
|
|
return vk_errorfi(instance, NULL, VK_ERROR_OUT_OF_HOST_MEMORY,
|
|
"Unable to open device %s: out of memory", path);
|
|
}
|
|
return vk_errorfi(instance, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
|
|
"Unable to open device %s: %m", path);
|
|
}
|
|
|
|
struct gen_device_info devinfo;
|
|
if (!gen_get_device_info_from_fd(fd, &devinfo)) {
|
|
result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
|
|
goto fail_fd;
|
|
}
|
|
|
|
const char *device_name = gen_get_device_name(devinfo.chipset_id);
|
|
|
|
if (devinfo.is_haswell) {
|
|
mesa_logw("Haswell Vulkan support is incomplete");
|
|
} else if (devinfo.gen == 7 && !devinfo.is_baytrail) {
|
|
mesa_logw("Ivy Bridge Vulkan support is incomplete");
|
|
} else if (devinfo.gen == 7 && devinfo.is_baytrail) {
|
|
mesa_logw("Bay Trail Vulkan support is incomplete");
|
|
} else if (devinfo.gen >= 8 && devinfo.gen <= 11) {
|
|
/* Gen8-11 fully supported */
|
|
} else if (devinfo.gen == 12) {
|
|
mesa_logw("Vulkan is not yet fully supported on gen12");
|
|
} else {
|
|
result = vk_errorfi(instance, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
|
|
"Vulkan not yet supported on %s", device_name);
|
|
goto fail_fd;
|
|
}
|
|
|
|
struct anv_physical_device *device =
|
|
vk_alloc(&instance->alloc, sizeof(*device), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
|
|
if (device == NULL) {
|
|
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto fail_fd;
|
|
}
|
|
|
|
vk_object_base_init(NULL, &device->base, VK_OBJECT_TYPE_PHYSICAL_DEVICE);
|
|
device->instance = instance;
|
|
|
|
assert(strlen(path) < ARRAY_SIZE(device->path));
|
|
snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
|
|
|
|
device->info = devinfo;
|
|
device->name = device_name;
|
|
|
|
device->no_hw = device->info.no_hw;
|
|
if (getenv("INTEL_NO_HW") != NULL)
|
|
device->no_hw = true;
|
|
|
|
device->pci_info.domain = drm_device->businfo.pci->domain;
|
|
device->pci_info.bus = drm_device->businfo.pci->bus;
|
|
device->pci_info.device = drm_device->businfo.pci->dev;
|
|
device->pci_info.function = drm_device->businfo.pci->func;
|
|
|
|
device->cmd_parser_version = -1;
|
|
if (device->info.gen == 7) {
|
|
device->cmd_parser_version =
|
|
anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
|
|
if (device->cmd_parser_version == -1) {
|
|
result = vk_errorfi(device->instance, NULL,
|
|
VK_ERROR_INITIALIZATION_FAILED,
|
|
"failed to get command parser version");
|
|
goto fail_alloc;
|
|
}
|
|
}
|
|
|
|
if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
|
|
result = vk_errorfi(device->instance, NULL,
|
|
VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing gem wait");
|
|
goto fail_alloc;
|
|
}
|
|
|
|
if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
|
|
result = vk_errorfi(device->instance, NULL,
|
|
VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing execbuf2");
|
|
goto fail_alloc;
|
|
}
|
|
|
|
if (!device->info.has_llc &&
|
|
anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
|
|
result = vk_errorfi(device->instance, NULL,
|
|
VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing wc mmap");
|
|
goto fail_alloc;
|
|
}
|
|
|
|
device->has_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
|
|
device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
|
|
device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
|
|
device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
|
|
device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
|
|
device->has_syncobj_wait = device->has_syncobj &&
|
|
anv_gem_supports_syncobj_wait(fd);
|
|
device->has_syncobj_wait_available =
|
|
anv_gem_get_drm_cap(fd, DRM_CAP_SYNCOBJ_TIMELINE) != 0;
|
|
|
|
device->has_context_priority = anv_gem_has_context_priority(fd);
|
|
|
|
result = anv_physical_device_init_heaps(device, fd);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_alloc;
|
|
|
|
device->use_softpin = device->has_softpin &&
|
|
device->supports_48bit_addresses;
|
|
|
|
device->has_context_isolation =
|
|
anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
|
|
|
|
device->has_exec_timeline =
|
|
anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_TIMELINE_FENCES);
|
|
if (env_var_as_boolean("ANV_QUEUE_THREAD_DISABLE", false))
|
|
device->has_exec_timeline = false;
|
|
|
|
device->has_thread_submit =
|
|
device->has_syncobj_wait_available && device->has_exec_timeline;
|
|
|
|
device->always_use_bindless =
|
|
env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
|
|
|
|
device->use_call_secondary =
|
|
device->use_softpin &&
|
|
!env_var_as_boolean("ANV_DISABLE_SECONDARY_CMD_BUFFER_CALLS", false);
|
|
|
|
/* We first got the A64 messages on broadwell and we can only use them if
|
|
* we can pass addresses directly into the shader which requires softpin.
|
|
*/
|
|
device->has_a64_buffer_access = device->info.gen >= 8 &&
|
|
device->use_softpin;
|
|
|
|
/* We first get bindless image access on Skylake and we can only really do
|
|
* it if we don't have any relocations so we need softpin.
|
|
*/
|
|
device->has_bindless_images = device->info.gen >= 9 &&
|
|
device->use_softpin;
|
|
|
|
/* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
|
|
* because it's just a matter of setting the sampler address in the sample
|
|
* message header. However, we've not bothered to wire it up for vec4 so
|
|
* we leave it disabled on gen7.
|
|
*/
|
|
device->has_bindless_samplers = device->info.gen >= 8;
|
|
|
|
device->has_implicit_ccs = device->info.has_aux_map;
|
|
|
|
/* Check if we can read the GPU timestamp register from the CPU */
|
|
uint64_t u64_ignore;
|
|
device->has_reg_timestamp = anv_gem_reg_read(fd, TIMESTAMP | I915_REG_READ_8B_WA,
|
|
&u64_ignore) == 0;
|
|
|
|
uint64_t avail_mem;
|
|
device->has_mem_available = os_get_available_system_memory(&avail_mem);
|
|
|
|
device->always_flush_cache =
|
|
driQueryOptionb(&instance->dri_options, "always_flush_cache");
|
|
|
|
device->has_mmap_offset =
|
|
anv_gem_get_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4;
|
|
|
|
/* GENs prior to 8 do not support EU/Subslice info */
|
|
if (device->info.gen >= 8) {
|
|
device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
|
|
device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
|
|
|
|
/* Without this information, we cannot get the right Braswell
|
|
* brandstrings, and we have to use conservative numbers for GPGPU on
|
|
* many platforms, but otherwise, things will just work.
|
|
*/
|
|
if (device->subslice_total < 1 || device->eu_total < 1) {
|
|
mesa_logw("Kernel 4.1 required to properly query GPU properties");
|
|
}
|
|
} else if (device->info.gen == 7) {
|
|
device->subslice_total = 1 << (device->info.gt - 1);
|
|
}
|
|
|
|
if (device->info.is_cherryview &&
|
|
device->subslice_total > 0 && device->eu_total > 0) {
|
|
/* Logical CS threads = EUs per subslice * num threads per EU */
|
|
uint32_t max_cs_threads =
|
|
device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
|
|
|
|
/* Fuse configurations may give more threads than expected, never less. */
|
|
if (max_cs_threads > device->info.max_cs_threads)
|
|
device->info.max_cs_threads = max_cs_threads;
|
|
}
|
|
|
|
device->compiler = brw_compiler_create(NULL, &device->info);
|
|
if (device->compiler == NULL) {
|
|
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto fail_alloc;
|
|
}
|
|
device->compiler->shader_debug_log = compiler_debug_log;
|
|
device->compiler->shader_perf_log = compiler_perf_log;
|
|
device->compiler->supports_pull_constants = false;
|
|
device->compiler->constant_buffer_0_is_relative =
|
|
device->info.gen < 8 || !device->has_context_isolation;
|
|
device->compiler->supports_shader_constants = true;
|
|
device->compiler->compact_params = false;
|
|
device->compiler->indirect_ubos_use_sampler = true;
|
|
|
|
/* Broadwell PRM says:
|
|
*
|
|
* "Before Gen8, there was a historical configuration control field to
|
|
* swizzle address bit[6] for in X/Y tiling modes. This was set in three
|
|
* different places: TILECTL[1:0], ARB_MODE[5:4], and
|
|
* DISP_ARB_CTL[14:13].
|
|
*
|
|
* For Gen8 and subsequent generations, the swizzle fields are all
|
|
* reserved, and the CPU's memory controller performs all address
|
|
* swizzling modifications."
|
|
*/
|
|
bool swizzled =
|
|
device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
|
|
|
|
isl_device_init(&device->isl_dev, &device->info, swizzled);
|
|
|
|
result = anv_physical_device_init_uuids(device);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_compiler;
|
|
|
|
anv_physical_device_init_disk_cache(device);
|
|
|
|
if (instance->enabled_extensions.KHR_display) {
|
|
master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
|
|
if (master_fd >= 0) {
|
|
/* prod the device with a GETPARAM call which will fail if
|
|
* we don't have permission to even render on this device
|
|
*/
|
|
if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
|
|
close(master_fd);
|
|
master_fd = -1;
|
|
}
|
|
}
|
|
}
|
|
device->master_fd = master_fd;
|
|
|
|
result = anv_init_wsi(device);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_disk_cache;
|
|
|
|
device->perf = anv_get_perf(&device->info, fd);
|
|
|
|
anv_physical_device_get_supported_extensions(device,
|
|
&device->supported_extensions);
|
|
|
|
|
|
device->local_fd = fd;
|
|
|
|
*device_out = device;
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail_disk_cache:
|
|
anv_physical_device_free_disk_cache(device);
|
|
fail_compiler:
|
|
ralloc_free(device->compiler);
|
|
fail_alloc:
|
|
vk_free(&instance->alloc, device);
|
|
fail_fd:
|
|
close(fd);
|
|
if (master_fd != -1)
|
|
close(master_fd);
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
anv_physical_device_destroy(struct anv_physical_device *device)
|
|
{
|
|
anv_finish_wsi(device);
|
|
anv_physical_device_free_disk_cache(device);
|
|
ralloc_free(device->compiler);
|
|
ralloc_free(device->perf);
|
|
close(device->local_fd);
|
|
if (device->master_fd >= 0)
|
|
close(device->master_fd);
|
|
vk_object_base_finish(&device->base);
|
|
vk_free(&device->instance->alloc, device);
|
|
}
|
|
|
|
static void *
|
|
default_alloc_func(void *pUserData, size_t size, size_t align,
|
|
VkSystemAllocationScope allocationScope)
|
|
{
|
|
return malloc(size);
|
|
}
|
|
|
|
static void *
|
|
default_realloc_func(void *pUserData, void *pOriginal, size_t size,
|
|
size_t align, VkSystemAllocationScope allocationScope)
|
|
{
|
|
return realloc(pOriginal, size);
|
|
}
|
|
|
|
static void
|
|
default_free_func(void *pUserData, void *pMemory)
|
|
{
|
|
free(pMemory);
|
|
}
|
|
|
|
static const VkAllocationCallbacks default_alloc = {
|
|
.pUserData = NULL,
|
|
.pfnAllocation = default_alloc_func,
|
|
.pfnReallocation = default_realloc_func,
|
|
.pfnFree = default_free_func,
|
|
};
|
|
|
|
VkResult anv_EnumerateInstanceExtensionProperties(
|
|
const char* pLayerName,
|
|
uint32_t* pPropertyCount,
|
|
VkExtensionProperties* pProperties)
|
|
{
|
|
VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
|
|
|
|
for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
|
|
if (anv_instance_extensions_supported.extensions[i]) {
|
|
vk_outarray_append(&out, prop) {
|
|
*prop = anv_instance_extensions[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
return vk_outarray_status(&out);
|
|
}
|
|
|
|
static void
|
|
anv_init_dri_options(struct anv_instance *instance)
|
|
{
|
|
driParseOptionInfo(&instance->available_dri_options, anv_dri_options,
|
|
ARRAY_SIZE(anv_dri_options));
|
|
driParseConfigFiles(&instance->dri_options,
|
|
&instance->available_dri_options, 0, "anv", NULL,
|
|
instance->app_info.app_name,
|
|
instance->app_info.app_version,
|
|
instance->app_info.engine_name,
|
|
instance->app_info.engine_version);
|
|
}
|
|
|
|
VkResult anv_CreateInstance(
|
|
const VkInstanceCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkInstance* pInstance)
|
|
{
|
|
struct anv_instance *instance;
|
|
VkResult result;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
|
|
|
|
struct anv_instance_extension_table enabled_extensions = {};
|
|
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
|
|
int idx;
|
|
for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
|
|
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
|
|
anv_instance_extensions[idx].extensionName) == 0)
|
|
break;
|
|
}
|
|
|
|
if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
|
|
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
|
|
|
|
if (!anv_instance_extensions_supported.extensions[idx])
|
|
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
|
|
|
|
enabled_extensions.extensions[idx] = true;
|
|
}
|
|
|
|
instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
|
|
if (!instance)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
vk_object_base_init(NULL, &instance->base, VK_OBJECT_TYPE_INSTANCE);
|
|
|
|
if (pAllocator)
|
|
instance->alloc = *pAllocator;
|
|
else
|
|
instance->alloc = default_alloc;
|
|
|
|
instance->app_info = (struct anv_app_info) { .api_version = 0 };
|
|
if (pCreateInfo->pApplicationInfo) {
|
|
const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
|
|
|
|
instance->app_info.app_name =
|
|
vk_strdup(&instance->alloc, app->pApplicationName,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
|
|
instance->app_info.app_version = app->applicationVersion;
|
|
|
|
instance->app_info.engine_name =
|
|
vk_strdup(&instance->alloc, app->pEngineName,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
|
|
instance->app_info.engine_version = app->engineVersion;
|
|
|
|
instance->app_info.api_version = app->apiVersion;
|
|
}
|
|
|
|
if (instance->app_info.api_version == 0)
|
|
instance->app_info.api_version = VK_API_VERSION_1_0;
|
|
|
|
instance->enabled_extensions = enabled_extensions;
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
|
|
/* Vulkan requires that entrypoints for extensions which have not been
|
|
* enabled must not be advertised.
|
|
*/
|
|
if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
|
|
&instance->enabled_extensions)) {
|
|
instance->dispatch.entrypoints[i] = NULL;
|
|
} else {
|
|
instance->dispatch.entrypoints[i] =
|
|
anv_instance_dispatch_table.entrypoints[i];
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(instance->physical_device_dispatch.entrypoints); i++) {
|
|
/* Vulkan requires that entrypoints for extensions which have not been
|
|
* enabled must not be advertised.
|
|
*/
|
|
if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
|
|
&instance->enabled_extensions)) {
|
|
instance->physical_device_dispatch.entrypoints[i] = NULL;
|
|
} else {
|
|
instance->physical_device_dispatch.entrypoints[i] =
|
|
anv_physical_device_dispatch_table.entrypoints[i];
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
|
|
/* Vulkan requires that entrypoints for extensions which have not been
|
|
* enabled must not be advertised.
|
|
*/
|
|
if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
|
|
&instance->enabled_extensions, NULL)) {
|
|
instance->device_dispatch.entrypoints[i] = NULL;
|
|
} else {
|
|
instance->device_dispatch.entrypoints[i] =
|
|
anv_device_dispatch_table.entrypoints[i];
|
|
}
|
|
}
|
|
|
|
instance->physical_devices_enumerated = false;
|
|
list_inithead(&instance->physical_devices);
|
|
|
|
result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
|
|
if (result != VK_SUCCESS) {
|
|
vk_free2(&default_alloc, pAllocator, instance);
|
|
return vk_error(result);
|
|
}
|
|
|
|
instance->pipeline_cache_enabled =
|
|
env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
|
|
|
|
glsl_type_singleton_init_or_ref();
|
|
|
|
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
|
|
|
|
anv_init_dri_options(instance);
|
|
|
|
*pInstance = anv_instance_to_handle(instance);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyInstance(
|
|
VkInstance _instance,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
|
|
if (!instance)
|
|
return;
|
|
|
|
list_for_each_entry_safe(struct anv_physical_device, pdevice,
|
|
&instance->physical_devices, link)
|
|
anv_physical_device_destroy(pdevice);
|
|
|
|
vk_free(&instance->alloc, (char *)instance->app_info.app_name);
|
|
vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
|
|
|
|
VG(VALGRIND_DESTROY_MEMPOOL(instance));
|
|
|
|
vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
|
|
|
|
glsl_type_singleton_decref();
|
|
|
|
driDestroyOptionCache(&instance->dri_options);
|
|
driDestroyOptionInfo(&instance->available_dri_options);
|
|
|
|
vk_object_base_finish(&instance->base);
|
|
vk_free(&instance->alloc, instance);
|
|
}
|
|
|
|
static VkResult
|
|
anv_enumerate_physical_devices(struct anv_instance *instance)
|
|
{
|
|
if (instance->physical_devices_enumerated)
|
|
return VK_SUCCESS;
|
|
|
|
instance->physical_devices_enumerated = true;
|
|
|
|
/* TODO: Check for more devices ? */
|
|
drmDevicePtr devices[8];
|
|
int max_devices;
|
|
|
|
max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
|
|
if (max_devices < 1)
|
|
return VK_SUCCESS;
|
|
|
|
VkResult result = VK_SUCCESS;
|
|
for (unsigned i = 0; i < (unsigned)max_devices; i++) {
|
|
if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
|
|
devices[i]->bustype == DRM_BUS_PCI &&
|
|
devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
|
|
|
|
struct anv_physical_device *pdevice;
|
|
result = anv_physical_device_try_create(instance, devices[i],
|
|
&pdevice);
|
|
/* Incompatible DRM device, skip. */
|
|
if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
|
|
result = VK_SUCCESS;
|
|
continue;
|
|
}
|
|
|
|
/* Error creating the physical device, report the error. */
|
|
if (result != VK_SUCCESS)
|
|
break;
|
|
|
|
list_addtail(&pdevice->link, &instance->physical_devices);
|
|
}
|
|
}
|
|
drmFreeDevices(devices, max_devices);
|
|
|
|
/* If we successfully enumerated any devices, call it success */
|
|
return result;
|
|
}
|
|
|
|
VkResult anv_EnumeratePhysicalDevices(
|
|
VkInstance _instance,
|
|
uint32_t* pPhysicalDeviceCount,
|
|
VkPhysicalDevice* pPhysicalDevices)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
|
|
|
|
VkResult result = anv_enumerate_physical_devices(instance);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
list_for_each_entry(struct anv_physical_device, pdevice,
|
|
&instance->physical_devices, link) {
|
|
vk_outarray_append(&out, i) {
|
|
*i = anv_physical_device_to_handle(pdevice);
|
|
}
|
|
}
|
|
|
|
return vk_outarray_status(&out);
|
|
}
|
|
|
|
VkResult anv_EnumeratePhysicalDeviceGroups(
|
|
VkInstance _instance,
|
|
uint32_t* pPhysicalDeviceGroupCount,
|
|
VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
|
|
pPhysicalDeviceGroupCount);
|
|
|
|
VkResult result = anv_enumerate_physical_devices(instance);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
list_for_each_entry(struct anv_physical_device, pdevice,
|
|
&instance->physical_devices, link) {
|
|
vk_outarray_append(&out, p) {
|
|
p->physicalDeviceCount = 1;
|
|
memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
|
|
p->physicalDevices[0] = anv_physical_device_to_handle(pdevice);
|
|
p->subsetAllocation = false;
|
|
|
|
vk_foreach_struct(ext, p->pNext)
|
|
anv_debug_ignored_stype(ext->sType);
|
|
}
|
|
}
|
|
|
|
return vk_outarray_status(&out);
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceFeatures(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceFeatures* pFeatures)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
|
|
*pFeatures = (VkPhysicalDeviceFeatures) {
|
|
.robustBufferAccess = true,
|
|
.fullDrawIndexUint32 = true,
|
|
.imageCubeArray = true,
|
|
.independentBlend = true,
|
|
.geometryShader = true,
|
|
.tessellationShader = true,
|
|
.sampleRateShading = true,
|
|
.dualSrcBlend = true,
|
|
.logicOp = true,
|
|
.multiDrawIndirect = true,
|
|
.drawIndirectFirstInstance = true,
|
|
.depthClamp = true,
|
|
.depthBiasClamp = true,
|
|
.fillModeNonSolid = true,
|
|
.depthBounds = pdevice->info.gen >= 12,
|
|
.wideLines = true,
|
|
.largePoints = true,
|
|
.alphaToOne = true,
|
|
.multiViewport = true,
|
|
.samplerAnisotropy = true,
|
|
.textureCompressionETC2 = pdevice->info.gen >= 8 ||
|
|
pdevice->info.is_baytrail,
|
|
.textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
|
|
.textureCompressionBC = true,
|
|
.occlusionQueryPrecise = true,
|
|
.pipelineStatisticsQuery = true,
|
|
.fragmentStoresAndAtomics = true,
|
|
.shaderTessellationAndGeometryPointSize = true,
|
|
.shaderImageGatherExtended = true,
|
|
.shaderStorageImageExtendedFormats = true,
|
|
.shaderStorageImageMultisample = false,
|
|
.shaderStorageImageReadWithoutFormat = false,
|
|
.shaderStorageImageWriteWithoutFormat = true,
|
|
.shaderUniformBufferArrayDynamicIndexing = true,
|
|
.shaderSampledImageArrayDynamicIndexing = true,
|
|
.shaderStorageBufferArrayDynamicIndexing = true,
|
|
.shaderStorageImageArrayDynamicIndexing = true,
|
|
.shaderClipDistance = true,
|
|
.shaderCullDistance = true,
|
|
.shaderFloat64 = pdevice->info.gen >= 8 &&
|
|
pdevice->info.has_64bit_float,
|
|
.shaderInt64 = pdevice->info.gen >= 8 &&
|
|
pdevice->info.has_64bit_int,
|
|
.shaderInt16 = pdevice->info.gen >= 8,
|
|
.shaderResourceMinLod = pdevice->info.gen >= 9,
|
|
.variableMultisampleRate = true,
|
|
.inheritedQueries = true,
|
|
};
|
|
|
|
/* We can't do image stores in vec4 shaders */
|
|
pFeatures->vertexPipelineStoresAndAtomics =
|
|
pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
|
|
pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
|
|
|
|
struct anv_app_info *app_info = &pdevice->instance->app_info;
|
|
|
|
/* The new DOOM and Wolfenstein games require depthBounds without
|
|
* checking for it. They seem to run fine without it so just claim it's
|
|
* there and accept the consequences.
|
|
*/
|
|
if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
|
|
pFeatures->depthBounds = true;
|
|
}
|
|
|
|
static void
|
|
anv_get_physical_device_features_1_1(struct anv_physical_device *pdevice,
|
|
VkPhysicalDeviceVulkan11Features *f)
|
|
{
|
|
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
|
|
|
|
f->storageBuffer16BitAccess = pdevice->info.gen >= 8;
|
|
f->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
|
|
f->storagePushConstant16 = pdevice->info.gen >= 8;
|
|
f->storageInputOutput16 = false;
|
|
f->multiview = true;
|
|
f->multiviewGeometryShader = true;
|
|
f->multiviewTessellationShader = true;
|
|
f->variablePointersStorageBuffer = true;
|
|
f->variablePointers = true;
|
|
f->protectedMemory = false;
|
|
f->samplerYcbcrConversion = true;
|
|
f->shaderDrawParameters = true;
|
|
}
|
|
|
|
static void
|
|
anv_get_physical_device_features_1_2(struct anv_physical_device *pdevice,
|
|
VkPhysicalDeviceVulkan12Features *f)
|
|
{
|
|
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
|
|
|
|
f->samplerMirrorClampToEdge = true;
|
|
f->drawIndirectCount = true;
|
|
f->storageBuffer8BitAccess = pdevice->info.gen >= 8;
|
|
f->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
|
|
f->storagePushConstant8 = pdevice->info.gen >= 8;
|
|
f->shaderBufferInt64Atomics = pdevice->info.gen >= 9 &&
|
|
pdevice->use_softpin;
|
|
f->shaderSharedInt64Atomics = false;
|
|
f->shaderFloat16 = pdevice->info.gen >= 8;
|
|
f->shaderInt8 = pdevice->info.gen >= 8;
|
|
|
|
bool descIndexing = pdevice->has_a64_buffer_access &&
|
|
pdevice->has_bindless_images;
|
|
f->descriptorIndexing = descIndexing;
|
|
f->shaderInputAttachmentArrayDynamicIndexing = false;
|
|
f->shaderUniformTexelBufferArrayDynamicIndexing = descIndexing;
|
|
f->shaderStorageTexelBufferArrayDynamicIndexing = descIndexing;
|
|
f->shaderUniformBufferArrayNonUniformIndexing = false;
|
|
f->shaderSampledImageArrayNonUniformIndexing = descIndexing;
|
|
f->shaderStorageBufferArrayNonUniformIndexing = descIndexing;
|
|
f->shaderStorageImageArrayNonUniformIndexing = descIndexing;
|
|
f->shaderInputAttachmentArrayNonUniformIndexing = false;
|
|
f->shaderUniformTexelBufferArrayNonUniformIndexing = descIndexing;
|
|
f->shaderStorageTexelBufferArrayNonUniformIndexing = descIndexing;
|
|
f->descriptorBindingUniformBufferUpdateAfterBind = false;
|
|
f->descriptorBindingSampledImageUpdateAfterBind = descIndexing;
|
|
f->descriptorBindingStorageImageUpdateAfterBind = descIndexing;
|
|
f->descriptorBindingStorageBufferUpdateAfterBind = descIndexing;
|
|
f->descriptorBindingUniformTexelBufferUpdateAfterBind = descIndexing;
|
|
f->descriptorBindingStorageTexelBufferUpdateAfterBind = descIndexing;
|
|
f->descriptorBindingUpdateUnusedWhilePending = descIndexing;
|
|
f->descriptorBindingPartiallyBound = descIndexing;
|
|
f->descriptorBindingVariableDescriptorCount = descIndexing;
|
|
f->runtimeDescriptorArray = descIndexing;
|
|
|
|
f->samplerFilterMinmax = pdevice->info.gen >= 9;
|
|
f->scalarBlockLayout = true;
|
|
f->imagelessFramebuffer = true;
|
|
f->uniformBufferStandardLayout = true;
|
|
f->shaderSubgroupExtendedTypes = true;
|
|
f->separateDepthStencilLayouts = true;
|
|
f->hostQueryReset = true;
|
|
f->timelineSemaphore = true;
|
|
f->bufferDeviceAddress = pdevice->has_a64_buffer_access;
|
|
f->bufferDeviceAddressCaptureReplay = pdevice->has_a64_buffer_access;
|
|
f->bufferDeviceAddressMultiDevice = false;
|
|
f->vulkanMemoryModel = true;
|
|
f->vulkanMemoryModelDeviceScope = true;
|
|
f->vulkanMemoryModelAvailabilityVisibilityChains = true;
|
|
f->shaderOutputViewportIndex = true;
|
|
f->shaderOutputLayer = true;
|
|
f->subgroupBroadcastDynamicId = true;
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceFeatures2(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceFeatures2* pFeatures)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
|
|
|
|
VkPhysicalDeviceVulkan11Features core_1_1 = {
|
|
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
|
|
};
|
|
anv_get_physical_device_features_1_1(pdevice, &core_1_1);
|
|
|
|
VkPhysicalDeviceVulkan12Features core_1_2 = {
|
|
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
|
|
};
|
|
anv_get_physical_device_features_1_2(pdevice, &core_1_2);
|
|
|
|
#define CORE_FEATURE(major, minor, feature) \
|
|
features->feature = core_##major##_##minor.feature
|
|
|
|
|
|
vk_foreach_struct(ext, pFeatures->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_4444_FORMATS_FEATURES_EXT: {
|
|
VkPhysicalDevice4444FormatsFeaturesEXT *features =
|
|
(VkPhysicalDevice4444FormatsFeaturesEXT *)ext;
|
|
features->formatA4R4G4B4 = true;
|
|
features->formatA4B4G4R4 = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
|
|
VkPhysicalDevice8BitStorageFeaturesKHR *features =
|
|
(VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
|
|
CORE_FEATURE(1, 2, storageBuffer8BitAccess);
|
|
CORE_FEATURE(1, 2, uniformAndStorageBuffer8BitAccess);
|
|
CORE_FEATURE(1, 2, storagePushConstant8);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
|
|
VkPhysicalDevice16BitStorageFeatures *features =
|
|
(VkPhysicalDevice16BitStorageFeatures *)ext;
|
|
CORE_FEATURE(1, 1, storageBuffer16BitAccess);
|
|
CORE_FEATURE(1, 1, uniformAndStorageBuffer16BitAccess);
|
|
CORE_FEATURE(1, 1, storagePushConstant16);
|
|
CORE_FEATURE(1, 1, storageInputOutput16);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
|
|
VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
|
|
features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
|
|
features->bufferDeviceAddressCaptureReplay = false;
|
|
features->bufferDeviceAddressMultiDevice = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR: {
|
|
VkPhysicalDeviceBufferDeviceAddressFeaturesKHR *features = (void *)ext;
|
|
CORE_FEATURE(1, 2, bufferDeviceAddress);
|
|
CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
|
|
CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
|
|
VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
|
|
(VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
|
|
features->computeDerivativeGroupQuads = true;
|
|
features->computeDerivativeGroupLinear = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
|
|
VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
|
|
(VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
|
|
features->conditionalRendering = pdevice->info.gen >= 8 ||
|
|
pdevice->info.is_haswell;
|
|
features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
|
|
pdevice->info.is_haswell;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
|
|
VkPhysicalDeviceCustomBorderColorFeaturesEXT *features =
|
|
(VkPhysicalDeviceCustomBorderColorFeaturesEXT *)ext;
|
|
features->customBorderColors = pdevice->info.gen >= 8;
|
|
features->customBorderColorWithoutFormat = pdevice->info.gen >= 8;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
|
|
VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
|
|
(VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
|
|
features->depthClipEnable = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
|
|
VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
|
|
CORE_FEATURE(1, 2, shaderFloat16);
|
|
CORE_FEATURE(1, 2, shaderInt8);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
|
|
VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
|
|
(VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
|
|
features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
|
|
features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
|
|
features->fragmentShaderShadingRateInterlock = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
|
|
VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
|
|
(VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
|
|
CORE_FEATURE(1, 2, hostQueryReset);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
|
|
VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
|
|
(VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
|
|
CORE_FEATURE(1, 2, shaderInputAttachmentArrayDynamicIndexing);
|
|
CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayDynamicIndexing);
|
|
CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayDynamicIndexing);
|
|
CORE_FEATURE(1, 2, shaderUniformBufferArrayNonUniformIndexing);
|
|
CORE_FEATURE(1, 2, shaderSampledImageArrayNonUniformIndexing);
|
|
CORE_FEATURE(1, 2, shaderStorageBufferArrayNonUniformIndexing);
|
|
CORE_FEATURE(1, 2, shaderStorageImageArrayNonUniformIndexing);
|
|
CORE_FEATURE(1, 2, shaderInputAttachmentArrayNonUniformIndexing);
|
|
CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayNonUniformIndexing);
|
|
CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayNonUniformIndexing);
|
|
CORE_FEATURE(1, 2, descriptorBindingUniformBufferUpdateAfterBind);
|
|
CORE_FEATURE(1, 2, descriptorBindingSampledImageUpdateAfterBind);
|
|
CORE_FEATURE(1, 2, descriptorBindingStorageImageUpdateAfterBind);
|
|
CORE_FEATURE(1, 2, descriptorBindingStorageBufferUpdateAfterBind);
|
|
CORE_FEATURE(1, 2, descriptorBindingUniformTexelBufferUpdateAfterBind);
|
|
CORE_FEATURE(1, 2, descriptorBindingStorageTexelBufferUpdateAfterBind);
|
|
CORE_FEATURE(1, 2, descriptorBindingUpdateUnusedWhilePending);
|
|
CORE_FEATURE(1, 2, descriptorBindingPartiallyBound);
|
|
CORE_FEATURE(1, 2, descriptorBindingVariableDescriptorCount);
|
|
CORE_FEATURE(1, 2, runtimeDescriptorArray);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES_EXT: {
|
|
VkPhysicalDeviceImageRobustnessFeaturesEXT *features =
|
|
(VkPhysicalDeviceImageRobustnessFeaturesEXT *)ext;
|
|
features->robustImageAccess = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
|
|
VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
|
|
(VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
|
|
features->indexTypeUint8 = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
|
|
VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
|
|
(VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
|
|
features->inlineUniformBlock = true;
|
|
features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
|
|
VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
|
|
(VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
|
|
features->rectangularLines = true;
|
|
features->bresenhamLines = true;
|
|
/* Support for Smooth lines with MSAA was removed on gen11. From the
|
|
* BSpec section "Multisample ModesState" table for "AA Line Support
|
|
* Requirements":
|
|
*
|
|
* GEN10:BUG:######## NUM_MULTISAMPLES == 1
|
|
*
|
|
* Fortunately, this isn't a case most people care about.
|
|
*/
|
|
features->smoothLines = pdevice->info.gen < 10;
|
|
features->stippledRectangularLines = false;
|
|
features->stippledBresenhamLines = true;
|
|
features->stippledSmoothLines = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
|
|
VkPhysicalDeviceMultiviewFeatures *features =
|
|
(VkPhysicalDeviceMultiviewFeatures *)ext;
|
|
CORE_FEATURE(1, 1, multiview);
|
|
CORE_FEATURE(1, 1, multiviewGeometryShader);
|
|
CORE_FEATURE(1, 1, multiviewTessellationShader);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
|
|
VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
|
|
(VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
|
|
CORE_FEATURE(1, 2, imagelessFramebuffer);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR: {
|
|
VkPhysicalDevicePerformanceQueryFeaturesKHR *feature =
|
|
(VkPhysicalDevicePerformanceQueryFeaturesKHR *)ext;
|
|
feature->performanceCounterQueryPools = true;
|
|
/* HW only supports a single configuration at a time. */
|
|
feature->performanceCounterMultipleQueryPools = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES_EXT: {
|
|
VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT *features =
|
|
(VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT *)ext;
|
|
features->pipelineCreationCacheControl = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
|
|
VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
|
|
(VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
|
|
features->pipelineExecutableInfo = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES_EXT: {
|
|
VkPhysicalDevicePrivateDataFeaturesEXT *features = (void *)ext;
|
|
features->privateData = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
|
|
VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
|
|
CORE_FEATURE(1, 1, protectedMemory);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
|
|
VkPhysicalDeviceRobustness2FeaturesEXT *features = (void *)ext;
|
|
features->robustBufferAccess2 = true;
|
|
features->robustImageAccess2 = true;
|
|
features->nullDescriptor = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
|
|
VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
|
|
(VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
|
|
CORE_FEATURE(1, 1, samplerYcbcrConversion);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
|
|
VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
|
|
(VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
|
|
CORE_FEATURE(1, 2, scalarBlockLayout);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
|
|
VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
|
|
(VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
|
|
CORE_FEATURE(1, 2, separateDepthStencilLayouts);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT: {
|
|
VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *features = (void *)ext;
|
|
features->shaderBufferFloat32Atomics = true;
|
|
features->shaderBufferFloat32AtomicAdd = false;
|
|
features->shaderBufferFloat64Atomics = false;
|
|
features->shaderBufferFloat64AtomicAdd = false;
|
|
features->shaderSharedFloat32Atomics = true;
|
|
features->shaderSharedFloat32AtomicAdd = false;
|
|
features->shaderSharedFloat64Atomics = false;
|
|
features->shaderSharedFloat64AtomicAdd = false;
|
|
features->shaderImageFloat32Atomics = true;
|
|
features->shaderImageFloat32AtomicAdd = false;
|
|
features->sparseImageFloat32Atomics = false;
|
|
features->sparseImageFloat32AtomicAdd = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
|
|
VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
|
|
CORE_FEATURE(1, 2, shaderBufferInt64Atomics);
|
|
CORE_FEATURE(1, 2, shaderSharedInt64Atomics);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
|
|
VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
|
|
features->shaderDemoteToHelperInvocation = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
|
|
VkPhysicalDeviceShaderClockFeaturesKHR *features =
|
|
(VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
|
|
features->shaderSubgroupClock = true;
|
|
features->shaderDeviceClock = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
|
|
VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
|
|
CORE_FEATURE(1, 1, shaderDrawParameters);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_FUNCTIONS_2_FEATURES_INTEL: {
|
|
VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *features =
|
|
(VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *)ext;
|
|
features->shaderIntegerFunctions2 = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
|
|
VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
|
|
(VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
|
|
CORE_FEATURE(1, 2, shaderSubgroupExtendedTypes);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
|
|
VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
|
|
(VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
|
|
features->subgroupSizeControl = true;
|
|
features->computeFullSubgroups = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
|
|
VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
|
|
(VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
|
|
features->texelBufferAlignment = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
|
|
VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
|
|
(VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
|
|
CORE_FEATURE(1, 2, timelineSemaphore);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
|
|
VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
|
|
CORE_FEATURE(1, 1, variablePointersStorageBuffer);
|
|
CORE_FEATURE(1, 1, variablePointers);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
|
|
VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
|
|
(VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
|
|
features->transformFeedback = true;
|
|
features->geometryStreams = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
|
|
VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
|
|
(VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
|
|
CORE_FEATURE(1, 2, uniformBufferStandardLayout);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
|
|
VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
|
|
(VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
|
|
features->vertexAttributeInstanceRateDivisor = true;
|
|
features->vertexAttributeInstanceRateZeroDivisor = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES:
|
|
anv_get_physical_device_features_1_1(pdevice, (void *)ext);
|
|
break;
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES:
|
|
anv_get_physical_device_features_1_2(pdevice, (void *)ext);
|
|
break;
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
|
|
VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
|
|
CORE_FEATURE(1, 2, vulkanMemoryModel);
|
|
CORE_FEATURE(1, 2, vulkanMemoryModelDeviceScope);
|
|
CORE_FEATURE(1, 2, vulkanMemoryModelAvailabilityVisibilityChains);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
|
|
VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
|
|
(VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
|
|
features->ycbcrImageArrays = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_FEATURES_EXT: {
|
|
VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *features =
|
|
(VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *)ext;
|
|
features->extendedDynamicState = true;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#undef CORE_FEATURE
|
|
}
|
|
|
|
#define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
|
|
|
|
#define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
|
|
#define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
|
|
|
|
#define MAX_CUSTOM_BORDER_COLORS 4096
|
|
|
|
void anv_GetPhysicalDeviceProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceProperties* pProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
const struct gen_device_info *devinfo = &pdevice->info;
|
|
|
|
/* See assertions made when programming the buffer surface state. */
|
|
const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
|
|
(1ul << 30) : (1ul << 27);
|
|
|
|
const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
|
|
const uint32_t max_textures =
|
|
pdevice->has_bindless_images ? UINT16_MAX : 128;
|
|
const uint32_t max_samplers =
|
|
pdevice->has_bindless_samplers ? UINT16_MAX :
|
|
(devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
|
|
const uint32_t max_images =
|
|
pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
|
|
|
|
/* If we can use bindless for everything, claim a high per-stage limit,
|
|
* otherwise use the binding table size, minus the slots reserved for
|
|
* render targets and one slot for the descriptor buffer. */
|
|
const uint32_t max_per_stage =
|
|
pdevice->has_bindless_images && pdevice->has_a64_buffer_access
|
|
? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
|
|
|
|
/* Limit max_threads to 64 for the GPGPU_WALKER command */
|
|
const uint32_t max_workgroup_size = 32 * MIN2(64, devinfo->max_cs_threads);
|
|
|
|
VkSampleCountFlags sample_counts =
|
|
isl_device_get_sample_counts(&pdevice->isl_dev);
|
|
|
|
|
|
VkPhysicalDeviceLimits limits = {
|
|
.maxImageDimension1D = (1 << 14),
|
|
.maxImageDimension2D = (1 << 14),
|
|
.maxImageDimension3D = (1 << 11),
|
|
.maxImageDimensionCube = (1 << 14),
|
|
.maxImageArrayLayers = (1 << 11),
|
|
.maxTexelBufferElements = 128 * 1024 * 1024,
|
|
.maxUniformBufferRange = (1ul << 27),
|
|
.maxStorageBufferRange = max_raw_buffer_sz,
|
|
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
|
|
.maxMemoryAllocationCount = UINT32_MAX,
|
|
.maxSamplerAllocationCount = 64 * 1024,
|
|
.bufferImageGranularity = 64, /* A cache line */
|
|
.sparseAddressSpaceSize = 0,
|
|
.maxBoundDescriptorSets = MAX_SETS,
|
|
.maxPerStageDescriptorSamplers = max_samplers,
|
|
.maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
|
|
.maxPerStageDescriptorStorageBuffers = max_ssbos,
|
|
.maxPerStageDescriptorSampledImages = max_textures,
|
|
.maxPerStageDescriptorStorageImages = max_images,
|
|
.maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
|
|
.maxPerStageResources = max_per_stage,
|
|
.maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
|
|
.maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
|
|
.maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
|
|
.maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
|
|
.maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
|
|
.maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
|
|
.maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
|
|
.maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
|
|
.maxVertexInputAttributes = MAX_VBS,
|
|
.maxVertexInputBindings = MAX_VBS,
|
|
.maxVertexInputAttributeOffset = 2047,
|
|
.maxVertexInputBindingStride = 2048,
|
|
.maxVertexOutputComponents = 128,
|
|
.maxTessellationGenerationLevel = 64,
|
|
.maxTessellationPatchSize = 32,
|
|
.maxTessellationControlPerVertexInputComponents = 128,
|
|
.maxTessellationControlPerVertexOutputComponents = 128,
|
|
.maxTessellationControlPerPatchOutputComponents = 128,
|
|
.maxTessellationControlTotalOutputComponents = 2048,
|
|
.maxTessellationEvaluationInputComponents = 128,
|
|
.maxTessellationEvaluationOutputComponents = 128,
|
|
.maxGeometryShaderInvocations = 32,
|
|
.maxGeometryInputComponents = 64,
|
|
.maxGeometryOutputComponents = 128,
|
|
.maxGeometryOutputVertices = 256,
|
|
.maxGeometryTotalOutputComponents = 1024,
|
|
.maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
|
|
.maxFragmentOutputAttachments = 8,
|
|
.maxFragmentDualSrcAttachments = 1,
|
|
.maxFragmentCombinedOutputResources = 8,
|
|
.maxComputeSharedMemorySize = 64 * 1024,
|
|
.maxComputeWorkGroupCount = { 65535, 65535, 65535 },
|
|
.maxComputeWorkGroupInvocations = max_workgroup_size,
|
|
.maxComputeWorkGroupSize = {
|
|
max_workgroup_size,
|
|
max_workgroup_size,
|
|
max_workgroup_size,
|
|
},
|
|
.subPixelPrecisionBits = 8,
|
|
.subTexelPrecisionBits = 8,
|
|
.mipmapPrecisionBits = 8,
|
|
.maxDrawIndexedIndexValue = UINT32_MAX,
|
|
.maxDrawIndirectCount = UINT32_MAX,
|
|
.maxSamplerLodBias = 16,
|
|
.maxSamplerAnisotropy = 16,
|
|
.maxViewports = MAX_VIEWPORTS,
|
|
.maxViewportDimensions = { (1 << 14), (1 << 14) },
|
|
.viewportBoundsRange = { INT16_MIN, INT16_MAX },
|
|
.viewportSubPixelBits = 13, /* We take a float? */
|
|
.minMemoryMapAlignment = 4096, /* A page */
|
|
/* The dataport requires texel alignment so we need to assume a worst
|
|
* case of R32G32B32A32 which is 16 bytes.
|
|
*/
|
|
.minTexelBufferOffsetAlignment = 16,
|
|
.minUniformBufferOffsetAlignment = ANV_UBO_ALIGNMENT,
|
|
.minStorageBufferOffsetAlignment = ANV_SSBO_ALIGNMENT,
|
|
.minTexelOffset = -8,
|
|
.maxTexelOffset = 7,
|
|
.minTexelGatherOffset = -32,
|
|
.maxTexelGatherOffset = 31,
|
|
.minInterpolationOffset = -0.5,
|
|
.maxInterpolationOffset = 0.4375,
|
|
.subPixelInterpolationOffsetBits = 4,
|
|
.maxFramebufferWidth = (1 << 14),
|
|
.maxFramebufferHeight = (1 << 14),
|
|
.maxFramebufferLayers = (1 << 11),
|
|
.framebufferColorSampleCounts = sample_counts,
|
|
.framebufferDepthSampleCounts = sample_counts,
|
|
.framebufferStencilSampleCounts = sample_counts,
|
|
.framebufferNoAttachmentsSampleCounts = sample_counts,
|
|
.maxColorAttachments = MAX_RTS,
|
|
.sampledImageColorSampleCounts = sample_counts,
|
|
.sampledImageIntegerSampleCounts = sample_counts,
|
|
.sampledImageDepthSampleCounts = sample_counts,
|
|
.sampledImageStencilSampleCounts = sample_counts,
|
|
.storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
|
|
.maxSampleMaskWords = 1,
|
|
.timestampComputeAndGraphics = true,
|
|
.timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
|
|
.maxClipDistances = 8,
|
|
.maxCullDistances = 8,
|
|
.maxCombinedClipAndCullDistances = 8,
|
|
.discreteQueuePriorities = 2,
|
|
.pointSizeRange = { 0.125, 255.875 },
|
|
.lineWidthRange = {
|
|
0.0,
|
|
(devinfo->gen >= 9 || devinfo->is_cherryview) ?
|
|
2047.9921875 : 7.9921875,
|
|
},
|
|
.pointSizeGranularity = (1.0 / 8.0),
|
|
.lineWidthGranularity = (1.0 / 128.0),
|
|
.strictLines = false,
|
|
.standardSampleLocations = true,
|
|
.optimalBufferCopyOffsetAlignment = 128,
|
|
.optimalBufferCopyRowPitchAlignment = 128,
|
|
.nonCoherentAtomSize = 64,
|
|
};
|
|
|
|
*pProperties = (VkPhysicalDeviceProperties) {
|
|
.apiVersion = anv_physical_device_api_version(pdevice),
|
|
.driverVersion = vk_get_driver_version(),
|
|
.vendorID = 0x8086,
|
|
.deviceID = pdevice->info.chipset_id,
|
|
.deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
|
|
.limits = limits,
|
|
.sparseProperties = {0}, /* Broadwell doesn't do sparse. */
|
|
};
|
|
|
|
snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
|
|
"%s", pdevice->name);
|
|
memcpy(pProperties->pipelineCacheUUID,
|
|
pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
|
|
}
|
|
|
|
static void
|
|
anv_get_physical_device_properties_1_1(struct anv_physical_device *pdevice,
|
|
VkPhysicalDeviceVulkan11Properties *p)
|
|
{
|
|
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
|
|
|
|
memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
|
|
memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
|
|
memset(p->deviceLUID, 0, VK_LUID_SIZE);
|
|
p->deviceNodeMask = 0;
|
|
p->deviceLUIDValid = false;
|
|
|
|
p->subgroupSize = BRW_SUBGROUP_SIZE;
|
|
VkShaderStageFlags scalar_stages = 0;
|
|
for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
|
|
if (pdevice->compiler->scalar_stage[stage])
|
|
scalar_stages |= mesa_to_vk_shader_stage(stage);
|
|
}
|
|
p->subgroupSupportedStages = scalar_stages;
|
|
p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
|
|
VK_SUBGROUP_FEATURE_VOTE_BIT |
|
|
VK_SUBGROUP_FEATURE_BALLOT_BIT |
|
|
VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
|
|
VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
|
|
VK_SUBGROUP_FEATURE_QUAD_BIT;
|
|
if (pdevice->info.gen >= 8) {
|
|
/* TODO: There's no technical reason why these can't be made to
|
|
* work on gen7 but they don't at the moment so it's best to leave
|
|
* the feature disabled than enabled and broken.
|
|
*/
|
|
p->subgroupSupportedOperations |= VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
|
|
VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
|
|
}
|
|
p->subgroupQuadOperationsInAllStages = pdevice->info.gen >= 8;
|
|
|
|
p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
|
|
p->maxMultiviewViewCount = 16;
|
|
p->maxMultiviewInstanceIndex = UINT32_MAX / 16;
|
|
p->protectedNoFault = false;
|
|
/* This value doesn't matter for us today as our per-stage descriptors are
|
|
* the real limit.
|
|
*/
|
|
p->maxPerSetDescriptors = 1024;
|
|
p->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
|
|
}
|
|
|
|
static void
|
|
anv_get_physical_device_properties_1_2(struct anv_physical_device *pdevice,
|
|
VkPhysicalDeviceVulkan12Properties *p)
|
|
{
|
|
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
|
|
|
|
p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
|
|
memset(p->driverName, 0, sizeof(p->driverName));
|
|
snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
|
|
"Intel open-source Mesa driver");
|
|
memset(p->driverInfo, 0, sizeof(p->driverInfo));
|
|
snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
|
|
"Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
|
|
p->conformanceVersion = (VkConformanceVersionKHR) {
|
|
.major = 1,
|
|
.minor = 2,
|
|
.subminor = 0,
|
|
.patch = 0,
|
|
};
|
|
|
|
p->denormBehaviorIndependence =
|
|
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
|
|
p->roundingModeIndependence =
|
|
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
|
|
|
|
/* Broadwell does not support HF denorms and there are restrictions
|
|
* other gens. According to Kabylake's PRM:
|
|
*
|
|
* "math - Extended Math Function
|
|
* [...]
|
|
* Restriction : Half-float denorms are always retained."
|
|
*/
|
|
p->shaderDenormFlushToZeroFloat16 = false;
|
|
p->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
|
|
p->shaderRoundingModeRTEFloat16 = true;
|
|
p->shaderRoundingModeRTZFloat16 = true;
|
|
p->shaderSignedZeroInfNanPreserveFloat16 = true;
|
|
|
|
p->shaderDenormFlushToZeroFloat32 = true;
|
|
p->shaderDenormPreserveFloat32 = true;
|
|
p->shaderRoundingModeRTEFloat32 = true;
|
|
p->shaderRoundingModeRTZFloat32 = true;
|
|
p->shaderSignedZeroInfNanPreserveFloat32 = true;
|
|
|
|
p->shaderDenormFlushToZeroFloat64 = true;
|
|
p->shaderDenormPreserveFloat64 = true;
|
|
p->shaderRoundingModeRTEFloat64 = true;
|
|
p->shaderRoundingModeRTZFloat64 = true;
|
|
p->shaderSignedZeroInfNanPreserveFloat64 = true;
|
|
|
|
/* It's a bit hard to exactly map our implementation to the limits
|
|
* described by Vulkan. The bindless surface handle in the extended
|
|
* message descriptors is 20 bits and it's an index into the table of
|
|
* RENDER_SURFACE_STATE structs that starts at bindless surface base
|
|
* address. This means that we can have at must 1M surface states
|
|
* allocated at any given time. Since most image views take two
|
|
* descriptors, this means we have a limit of about 500K image views.
|
|
*
|
|
* However, since we allocate surface states at vkCreateImageView time,
|
|
* this means our limit is actually something on the order of 500K image
|
|
* views allocated at any time. The actual limit describe by Vulkan, on
|
|
* the other hand, is a limit of how many you can have in a descriptor set.
|
|
* Assuming anyone using 1M descriptors will be using the same image view
|
|
* twice a bunch of times (or a bunch of null descriptors), we can safely
|
|
* advertise a larger limit here.
|
|
*/
|
|
const unsigned max_bindless_views = 1 << 20;
|
|
p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
|
|
p->shaderUniformBufferArrayNonUniformIndexingNative = false;
|
|
p->shaderSampledImageArrayNonUniformIndexingNative = false;
|
|
p->shaderStorageBufferArrayNonUniformIndexingNative = true;
|
|
p->shaderStorageImageArrayNonUniformIndexingNative = false;
|
|
p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
|
|
p->robustBufferAccessUpdateAfterBind = true;
|
|
p->quadDivergentImplicitLod = false;
|
|
p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
|
|
p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
|
|
p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
|
|
p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
|
|
p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
|
|
p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
|
|
p->maxPerStageUpdateAfterBindResources = UINT32_MAX;
|
|
p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
|
|
p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
|
|
p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
|
|
p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
|
|
p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
|
|
p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
|
|
p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
|
|
p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
|
|
|
|
/* We support all of the depth resolve modes */
|
|
p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
|
|
VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
|
|
VK_RESOLVE_MODE_MIN_BIT_KHR |
|
|
VK_RESOLVE_MODE_MAX_BIT_KHR;
|
|
/* Average doesn't make sense for stencil so we don't support that */
|
|
p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
|
|
if (pdevice->info.gen >= 8) {
|
|
/* The advanced stencil resolve modes currently require stencil
|
|
* sampling be supported by the hardware.
|
|
*/
|
|
p->supportedStencilResolveModes |= VK_RESOLVE_MODE_MIN_BIT_KHR |
|
|
VK_RESOLVE_MODE_MAX_BIT_KHR;
|
|
}
|
|
p->independentResolveNone = true;
|
|
p->independentResolve = true;
|
|
|
|
p->filterMinmaxSingleComponentFormats = pdevice->info.gen >= 9;
|
|
p->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
|
|
|
|
p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
|
|
|
|
p->framebufferIntegerColorSampleCounts =
|
|
isl_device_get_sample_counts(&pdevice->isl_dev);
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceProperties2(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceProperties2* pProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
|
|
anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
|
|
|
|
VkPhysicalDeviceVulkan11Properties core_1_1 = {
|
|
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
|
|
};
|
|
anv_get_physical_device_properties_1_1(pdevice, &core_1_1);
|
|
|
|
VkPhysicalDeviceVulkan12Properties core_1_2 = {
|
|
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
|
|
};
|
|
anv_get_physical_device_properties_1_2(pdevice, &core_1_2);
|
|
|
|
#define CORE_RENAMED_PROPERTY(major, minor, ext_property, core_property) \
|
|
memcpy(&properties->ext_property, &core_##major##_##minor.core_property, \
|
|
sizeof(core_##major##_##minor.core_property))
|
|
|
|
#define CORE_PROPERTY(major, minor, property) \
|
|
CORE_RENAMED_PROPERTY(major, minor, property, property)
|
|
|
|
vk_foreach_struct(ext, pProperties->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceCustomBorderColorPropertiesEXT *properties =
|
|
(VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
|
|
properties->maxCustomBorderColorSamplers = MAX_CUSTOM_BORDER_COLORS;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
|
|
VkPhysicalDeviceDepthStencilResolvePropertiesKHR *properties =
|
|
(VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
|
|
CORE_PROPERTY(1, 2, supportedDepthResolveModes);
|
|
CORE_PROPERTY(1, 2, supportedStencilResolveModes);
|
|
CORE_PROPERTY(1, 2, independentResolveNone);
|
|
CORE_PROPERTY(1, 2, independentResolve);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceDescriptorIndexingPropertiesEXT *properties =
|
|
(VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
|
|
CORE_PROPERTY(1, 2, maxUpdateAfterBindDescriptorsInAllPools);
|
|
CORE_PROPERTY(1, 2, shaderUniformBufferArrayNonUniformIndexingNative);
|
|
CORE_PROPERTY(1, 2, shaderSampledImageArrayNonUniformIndexingNative);
|
|
CORE_PROPERTY(1, 2, shaderStorageBufferArrayNonUniformIndexingNative);
|
|
CORE_PROPERTY(1, 2, shaderStorageImageArrayNonUniformIndexingNative);
|
|
CORE_PROPERTY(1, 2, shaderInputAttachmentArrayNonUniformIndexingNative);
|
|
CORE_PROPERTY(1, 2, robustBufferAccessUpdateAfterBind);
|
|
CORE_PROPERTY(1, 2, quadDivergentImplicitLod);
|
|
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSamplers);
|
|
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindUniformBuffers);
|
|
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageBuffers);
|
|
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSampledImages);
|
|
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageImages);
|
|
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindInputAttachments);
|
|
CORE_PROPERTY(1, 2, maxPerStageUpdateAfterBindResources);
|
|
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSamplers);
|
|
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffers);
|
|
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic);
|
|
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffers);
|
|
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic);
|
|
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSampledImages);
|
|
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageImages);
|
|
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindInputAttachments);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
|
|
VkPhysicalDeviceDriverPropertiesKHR *properties =
|
|
(VkPhysicalDeviceDriverPropertiesKHR *) ext;
|
|
CORE_PROPERTY(1, 2, driverID);
|
|
CORE_PROPERTY(1, 2, driverName);
|
|
CORE_PROPERTY(1, 2, driverInfo);
|
|
CORE_PROPERTY(1, 2, conformanceVersion);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
|
|
(VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
|
|
/* Userptr needs page aligned memory. */
|
|
props->minImportedHostPointerAlignment = 4096;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
|
|
VkPhysicalDeviceIDProperties *properties =
|
|
(VkPhysicalDeviceIDProperties *)ext;
|
|
CORE_PROPERTY(1, 1, deviceUUID);
|
|
CORE_PROPERTY(1, 1, driverUUID);
|
|
CORE_PROPERTY(1, 1, deviceLUID);
|
|
CORE_PROPERTY(1, 1, deviceLUIDValid);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
|
|
(VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
|
|
props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
|
|
props->maxPerStageDescriptorInlineUniformBlocks =
|
|
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
|
|
props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
|
|
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
|
|
props->maxDescriptorSetInlineUniformBlocks =
|
|
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
|
|
props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
|
|
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
|
|
(VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
|
|
/* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
|
|
* Sampling Rules - Legacy Mode", it says the following:
|
|
*
|
|
* "Note that the device divides a pixel into a 16x16 array of
|
|
* subpixels, referenced by their upper left corners."
|
|
*
|
|
* This is the only known reference in the PRMs to the subpixel
|
|
* precision of line rasterization and a "16x16 array of subpixels"
|
|
* implies 4 subpixel precision bits. Empirical testing has shown
|
|
* that 4 subpixel precision bits applies to all line rasterization
|
|
* types.
|
|
*/
|
|
props->lineSubPixelPrecisionBits = 4;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
|
|
VkPhysicalDeviceMaintenance3Properties *properties =
|
|
(VkPhysicalDeviceMaintenance3Properties *)ext;
|
|
/* This value doesn't matter for us today as our per-stage
|
|
* descriptors are the real limit.
|
|
*/
|
|
CORE_PROPERTY(1, 1, maxPerSetDescriptors);
|
|
CORE_PROPERTY(1, 1, maxMemoryAllocationSize);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
|
|
VkPhysicalDeviceMultiviewProperties *properties =
|
|
(VkPhysicalDeviceMultiviewProperties *)ext;
|
|
CORE_PROPERTY(1, 1, maxMultiviewViewCount);
|
|
CORE_PROPERTY(1, 1, maxMultiviewInstanceIndex);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
|
|
VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
|
|
(VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
|
|
properties->pciDomain = pdevice->pci_info.domain;
|
|
properties->pciBus = pdevice->pci_info.bus;
|
|
properties->pciDevice = pdevice->pci_info.device;
|
|
properties->pciFunction = pdevice->pci_info.function;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR: {
|
|
VkPhysicalDevicePerformanceQueryPropertiesKHR *properties =
|
|
(VkPhysicalDevicePerformanceQueryPropertiesKHR *)ext;
|
|
/* We could support this by spawning a shader to do the equation
|
|
* normalization.
|
|
*/
|
|
properties->allowCommandBufferQueryCopies = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
|
|
VkPhysicalDevicePointClippingProperties *properties =
|
|
(VkPhysicalDevicePointClippingProperties *) ext;
|
|
CORE_PROPERTY(1, 1, pointClippingBehavior);
|
|
break;
|
|
}
|
|
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wswitch"
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
|
|
VkPhysicalDevicePresentationPropertiesANDROID *props =
|
|
(VkPhysicalDevicePresentationPropertiesANDROID *)ext;
|
|
props->sharedImage = VK_FALSE;
|
|
break;
|
|
}
|
|
#pragma GCC diagnostic pop
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
|
|
VkPhysicalDeviceProtectedMemoryProperties *properties =
|
|
(VkPhysicalDeviceProtectedMemoryProperties *)ext;
|
|
CORE_PROPERTY(1, 1, protectedNoFault);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
|
|
VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
|
|
(VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
|
|
properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceRobustness2PropertiesEXT *properties = (void *)ext;
|
|
properties->robustStorageBufferAccessSizeAlignment =
|
|
ANV_SSBO_BOUNDS_CHECK_ALIGNMENT;
|
|
properties->robustUniformBufferAccessSizeAlignment =
|
|
ANV_UBO_ALIGNMENT;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
|
|
(VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
|
|
CORE_PROPERTY(1, 2, filterMinmaxImageComponentMapping);
|
|
CORE_PROPERTY(1, 2, filterMinmaxSingleComponentFormats);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
|
|
VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
|
|
CORE_PROPERTY(1, 1, subgroupSize);
|
|
CORE_RENAMED_PROPERTY(1, 1, supportedStages,
|
|
subgroupSupportedStages);
|
|
CORE_RENAMED_PROPERTY(1, 1, supportedOperations,
|
|
subgroupSupportedOperations);
|
|
CORE_RENAMED_PROPERTY(1, 1, quadOperationsInAllStages,
|
|
subgroupQuadOperationsInAllStages);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
|
|
(VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
|
|
STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
|
|
props->minSubgroupSize = 8;
|
|
props->maxSubgroupSize = 32;
|
|
props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
|
|
props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
|
|
break;
|
|
}
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
|
|
VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
|
|
CORE_PROPERTY(1, 2, denormBehaviorIndependence);
|
|
CORE_PROPERTY(1, 2, roundingModeIndependence);
|
|
CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat16);
|
|
CORE_PROPERTY(1, 2, shaderDenormPreserveFloat16);
|
|
CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat16);
|
|
CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat16);
|
|
CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat16);
|
|
CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat32);
|
|
CORE_PROPERTY(1, 2, shaderDenormPreserveFloat32);
|
|
CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat32);
|
|
CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat32);
|
|
CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat32);
|
|
CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat64);
|
|
CORE_PROPERTY(1, 2, shaderDenormPreserveFloat64);
|
|
CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat64);
|
|
CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat64);
|
|
CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat64);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
|
|
(VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
|
|
|
|
/* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
|
|
* Base Address:
|
|
*
|
|
* "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
|
|
* specifies the base address of the first element of the surface,
|
|
* computed in software by adding the surface base address to the
|
|
* byte offset of the element in the buffer. The base address must
|
|
* be aligned to element size."
|
|
*
|
|
* The typed dataport messages require that things be texel aligned.
|
|
* Otherwise, we may just load/store the wrong data or, in the worst
|
|
* case, there may be hangs.
|
|
*/
|
|
props->storageTexelBufferOffsetAlignmentBytes = 16;
|
|
props->storageTexelBufferOffsetSingleTexelAlignment = true;
|
|
|
|
/* The sampler, however, is much more forgiving and it can handle
|
|
* arbitrary byte alignment for linear and buffer surfaces. It's
|
|
* hard to find a good PRM citation for this but years of empirical
|
|
* experience demonstrate that this is true.
|
|
*/
|
|
props->uniformTexelBufferOffsetAlignmentBytes = 1;
|
|
props->uniformTexelBufferOffsetSingleTexelAlignment = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
|
|
VkPhysicalDeviceTimelineSemaphorePropertiesKHR *properties =
|
|
(VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
|
|
CORE_PROPERTY(1, 2, maxTimelineSemaphoreValueDifference);
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
|
|
(VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
|
|
|
|
props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
|
|
props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
|
|
props->maxTransformFeedbackBufferSize = (1ull << 32);
|
|
props->maxTransformFeedbackStreamDataSize = 128 * 4;
|
|
props->maxTransformFeedbackBufferDataSize = 128 * 4;
|
|
props->maxTransformFeedbackBufferDataStride = 2048;
|
|
props->transformFeedbackQueries = true;
|
|
props->transformFeedbackStreamsLinesTriangles = false;
|
|
props->transformFeedbackRasterizationStreamSelect = false;
|
|
/* This requires MI_MATH */
|
|
props->transformFeedbackDraw = pdevice->info.is_haswell ||
|
|
pdevice->info.gen >= 8;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
|
|
(VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
|
|
/* We have to restrict this a bit for multiview */
|
|
props->maxVertexAttribDivisor = UINT32_MAX / 16;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES:
|
|
anv_get_physical_device_properties_1_1(pdevice, (void *)ext);
|
|
break;
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES:
|
|
anv_get_physical_device_properties_1_2(pdevice, (void *)ext);
|
|
break;
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#undef CORE_RENAMED_PROPERTY
|
|
#undef CORE_PROPERTY
|
|
}
|
|
|
|
/* We support exactly one queue family. */
|
|
static const VkQueueFamilyProperties
|
|
anv_queue_family_properties = {
|
|
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
|
|
VK_QUEUE_COMPUTE_BIT |
|
|
VK_QUEUE_TRANSFER_BIT,
|
|
.queueCount = 1,
|
|
.timestampValidBits = 36, /* XXX: Real value here */
|
|
.minImageTransferGranularity = { 1, 1, 1 },
|
|
};
|
|
|
|
void anv_GetPhysicalDeviceQueueFamilyProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
uint32_t* pCount,
|
|
VkQueueFamilyProperties* pQueueFamilyProperties)
|
|
{
|
|
VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
|
|
|
|
vk_outarray_append(&out, p) {
|
|
*p = anv_queue_family_properties;
|
|
}
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceQueueFamilyProperties2(
|
|
VkPhysicalDevice physicalDevice,
|
|
uint32_t* pQueueFamilyPropertyCount,
|
|
VkQueueFamilyProperties2* pQueueFamilyProperties)
|
|
{
|
|
|
|
VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
|
|
|
|
vk_outarray_append(&out, p) {
|
|
p->queueFamilyProperties = anv_queue_family_properties;
|
|
|
|
vk_foreach_struct(s, p->pNext) {
|
|
anv_debug_ignored_stype(s->sType);
|
|
}
|
|
}
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceMemoryProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceMemoryProperties* pMemoryProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
|
|
|
pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
|
|
for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
|
|
pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
|
|
.propertyFlags = physical_device->memory.types[i].propertyFlags,
|
|
.heapIndex = physical_device->memory.types[i].heapIndex,
|
|
};
|
|
}
|
|
|
|
pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
|
|
for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
|
|
pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
|
|
.size = physical_device->memory.heaps[i].size,
|
|
.flags = physical_device->memory.heaps[i].flags,
|
|
};
|
|
}
|
|
}
|
|
|
|
static void
|
|
anv_get_memory_budget(VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
|
|
uint64_t sys_available;
|
|
ASSERTED bool has_available_memory =
|
|
os_get_available_system_memory(&sys_available);
|
|
assert(has_available_memory);
|
|
|
|
VkDeviceSize total_heaps_size = 0;
|
|
for (size_t i = 0; i < device->memory.heap_count; i++)
|
|
total_heaps_size += device->memory.heaps[i].size;
|
|
|
|
for (size_t i = 0; i < device->memory.heap_count; i++) {
|
|
VkDeviceSize heap_size = device->memory.heaps[i].size;
|
|
VkDeviceSize heap_used = device->memory.heaps[i].used;
|
|
VkDeviceSize heap_budget;
|
|
|
|
double heap_proportion = (double) heap_size / total_heaps_size;
|
|
VkDeviceSize sys_available_prop = sys_available * heap_proportion;
|
|
|
|
/*
|
|
* Let's not incite the app to starve the system: report at most 90% of
|
|
* available system memory.
|
|
*/
|
|
uint64_t heap_available = sys_available_prop * 9 / 10;
|
|
heap_budget = MIN2(heap_size, heap_used + heap_available);
|
|
|
|
/*
|
|
* Round down to the nearest MB
|
|
*/
|
|
heap_budget &= ~((1ull << 20) - 1);
|
|
|
|
/*
|
|
* The heapBudget value must be non-zero for array elements less than
|
|
* VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
|
|
* value must be less than or equal to VkMemoryHeap::size for each heap.
|
|
*/
|
|
assert(0 < heap_budget && heap_budget <= heap_size);
|
|
|
|
memoryBudget->heapUsage[i] = heap_used;
|
|
memoryBudget->heapBudget[i] = heap_budget;
|
|
}
|
|
|
|
/* The heapBudget and heapUsage values must be zero for array elements
|
|
* greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
|
|
*/
|
|
for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
|
|
memoryBudget->heapBudget[i] = 0;
|
|
memoryBudget->heapUsage[i] = 0;
|
|
}
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceMemoryProperties2(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
|
|
{
|
|
anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
|
|
&pMemoryProperties->memoryProperties);
|
|
|
|
vk_foreach_struct(ext, pMemoryProperties->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
|
|
anv_get_memory_budget(physicalDevice, (void*)ext);
|
|
break;
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
anv_GetDeviceGroupPeerMemoryFeatures(
|
|
VkDevice device,
|
|
uint32_t heapIndex,
|
|
uint32_t localDeviceIndex,
|
|
uint32_t remoteDeviceIndex,
|
|
VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
|
|
{
|
|
assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
|
|
*pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
|
|
VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
|
|
VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
|
|
VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
|
|
}
|
|
|
|
PFN_vkVoidFunction anv_GetInstanceProcAddr(
|
|
VkInstance _instance,
|
|
const char* pName)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
|
|
/* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
|
|
* when we have to return valid function pointers, NULL, or it's left
|
|
* undefined. See the table for exact details.
|
|
*/
|
|
if (pName == NULL)
|
|
return NULL;
|
|
|
|
#define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
|
|
if (strcmp(pName, "vk" #entrypoint) == 0) \
|
|
return (PFN_vkVoidFunction)anv_##entrypoint
|
|
|
|
LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
|
|
LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
|
|
LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
|
|
LOOKUP_ANV_ENTRYPOINT(CreateInstance);
|
|
|
|
/* GetInstanceProcAddr() can also be called with a NULL instance.
|
|
* See https://gitlab.khronos.org/vulkan/vulkan/issues/2057
|
|
*/
|
|
LOOKUP_ANV_ENTRYPOINT(GetInstanceProcAddr);
|
|
|
|
#undef LOOKUP_ANV_ENTRYPOINT
|
|
|
|
if (instance == NULL)
|
|
return NULL;
|
|
|
|
int idx = anv_get_instance_entrypoint_index(pName);
|
|
if (idx >= 0)
|
|
return instance->dispatch.entrypoints[idx];
|
|
|
|
idx = anv_get_physical_device_entrypoint_index(pName);
|
|
if (idx >= 0)
|
|
return instance->physical_device_dispatch.entrypoints[idx];
|
|
|
|
idx = anv_get_device_entrypoint_index(pName);
|
|
if (idx >= 0)
|
|
return instance->device_dispatch.entrypoints[idx];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* With version 1+ of the loader interface the ICD should expose
|
|
* vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
|
|
*/
|
|
PUBLIC
|
|
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
|
|
VkInstance instance,
|
|
const char* pName);
|
|
|
|
PUBLIC
|
|
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
|
|
VkInstance instance,
|
|
const char* pName)
|
|
{
|
|
return anv_GetInstanceProcAddr(instance, pName);
|
|
}
|
|
|
|
PFN_vkVoidFunction anv_GetDeviceProcAddr(
|
|
VkDevice _device,
|
|
const char* pName)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (!device || !pName)
|
|
return NULL;
|
|
|
|
int idx = anv_get_device_entrypoint_index(pName);
|
|
if (idx < 0)
|
|
return NULL;
|
|
|
|
return device->dispatch.entrypoints[idx];
|
|
}
|
|
|
|
/* With version 4+ of the loader interface the ICD should expose
|
|
* vk_icdGetPhysicalDeviceProcAddr()
|
|
*/
|
|
PUBLIC
|
|
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
|
|
VkInstance _instance,
|
|
const char* pName);
|
|
|
|
PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
|
|
VkInstance _instance,
|
|
const char* pName)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
|
|
if (!pName || !instance)
|
|
return NULL;
|
|
|
|
int idx = anv_get_physical_device_entrypoint_index(pName);
|
|
if (idx < 0)
|
|
return NULL;
|
|
|
|
return instance->physical_device_dispatch.entrypoints[idx];
|
|
}
|
|
|
|
|
|
VkResult
|
|
anv_CreateDebugReportCallbackEXT(VkInstance _instance,
|
|
const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkDebugReportCallbackEXT* pCallback)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
return vk_create_debug_report_callback(&instance->debug_report_callbacks,
|
|
pCreateInfo, pAllocator, &instance->alloc,
|
|
pCallback);
|
|
}
|
|
|
|
void
|
|
anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
|
|
VkDebugReportCallbackEXT _callback,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
|
|
_callback, pAllocator, &instance->alloc);
|
|
}
|
|
|
|
void
|
|
anv_DebugReportMessageEXT(VkInstance _instance,
|
|
VkDebugReportFlagsEXT flags,
|
|
VkDebugReportObjectTypeEXT objectType,
|
|
uint64_t object,
|
|
size_t location,
|
|
int32_t messageCode,
|
|
const char* pLayerPrefix,
|
|
const char* pMessage)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
|
|
object, location, messageCode, pLayerPrefix, pMessage);
|
|
}
|
|
|
|
static struct anv_state
|
|
anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
|
|
{
|
|
struct anv_state state;
|
|
|
|
state = anv_state_pool_alloc(pool, size, align);
|
|
memcpy(state.map, p, size);
|
|
|
|
return state;
|
|
}
|
|
|
|
static void
|
|
anv_device_init_border_colors(struct anv_device *device)
|
|
{
|
|
if (device->info.is_haswell) {
|
|
static const struct hsw_border_color border_colors[] = {
|
|
[VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
|
|
[VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
|
|
[VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
|
|
[VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
|
|
[VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
|
|
[VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
|
|
};
|
|
|
|
device->border_colors =
|
|
anv_state_pool_emit_data(&device->dynamic_state_pool,
|
|
sizeof(border_colors), 512, border_colors);
|
|
} else {
|
|
static const struct gen8_border_color border_colors[] = {
|
|
[VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
|
|
[VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
|
|
[VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
|
|
[VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
|
|
[VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
|
|
[VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
|
|
};
|
|
|
|
device->border_colors =
|
|
anv_state_pool_emit_data(&device->dynamic_state_pool,
|
|
sizeof(border_colors), 64, border_colors);
|
|
}
|
|
}
|
|
|
|
static VkResult
|
|
anv_device_init_trivial_batch(struct anv_device *device)
|
|
{
|
|
VkResult result = anv_device_alloc_bo(device, 4096,
|
|
ANV_BO_ALLOC_MAPPED,
|
|
0 /* explicit_address */,
|
|
&device->trivial_batch_bo);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
struct anv_batch batch = {
|
|
.start = device->trivial_batch_bo->map,
|
|
.next = device->trivial_batch_bo->map,
|
|
.end = device->trivial_batch_bo->map + 4096,
|
|
};
|
|
|
|
anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
|
|
anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
|
|
|
|
if (!device->info.has_llc)
|
|
gen_clflush_range(batch.start, batch.next - batch.start);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_EnumerateDeviceExtensionProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
const char* pLayerName,
|
|
uint32_t* pPropertyCount,
|
|
VkExtensionProperties* pProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
|
|
VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
|
|
|
|
for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
|
|
if (device->supported_extensions.extensions[i]) {
|
|
vk_outarray_append(&out, prop) {
|
|
*prop = anv_device_extensions[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
return vk_outarray_status(&out);
|
|
}
|
|
|
|
static int
|
|
vk_priority_to_gen(int priority)
|
|
{
|
|
switch (priority) {
|
|
case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
|
|
return GEN_CONTEXT_LOW_PRIORITY;
|
|
case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
|
|
return GEN_CONTEXT_MEDIUM_PRIORITY;
|
|
case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
|
|
return GEN_CONTEXT_HIGH_PRIORITY;
|
|
case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
|
|
return GEN_CONTEXT_REALTIME_PRIORITY;
|
|
default:
|
|
unreachable("Invalid priority");
|
|
}
|
|
}
|
|
|
|
static VkResult
|
|
anv_device_init_hiz_clear_value_bo(struct anv_device *device)
|
|
{
|
|
VkResult result = anv_device_alloc_bo(device, 4096,
|
|
ANV_BO_ALLOC_MAPPED,
|
|
0 /* explicit_address */,
|
|
&device->hiz_clear_bo);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
union isl_color_value hiz_clear = { .u32 = { 0, } };
|
|
hiz_clear.f32[0] = ANV_HZ_FC_VAL;
|
|
|
|
memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
|
|
|
|
if (!device->info.has_llc)
|
|
gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static bool
|
|
get_bo_from_pool(struct gen_batch_decode_bo *ret,
|
|
struct anv_block_pool *pool,
|
|
uint64_t address)
|
|
{
|
|
anv_block_pool_foreach_bo(bo, pool) {
|
|
uint64_t bo_address = gen_48b_address(bo->offset);
|
|
if (address >= bo_address && address < (bo_address + bo->size)) {
|
|
*ret = (struct gen_batch_decode_bo) {
|
|
.addr = bo_address,
|
|
.size = bo->size,
|
|
.map = bo->map,
|
|
};
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Finding a buffer for batch decoding */
|
|
static struct gen_batch_decode_bo
|
|
decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
|
|
{
|
|
struct anv_device *device = v_batch;
|
|
struct gen_batch_decode_bo ret_bo = {};
|
|
|
|
assert(ppgtt);
|
|
|
|
if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
|
|
return ret_bo;
|
|
if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
|
|
return ret_bo;
|
|
if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
|
|
return ret_bo;
|
|
if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
|
|
return ret_bo;
|
|
|
|
if (!device->cmd_buffer_being_decoded)
|
|
return (struct gen_batch_decode_bo) { };
|
|
|
|
struct anv_batch_bo **bo;
|
|
|
|
u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
|
|
/* The decoder zeroes out the top 16 bits, so we need to as well */
|
|
uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
|
|
|
|
if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
|
|
return (struct gen_batch_decode_bo) {
|
|
.addr = bo_address,
|
|
.size = (*bo)->bo->size,
|
|
.map = (*bo)->bo->map,
|
|
};
|
|
}
|
|
}
|
|
|
|
return (struct gen_batch_decode_bo) { };
|
|
}
|
|
|
|
struct gen_aux_map_buffer {
|
|
struct gen_buffer base;
|
|
struct anv_state state;
|
|
};
|
|
|
|
static struct gen_buffer *
|
|
gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
|
|
{
|
|
struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
struct anv_device *device = (struct anv_device*)driver_ctx;
|
|
assert(device->physical->supports_48bit_addresses &&
|
|
device->physical->use_softpin);
|
|
|
|
struct anv_state_pool *pool = &device->dynamic_state_pool;
|
|
buf->state = anv_state_pool_alloc(pool, size, size);
|
|
|
|
buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
|
|
buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
|
|
buf->base.map = buf->state.map;
|
|
buf->base.driver_bo = &buf->state;
|
|
return &buf->base;
|
|
}
|
|
|
|
static void
|
|
gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
|
|
{
|
|
struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
|
|
struct anv_device *device = (struct anv_device*)driver_ctx;
|
|
struct anv_state_pool *pool = &device->dynamic_state_pool;
|
|
anv_state_pool_free(pool, buf->state);
|
|
free(buf);
|
|
}
|
|
|
|
static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
|
|
.alloc = gen_aux_map_buffer_alloc,
|
|
.free = gen_aux_map_buffer_free,
|
|
};
|
|
|
|
static VkResult
|
|
check_physical_device_features(VkPhysicalDevice physicalDevice,
|
|
const VkPhysicalDeviceFeatures *features)
|
|
{
|
|
VkPhysicalDeviceFeatures supported_features;
|
|
anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
|
|
VkBool32 *supported_feature = (VkBool32 *)&supported_features;
|
|
VkBool32 *enabled_feature = (VkBool32 *)features;
|
|
unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
|
|
for (uint32_t i = 0; i < num_features; i++) {
|
|
if (enabled_feature[i] && !supported_feature[i])
|
|
return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_CreateDevice(
|
|
VkPhysicalDevice physicalDevice,
|
|
const VkDeviceCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkDevice* pDevice)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
|
VkResult result;
|
|
struct anv_device *device;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
|
|
|
|
struct anv_device_extension_table enabled_extensions = { };
|
|
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
|
|
int idx;
|
|
for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
|
|
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
|
|
anv_device_extensions[idx].extensionName) == 0)
|
|
break;
|
|
}
|
|
|
|
if (idx >= ANV_DEVICE_EXTENSION_COUNT)
|
|
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
|
|
|
|
if (!physical_device->supported_extensions.extensions[idx])
|
|
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
|
|
|
|
enabled_extensions.extensions[idx] = true;
|
|
}
|
|
|
|
/* Check enabled features */
|
|
bool robust_buffer_access = false;
|
|
if (pCreateInfo->pEnabledFeatures) {
|
|
result = check_physical_device_features(physicalDevice,
|
|
pCreateInfo->pEnabledFeatures);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
|
|
robust_buffer_access = true;
|
|
}
|
|
|
|
vk_foreach_struct_const(ext, pCreateInfo->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
|
|
const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
|
|
result = check_physical_device_features(physicalDevice,
|
|
&features->features);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
if (features->features.robustBufferAccess)
|
|
robust_buffer_access = true;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
/* Don't warn */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check requested queues and fail if we are requested to create any
|
|
* queues with flags we don't support.
|
|
*/
|
|
assert(pCreateInfo->queueCreateInfoCount > 0);
|
|
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
|
|
if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
|
|
return vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
}
|
|
|
|
/* Check if client specified queue priority. */
|
|
const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
|
|
vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
|
|
DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
|
|
|
|
VkQueueGlobalPriorityEXT priority =
|
|
queue_priority ? queue_priority->globalPriority :
|
|
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
|
|
|
|
device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
|
|
sizeof(*device), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
|
|
if (!device)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
vk_device_init(&device->vk, pCreateInfo,
|
|
&physical_device->instance->alloc, pAllocator);
|
|
|
|
if (INTEL_DEBUG & DEBUG_BATCH) {
|
|
const unsigned decode_flags =
|
|
GEN_BATCH_DECODE_FULL |
|
|
((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
|
|
GEN_BATCH_DECODE_OFFSETS |
|
|
GEN_BATCH_DECODE_FLOATS;
|
|
|
|
gen_batch_decode_ctx_init(&device->decoder_ctx,
|
|
&physical_device->info,
|
|
stderr, decode_flags, NULL,
|
|
decode_get_bo, NULL, device);
|
|
}
|
|
|
|
device->physical = physical_device;
|
|
device->no_hw = physical_device->no_hw;
|
|
device->_lost = false;
|
|
|
|
/* XXX(chadv): Can we dup() physicalDevice->fd here? */
|
|
device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
|
|
if (device->fd == -1) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_device;
|
|
}
|
|
|
|
device->context_id = anv_gem_create_context(device);
|
|
if (device->context_id == -1) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_fd;
|
|
}
|
|
|
|
device->has_thread_submit = physical_device->has_thread_submit;
|
|
|
|
result = anv_queue_init(device, &device->queue);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_context_id;
|
|
|
|
if (physical_device->use_softpin) {
|
|
if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_queue;
|
|
}
|
|
|
|
/* keep the page with address zero out of the allocator */
|
|
util_vma_heap_init(&device->vma_lo,
|
|
LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
|
|
|
|
util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS,
|
|
CLIENT_VISIBLE_HEAP_SIZE);
|
|
|
|
/* Leave the last 4GiB out of the high vma range, so that no state
|
|
* base address + size can overflow 48 bits. For more information see
|
|
* the comment about Wa32bitGeneralStateOffset in anv_allocator.c
|
|
*/
|
|
util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
|
|
physical_device->gtt_size - (1ull << 32) -
|
|
HIGH_HEAP_MIN_ADDRESS);
|
|
}
|
|
|
|
list_inithead(&device->memory_objects);
|
|
|
|
/* As per spec, the driver implementation may deny requests to acquire
|
|
* a priority above the default priority (MEDIUM) if the caller does not
|
|
* have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
|
|
* is returned.
|
|
*/
|
|
if (physical_device->has_context_priority) {
|
|
int err = anv_gem_set_context_param(device->fd, device->context_id,
|
|
I915_CONTEXT_PARAM_PRIORITY,
|
|
vk_priority_to_gen(priority));
|
|
if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
|
|
result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
|
|
goto fail_vmas;
|
|
}
|
|
}
|
|
|
|
device->info = physical_device->info;
|
|
device->isl_dev = physical_device->isl_dev;
|
|
|
|
/* On Broadwell and later, we can use batch chaining to more efficiently
|
|
* implement growing command buffers. Prior to Haswell, the kernel
|
|
* command parser gets in the way and we have to fall back to growing
|
|
* the batch.
|
|
*/
|
|
device->can_chain_batches = device->info.gen >= 8;
|
|
|
|
device->robust_buffer_access = robust_buffer_access;
|
|
device->enabled_extensions = enabled_extensions;
|
|
|
|
const struct anv_instance *instance = physical_device->instance;
|
|
for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
|
|
/* Vulkan requires that entrypoints for extensions which have not been
|
|
* enabled must not be advertised.
|
|
*/
|
|
if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
|
|
&instance->enabled_extensions,
|
|
&device->enabled_extensions)) {
|
|
device->dispatch.entrypoints[i] = NULL;
|
|
} else {
|
|
device->dispatch.entrypoints[i] =
|
|
anv_resolve_device_entrypoint(&device->info, i);
|
|
}
|
|
}
|
|
|
|
if (pthread_mutex_init(&device->mutex, NULL) != 0) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_queue;
|
|
}
|
|
|
|
pthread_condattr_t condattr;
|
|
if (pthread_condattr_init(&condattr) != 0) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_mutex;
|
|
}
|
|
if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
|
|
pthread_condattr_destroy(&condattr);
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_mutex;
|
|
}
|
|
if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
|
|
pthread_condattr_destroy(&condattr);
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_mutex;
|
|
}
|
|
pthread_condattr_destroy(&condattr);
|
|
|
|
result = anv_bo_cache_init(&device->bo_cache);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_queue_cond;
|
|
|
|
anv_bo_pool_init(&device->batch_bo_pool, device);
|
|
|
|
result = anv_state_pool_init(&device->dynamic_state_pool, device,
|
|
DYNAMIC_STATE_POOL_MIN_ADDRESS, 0, 16384);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_batch_bo_pool;
|
|
|
|
if (device->info.gen >= 8) {
|
|
/* The border color pointer is limited to 24 bits, so we need to make
|
|
* sure that any such color used at any point in the program doesn't
|
|
* exceed that limit.
|
|
* We achieve that by reserving all the custom border colors we support
|
|
* right off the bat, so they are close to the base address.
|
|
*/
|
|
anv_state_reserved_pool_init(&device->custom_border_colors,
|
|
&device->dynamic_state_pool,
|
|
MAX_CUSTOM_BORDER_COLORS,
|
|
sizeof(struct gen8_border_color), 64);
|
|
}
|
|
|
|
result = anv_state_pool_init(&device->instruction_state_pool, device,
|
|
INSTRUCTION_STATE_POOL_MIN_ADDRESS, 0, 16384);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_dynamic_state_pool;
|
|
|
|
result = anv_state_pool_init(&device->surface_state_pool, device,
|
|
SURFACE_STATE_POOL_MIN_ADDRESS, 0, 4096);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_instruction_state_pool;
|
|
|
|
if (physical_device->use_softpin) {
|
|
int64_t bt_pool_offset = (int64_t)BINDING_TABLE_POOL_MIN_ADDRESS -
|
|
(int64_t)SURFACE_STATE_POOL_MIN_ADDRESS;
|
|
assert(INT32_MIN < bt_pool_offset && bt_pool_offset < 0);
|
|
result = anv_state_pool_init(&device->binding_table_pool, device,
|
|
SURFACE_STATE_POOL_MIN_ADDRESS,
|
|
bt_pool_offset, 4096);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_surface_state_pool;
|
|
}
|
|
|
|
if (device->info.has_aux_map) {
|
|
device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
|
|
&physical_device->info);
|
|
if (!device->aux_map_ctx)
|
|
goto fail_binding_table_pool;
|
|
}
|
|
|
|
result = anv_device_alloc_bo(device, 4096,
|
|
ANV_BO_ALLOC_CAPTURE | ANV_BO_ALLOC_MAPPED /* flags */,
|
|
0 /* explicit_address */,
|
|
&device->workaround_bo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_surface_aux_map_pool;
|
|
|
|
device->workaround_address = (struct anv_address) {
|
|
.bo = device->workaround_bo,
|
|
.offset = align_u32(
|
|
intel_debug_write_identifiers(device->workaround_bo->map,
|
|
device->workaround_bo->size,
|
|
"Anv") + 8, 8),
|
|
};
|
|
|
|
device->debug_frame_desc =
|
|
intel_debug_get_identifier_block(device->workaround_bo->map,
|
|
device->workaround_bo->size,
|
|
GEN_DEBUG_BLOCK_TYPE_FRAME);
|
|
|
|
result = anv_device_init_trivial_batch(device);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_workaround_bo;
|
|
|
|
/* Allocate a null surface state at surface state offset 0. This makes
|
|
* NULL descriptor handling trivial because we can just memset structures
|
|
* to zero and they have a valid descriptor.
|
|
*/
|
|
device->null_surface_state =
|
|
anv_state_pool_alloc(&device->surface_state_pool,
|
|
device->isl_dev.ss.size,
|
|
device->isl_dev.ss.align);
|
|
isl_null_fill_state(&device->isl_dev, device->null_surface_state.map,
|
|
isl_extent3d(1, 1, 1) /* This shouldn't matter */);
|
|
assert(device->null_surface_state.offset == 0);
|
|
|
|
if (device->info.gen >= 10) {
|
|
result = anv_device_init_hiz_clear_value_bo(device);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_trivial_batch_bo;
|
|
}
|
|
|
|
anv_scratch_pool_init(device, &device->scratch_pool);
|
|
|
|
switch (device->info.gen) {
|
|
case 7:
|
|
if (!device->info.is_haswell)
|
|
result = gen7_init_device_state(device);
|
|
else
|
|
result = gen75_init_device_state(device);
|
|
break;
|
|
case 8:
|
|
result = gen8_init_device_state(device);
|
|
break;
|
|
case 9:
|
|
result = gen9_init_device_state(device);
|
|
break;
|
|
case 11:
|
|
result = gen11_init_device_state(device);
|
|
break;
|
|
case 12:
|
|
result = gen12_init_device_state(device);
|
|
break;
|
|
default:
|
|
/* Shouldn't get here as we don't create physical devices for any other
|
|
* gens. */
|
|
unreachable("unhandled gen");
|
|
}
|
|
if (result != VK_SUCCESS)
|
|
goto fail_clear_value_bo;
|
|
|
|
anv_pipeline_cache_init(&device->default_pipeline_cache, device,
|
|
true /* cache_enabled */, false /* external_sync */);
|
|
|
|
anv_device_init_blorp(device);
|
|
|
|
anv_device_init_border_colors(device);
|
|
|
|
anv_device_perf_init(device);
|
|
|
|
*pDevice = anv_device_to_handle(device);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail_clear_value_bo:
|
|
if (device->info.gen >= 10)
|
|
anv_device_release_bo(device, device->hiz_clear_bo);
|
|
anv_scratch_pool_finish(device, &device->scratch_pool);
|
|
fail_trivial_batch_bo:
|
|
anv_device_release_bo(device, device->trivial_batch_bo);
|
|
fail_workaround_bo:
|
|
anv_device_release_bo(device, device->workaround_bo);
|
|
fail_surface_aux_map_pool:
|
|
if (device->info.has_aux_map) {
|
|
gen_aux_map_finish(device->aux_map_ctx);
|
|
device->aux_map_ctx = NULL;
|
|
}
|
|
fail_binding_table_pool:
|
|
if (physical_device->use_softpin)
|
|
anv_state_pool_finish(&device->binding_table_pool);
|
|
fail_surface_state_pool:
|
|
anv_state_pool_finish(&device->surface_state_pool);
|
|
fail_instruction_state_pool:
|
|
anv_state_pool_finish(&device->instruction_state_pool);
|
|
fail_dynamic_state_pool:
|
|
if (device->info.gen >= 8)
|
|
anv_state_reserved_pool_finish(&device->custom_border_colors);
|
|
anv_state_pool_finish(&device->dynamic_state_pool);
|
|
fail_batch_bo_pool:
|
|
anv_bo_pool_finish(&device->batch_bo_pool);
|
|
anv_bo_cache_finish(&device->bo_cache);
|
|
fail_queue_cond:
|
|
pthread_cond_destroy(&device->queue_submit);
|
|
fail_mutex:
|
|
pthread_mutex_destroy(&device->mutex);
|
|
fail_vmas:
|
|
if (physical_device->use_softpin) {
|
|
util_vma_heap_finish(&device->vma_hi);
|
|
util_vma_heap_finish(&device->vma_cva);
|
|
util_vma_heap_finish(&device->vma_lo);
|
|
}
|
|
fail_queue:
|
|
anv_queue_finish(&device->queue);
|
|
fail_context_id:
|
|
anv_gem_destroy_context(device, device->context_id);
|
|
fail_fd:
|
|
close(device->fd);
|
|
fail_device:
|
|
vk_free(&device->vk.alloc, device);
|
|
|
|
return result;
|
|
}
|
|
|
|
void anv_DestroyDevice(
|
|
VkDevice _device,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (!device)
|
|
return;
|
|
|
|
anv_queue_finish(&device->queue);
|
|
|
|
anv_device_finish_blorp(device);
|
|
|
|
anv_pipeline_cache_finish(&device->default_pipeline_cache);
|
|
|
|
#ifdef HAVE_VALGRIND
|
|
/* We only need to free these to prevent valgrind errors. The backing
|
|
* BO will go away in a couple of lines so we don't actually leak.
|
|
*/
|
|
if (device->info.gen >= 8)
|
|
anv_state_reserved_pool_finish(&device->custom_border_colors);
|
|
anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
|
|
anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
|
|
#endif
|
|
|
|
anv_scratch_pool_finish(device, &device->scratch_pool);
|
|
|
|
anv_device_release_bo(device, device->workaround_bo);
|
|
anv_device_release_bo(device, device->trivial_batch_bo);
|
|
if (device->info.gen >= 10)
|
|
anv_device_release_bo(device, device->hiz_clear_bo);
|
|
|
|
if (device->info.has_aux_map) {
|
|
gen_aux_map_finish(device->aux_map_ctx);
|
|
device->aux_map_ctx = NULL;
|
|
}
|
|
|
|
if (device->physical->use_softpin)
|
|
anv_state_pool_finish(&device->binding_table_pool);
|
|
anv_state_pool_finish(&device->surface_state_pool);
|
|
anv_state_pool_finish(&device->instruction_state_pool);
|
|
anv_state_pool_finish(&device->dynamic_state_pool);
|
|
|
|
anv_bo_pool_finish(&device->batch_bo_pool);
|
|
|
|
anv_bo_cache_finish(&device->bo_cache);
|
|
|
|
if (device->physical->use_softpin) {
|
|
util_vma_heap_finish(&device->vma_hi);
|
|
util_vma_heap_finish(&device->vma_cva);
|
|
util_vma_heap_finish(&device->vma_lo);
|
|
}
|
|
|
|
pthread_cond_destroy(&device->queue_submit);
|
|
pthread_mutex_destroy(&device->mutex);
|
|
|
|
anv_gem_destroy_context(device, device->context_id);
|
|
|
|
if (INTEL_DEBUG & DEBUG_BATCH)
|
|
gen_batch_decode_ctx_finish(&device->decoder_ctx);
|
|
|
|
close(device->fd);
|
|
|
|
vk_device_finish(&device->vk);
|
|
vk_free(&device->vk.alloc, device);
|
|
}
|
|
|
|
VkResult anv_EnumerateInstanceLayerProperties(
|
|
uint32_t* pPropertyCount,
|
|
VkLayerProperties* pProperties)
|
|
{
|
|
if (pProperties == NULL) {
|
|
*pPropertyCount = 0;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/* None supported at this time */
|
|
return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
|
|
}
|
|
|
|
VkResult anv_EnumerateDeviceLayerProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
uint32_t* pPropertyCount,
|
|
VkLayerProperties* pProperties)
|
|
{
|
|
if (pProperties == NULL) {
|
|
*pPropertyCount = 0;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/* None supported at this time */
|
|
return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
|
|
}
|
|
|
|
void anv_GetDeviceQueue(
|
|
VkDevice _device,
|
|
uint32_t queueNodeIndex,
|
|
uint32_t queueIndex,
|
|
VkQueue* pQueue)
|
|
{
|
|
const VkDeviceQueueInfo2 info = {
|
|
.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
|
|
.pNext = NULL,
|
|
.flags = 0,
|
|
.queueFamilyIndex = queueNodeIndex,
|
|
.queueIndex = queueIndex,
|
|
};
|
|
|
|
anv_GetDeviceQueue2(_device, &info, pQueue);
|
|
}
|
|
|
|
void anv_GetDeviceQueue2(
|
|
VkDevice _device,
|
|
const VkDeviceQueueInfo2* pQueueInfo,
|
|
VkQueue* pQueue)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
assert(pQueueInfo->queueIndex == 0);
|
|
|
|
if (pQueueInfo->flags == device->queue.flags)
|
|
*pQueue = anv_queue_to_handle(&device->queue);
|
|
else
|
|
*pQueue = NULL;
|
|
}
|
|
|
|
void
|
|
_anv_device_report_lost(struct anv_device *device)
|
|
{
|
|
assert(p_atomic_read(&device->_lost) > 0);
|
|
|
|
device->lost_reported = true;
|
|
|
|
struct anv_queue *queue = &device->queue;
|
|
|
|
__vk_errorf(device->physical->instance, device,
|
|
VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
|
|
VK_ERROR_DEVICE_LOST,
|
|
queue->error_file, queue->error_line,
|
|
"%s", queue->error_msg);
|
|
}
|
|
|
|
VkResult
|
|
_anv_device_set_lost(struct anv_device *device,
|
|
const char *file, int line,
|
|
const char *msg, ...)
|
|
{
|
|
VkResult err;
|
|
va_list ap;
|
|
|
|
if (p_atomic_read(&device->_lost) > 0)
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
p_atomic_inc(&device->_lost);
|
|
device->lost_reported = true;
|
|
|
|
va_start(ap, msg);
|
|
err = __vk_errorv(device->physical->instance, device,
|
|
VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
|
|
VK_ERROR_DEVICE_LOST, file, line, msg, ap);
|
|
va_end(ap);
|
|
|
|
if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
|
|
abort();
|
|
|
|
return err;
|
|
}
|
|
|
|
VkResult
|
|
_anv_queue_set_lost(struct anv_queue *queue,
|
|
const char *file, int line,
|
|
const char *msg, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
if (queue->lost)
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
queue->lost = true;
|
|
|
|
queue->error_file = file;
|
|
queue->error_line = line;
|
|
va_start(ap, msg);
|
|
vsnprintf(queue->error_msg, sizeof(queue->error_msg),
|
|
msg, ap);
|
|
va_end(ap);
|
|
|
|
p_atomic_inc(&queue->device->_lost);
|
|
|
|
if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
|
|
abort();
|
|
|
|
return VK_ERROR_DEVICE_LOST;
|
|
}
|
|
|
|
VkResult
|
|
anv_device_query_status(struct anv_device *device)
|
|
{
|
|
/* This isn't likely as most of the callers of this function already check
|
|
* for it. However, it doesn't hurt to check and it potentially lets us
|
|
* avoid an ioctl.
|
|
*/
|
|
if (anv_device_is_lost(device))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
uint32_t active, pending;
|
|
int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
|
|
if (ret == -1) {
|
|
/* We don't know the real error. */
|
|
return anv_device_set_lost(device, "get_reset_stats failed: %m");
|
|
}
|
|
|
|
if (active) {
|
|
return anv_device_set_lost(device, "GPU hung on one of our command buffers");
|
|
} else if (pending) {
|
|
return anv_device_set_lost(device, "GPU hung with commands in-flight");
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult
|
|
anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
|
|
{
|
|
/* Note: This only returns whether or not the BO is in use by an i915 GPU.
|
|
* Other usages of the BO (such as on different hardware) will not be
|
|
* flagged as "busy" by this ioctl. Use with care.
|
|
*/
|
|
int ret = anv_gem_busy(device, bo->gem_handle);
|
|
if (ret == 1) {
|
|
return VK_NOT_READY;
|
|
} else if (ret == -1) {
|
|
/* We don't know the real error. */
|
|
return anv_device_set_lost(device, "gem wait failed: %m");
|
|
}
|
|
|
|
/* Query for device status after the busy call. If the BO we're checking
|
|
* got caught in a GPU hang we don't want to return VK_SUCCESS to the
|
|
* client because it clearly doesn't have valid data. Yes, this most
|
|
* likely means an ioctl, but we just did an ioctl to query the busy status
|
|
* so it's no great loss.
|
|
*/
|
|
return anv_device_query_status(device);
|
|
}
|
|
|
|
VkResult
|
|
anv_device_wait(struct anv_device *device, struct anv_bo *bo,
|
|
int64_t timeout)
|
|
{
|
|
int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
|
|
if (ret == -1 && errno == ETIME) {
|
|
return VK_TIMEOUT;
|
|
} else if (ret == -1) {
|
|
/* We don't know the real error. */
|
|
return anv_device_set_lost(device, "gem wait failed: %m");
|
|
}
|
|
|
|
/* Query for device status after the wait. If the BO we're waiting on got
|
|
* caught in a GPU hang we don't want to return VK_SUCCESS to the client
|
|
* because it clearly doesn't have valid data. Yes, this most likely means
|
|
* an ioctl, but we just did an ioctl to wait so it's no great loss.
|
|
*/
|
|
return anv_device_query_status(device);
|
|
}
|
|
|
|
VkResult anv_DeviceWaitIdle(
|
|
VkDevice _device)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (anv_device_is_lost(device))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
return anv_queue_submit_simple_batch(&device->queue, NULL);
|
|
}
|
|
|
|
uint64_t
|
|
anv_vma_alloc(struct anv_device *device,
|
|
uint64_t size, uint64_t align,
|
|
enum anv_bo_alloc_flags alloc_flags,
|
|
uint64_t client_address)
|
|
{
|
|
pthread_mutex_lock(&device->vma_mutex);
|
|
|
|
uint64_t addr = 0;
|
|
|
|
if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) {
|
|
if (client_address) {
|
|
if (util_vma_heap_alloc_addr(&device->vma_cva,
|
|
client_address, size)) {
|
|
addr = client_address;
|
|
}
|
|
} else {
|
|
addr = util_vma_heap_alloc(&device->vma_cva, size, align);
|
|
}
|
|
/* We don't want to fall back to other heaps */
|
|
goto done;
|
|
}
|
|
|
|
assert(client_address == 0);
|
|
|
|
if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS))
|
|
addr = util_vma_heap_alloc(&device->vma_hi, size, align);
|
|
|
|
if (addr == 0)
|
|
addr = util_vma_heap_alloc(&device->vma_lo, size, align);
|
|
|
|
done:
|
|
pthread_mutex_unlock(&device->vma_mutex);
|
|
|
|
assert(addr == gen_48b_address(addr));
|
|
return gen_canonical_address(addr);
|
|
}
|
|
|
|
void
|
|
anv_vma_free(struct anv_device *device,
|
|
uint64_t address, uint64_t size)
|
|
{
|
|
const uint64_t addr_48b = gen_48b_address(address);
|
|
|
|
pthread_mutex_lock(&device->vma_mutex);
|
|
|
|
if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
|
|
addr_48b <= LOW_HEAP_MAX_ADDRESS) {
|
|
util_vma_heap_free(&device->vma_lo, addr_48b, size);
|
|
} else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS &&
|
|
addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) {
|
|
util_vma_heap_free(&device->vma_cva, addr_48b, size);
|
|
} else {
|
|
assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
|
|
util_vma_heap_free(&device->vma_hi, addr_48b, size);
|
|
}
|
|
|
|
pthread_mutex_unlock(&device->vma_mutex);
|
|
}
|
|
|
|
VkResult anv_AllocateMemory(
|
|
VkDevice _device,
|
|
const VkMemoryAllocateInfo* pAllocateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkDeviceMemory* pMem)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_physical_device *pdevice = device->physical;
|
|
struct anv_device_memory *mem;
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
|
|
|
|
/* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
|
|
assert(pAllocateInfo->allocationSize > 0);
|
|
|
|
VkDeviceSize aligned_alloc_size =
|
|
align_u64(pAllocateInfo->allocationSize, 4096);
|
|
|
|
if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
|
|
return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
|
|
|
assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
|
|
struct anv_memory_type *mem_type =
|
|
&pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
|
|
assert(mem_type->heapIndex < pdevice->memory.heap_count);
|
|
struct anv_memory_heap *mem_heap =
|
|
&pdevice->memory.heaps[mem_type->heapIndex];
|
|
|
|
uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
|
|
if (mem_heap_used + aligned_alloc_size > mem_heap->size)
|
|
return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
|
|
|
mem = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*mem), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (mem == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
|
|
vk_object_base_init(&device->vk, &mem->base, VK_OBJECT_TYPE_DEVICE_MEMORY);
|
|
mem->type = mem_type;
|
|
mem->map = NULL;
|
|
mem->map_size = 0;
|
|
mem->ahw = NULL;
|
|
mem->host_ptr = NULL;
|
|
|
|
enum anv_bo_alloc_flags alloc_flags = 0;
|
|
|
|
const VkExportMemoryAllocateInfo *export_info = NULL;
|
|
const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL;
|
|
const VkImportMemoryFdInfoKHR *fd_info = NULL;
|
|
const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL;
|
|
const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
|
|
VkMemoryAllocateFlags vk_flags = 0;
|
|
uint64_t client_address = 0;
|
|
|
|
vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
|
|
export_info = (void *)ext;
|
|
break;
|
|
|
|
case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
|
|
ahw_import_info = (void *)ext;
|
|
break;
|
|
|
|
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
|
|
fd_info = (void *)ext;
|
|
break;
|
|
|
|
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
|
|
host_ptr_info = (void *)ext;
|
|
break;
|
|
|
|
case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: {
|
|
const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext;
|
|
vk_flags = flags_info->flags;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
|
|
dedicated_info = (void *)ext;
|
|
break;
|
|
|
|
case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO_KHR: {
|
|
const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *addr_info =
|
|
(const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *)ext;
|
|
client_address = addr_info->opaqueCaptureAddress;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* By default, we want all VkDeviceMemory objects to support CCS */
|
|
if (device->physical->has_implicit_ccs)
|
|
alloc_flags |= ANV_BO_ALLOC_IMPLICIT_CCS;
|
|
|
|
if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR)
|
|
alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
|
|
|
|
if ((export_info && export_info->handleTypes) ||
|
|
(fd_info && fd_info->handleType) ||
|
|
(host_ptr_info && host_ptr_info->handleType)) {
|
|
/* Anything imported or exported is EXTERNAL */
|
|
alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
|
|
|
|
/* We can't have implicit CCS on external memory with an AUX-table.
|
|
* Doing so would require us to sync the aux tables across processes
|
|
* which is impractical.
|
|
*/
|
|
if (device->info.has_aux_map)
|
|
alloc_flags &= ~ANV_BO_ALLOC_IMPLICIT_CCS;
|
|
}
|
|
|
|
/* Check if we need to support Android HW buffer export. If so,
|
|
* create AHardwareBuffer and import memory from it.
|
|
*/
|
|
bool android_export = false;
|
|
if (export_info && export_info->handleTypes &
|
|
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
|
|
android_export = true;
|
|
|
|
if (ahw_import_info) {
|
|
result = anv_import_ahw_memory(_device, mem, ahw_import_info);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
goto success;
|
|
} else if (android_export) {
|
|
result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
const VkImportAndroidHardwareBufferInfoANDROID import_info = {
|
|
.buffer = mem->ahw,
|
|
};
|
|
result = anv_import_ahw_memory(_device, mem, &import_info);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
goto success;
|
|
}
|
|
|
|
/* The Vulkan spec permits handleType to be 0, in which case the struct is
|
|
* ignored.
|
|
*/
|
|
if (fd_info && fd_info->handleType) {
|
|
/* At the moment, we support only the below handle types. */
|
|
assert(fd_info->handleType ==
|
|
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
|
|
fd_info->handleType ==
|
|
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
|
|
|
|
result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
|
|
client_address, &mem->bo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
/* For security purposes, we reject importing the bo if it's smaller
|
|
* than the requested allocation size. This prevents a malicious client
|
|
* from passing a buffer to a trusted client, lying about the size, and
|
|
* telling the trusted client to try and texture from an image that goes
|
|
* out-of-bounds. This sort of thing could lead to GPU hangs or worse
|
|
* in the trusted client. The trusted client can protect itself against
|
|
* this sort of attack but only if it can trust the buffer size.
|
|
*/
|
|
if (mem->bo->size < aligned_alloc_size) {
|
|
result = vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
|
|
"aligned allocationSize too large for "
|
|
"VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
|
|
"%"PRIu64"B > %"PRIu64"B",
|
|
aligned_alloc_size, mem->bo->size);
|
|
anv_device_release_bo(device, mem->bo);
|
|
goto fail;
|
|
}
|
|
|
|
/* From the Vulkan spec:
|
|
*
|
|
* "Importing memory from a file descriptor transfers ownership of
|
|
* the file descriptor from the application to the Vulkan
|
|
* implementation. The application must not perform any operations on
|
|
* the file descriptor after a successful import."
|
|
*
|
|
* If the import fails, we leave the file descriptor open.
|
|
*/
|
|
close(fd_info->fd);
|
|
goto success;
|
|
}
|
|
|
|
if (host_ptr_info && host_ptr_info->handleType) {
|
|
if (host_ptr_info->handleType ==
|
|
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
|
|
result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
|
|
goto fail;
|
|
}
|
|
|
|
assert(host_ptr_info->handleType ==
|
|
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
|
|
|
|
result = anv_device_import_bo_from_host_ptr(device,
|
|
host_ptr_info->pHostPointer,
|
|
pAllocateInfo->allocationSize,
|
|
alloc_flags,
|
|
client_address,
|
|
&mem->bo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
mem->host_ptr = host_ptr_info->pHostPointer;
|
|
goto success;
|
|
}
|
|
|
|
/* Regular allocate (not importing memory). */
|
|
|
|
result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
|
|
alloc_flags, client_address, &mem->bo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
|
|
ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
|
|
|
|
/* Some legacy (non-modifiers) consumers need the tiling to be set on
|
|
* the BO. In this case, we have a dedicated allocation.
|
|
*/
|
|
if (image->needs_set_tiling) {
|
|
const uint32_t i915_tiling =
|
|
isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
|
|
int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
|
|
image->planes[0].surface.isl.row_pitch_B,
|
|
i915_tiling);
|
|
if (ret) {
|
|
anv_device_release_bo(device, mem->bo);
|
|
result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
|
|
"failed to set BO tiling: %m");
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
|
|
success:
|
|
mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
|
|
if (mem_heap_used > mem_heap->size) {
|
|
p_atomic_add(&mem_heap->used, -mem->bo->size);
|
|
anv_device_release_bo(device, mem->bo);
|
|
result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
|
|
"Out of heap memory");
|
|
goto fail;
|
|
}
|
|
|
|
pthread_mutex_lock(&device->mutex);
|
|
list_addtail(&mem->link, &device->memory_objects);
|
|
pthread_mutex_unlock(&device->mutex);
|
|
|
|
*pMem = anv_device_memory_to_handle(mem);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail:
|
|
vk_free2(&device->vk.alloc, pAllocator, mem);
|
|
|
|
return result;
|
|
}
|
|
|
|
VkResult anv_GetMemoryFdKHR(
|
|
VkDevice device_h,
|
|
const VkMemoryGetFdInfoKHR* pGetFdInfo,
|
|
int* pFd)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, dev, device_h);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
|
|
|
|
assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
|
|
|
|
assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
|
|
pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
|
|
|
|
return anv_device_export_bo(dev, mem->bo, pFd);
|
|
}
|
|
|
|
VkResult anv_GetMemoryFdPropertiesKHR(
|
|
VkDevice _device,
|
|
VkExternalMemoryHandleTypeFlagBits handleType,
|
|
int fd,
|
|
VkMemoryFdPropertiesKHR* pMemoryFdProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
switch (handleType) {
|
|
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
|
|
/* dma-buf can be imported as any memory type */
|
|
pMemoryFdProperties->memoryTypeBits =
|
|
(1 << device->physical->memory.type_count) - 1;
|
|
return VK_SUCCESS;
|
|
|
|
default:
|
|
/* The valid usage section for this function says:
|
|
*
|
|
* "handleType must not be one of the handle types defined as
|
|
* opaque."
|
|
*
|
|
* So opaque handle types fall into the default "unsupported" case.
|
|
*/
|
|
return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
|
|
}
|
|
}
|
|
|
|
VkResult anv_GetMemoryHostPointerPropertiesEXT(
|
|
VkDevice _device,
|
|
VkExternalMemoryHandleTypeFlagBits handleType,
|
|
const void* pHostPointer,
|
|
VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
assert(pMemoryHostPointerProperties->sType ==
|
|
VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
|
|
|
|
switch (handleType) {
|
|
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
|
|
/* Host memory can be imported as any memory type. */
|
|
pMemoryHostPointerProperties->memoryTypeBits =
|
|
(1ull << device->physical->memory.type_count) - 1;
|
|
|
|
return VK_SUCCESS;
|
|
|
|
default:
|
|
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
|
|
}
|
|
}
|
|
|
|
void anv_FreeMemory(
|
|
VkDevice _device,
|
|
VkDeviceMemory _mem,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
|
|
|
|
if (mem == NULL)
|
|
return;
|
|
|
|
pthread_mutex_lock(&device->mutex);
|
|
list_del(&mem->link);
|
|
pthread_mutex_unlock(&device->mutex);
|
|
|
|
if (mem->map)
|
|
anv_UnmapMemory(_device, _mem);
|
|
|
|
p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used,
|
|
-mem->bo->size);
|
|
|
|
anv_device_release_bo(device, mem->bo);
|
|
|
|
#if defined(ANDROID) && ANDROID_API_LEVEL >= 26
|
|
if (mem->ahw)
|
|
AHardwareBuffer_release(mem->ahw);
|
|
#endif
|
|
|
|
vk_object_base_finish(&mem->base);
|
|
vk_free2(&device->vk.alloc, pAllocator, mem);
|
|
}
|
|
|
|
VkResult anv_MapMemory(
|
|
VkDevice _device,
|
|
VkDeviceMemory _memory,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size,
|
|
VkMemoryMapFlags flags,
|
|
void** ppData)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
|
|
|
|
if (mem == NULL) {
|
|
*ppData = NULL;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
if (mem->host_ptr) {
|
|
*ppData = mem->host_ptr + offset;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
if (size == VK_WHOLE_SIZE)
|
|
size = mem->bo->size - offset;
|
|
|
|
/* From the Vulkan spec version 1.0.32 docs for MapMemory:
|
|
*
|
|
* * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
|
|
* assert(size != 0);
|
|
* * If size is not equal to VK_WHOLE_SIZE, size must be less than or
|
|
* equal to the size of the memory minus offset
|
|
*/
|
|
assert(size > 0);
|
|
assert(offset + size <= mem->bo->size);
|
|
|
|
/* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
|
|
* takes a VkDeviceMemory pointer, it seems like only one map of the memory
|
|
* at a time is valid. We could just mmap up front and return an offset
|
|
* pointer here, but that may exhaust virtual memory on 32 bit
|
|
* userspace. */
|
|
|
|
uint32_t gem_flags = 0;
|
|
|
|
if (!device->info.has_llc &&
|
|
(mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
|
|
gem_flags |= I915_MMAP_WC;
|
|
|
|
/* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
|
|
uint64_t map_offset;
|
|
if (!device->physical->has_mmap_offset)
|
|
map_offset = offset & ~4095ull;
|
|
else
|
|
map_offset = 0;
|
|
assert(offset >= map_offset);
|
|
uint64_t map_size = (offset + size) - map_offset;
|
|
|
|
/* Let's map whole pages */
|
|
map_size = align_u64(map_size, 4096);
|
|
|
|
void *map = anv_gem_mmap(device, mem->bo->gem_handle,
|
|
map_offset, map_size, gem_flags);
|
|
if (map == MAP_FAILED)
|
|
return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
|
|
|
|
mem->map = map;
|
|
mem->map_size = map_size;
|
|
|
|
*ppData = mem->map + (offset - map_offset);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_UnmapMemory(
|
|
VkDevice _device,
|
|
VkDeviceMemory _memory)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
|
|
|
|
if (mem == NULL || mem->host_ptr)
|
|
return;
|
|
|
|
anv_gem_munmap(device, mem->map, mem->map_size);
|
|
|
|
mem->map = NULL;
|
|
mem->map_size = 0;
|
|
}
|
|
|
|
static void
|
|
clflush_mapped_ranges(struct anv_device *device,
|
|
uint32_t count,
|
|
const VkMappedMemoryRange *ranges)
|
|
{
|
|
for (uint32_t i = 0; i < count; i++) {
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
|
|
if (ranges[i].offset >= mem->map_size)
|
|
continue;
|
|
|
|
gen_clflush_range(mem->map + ranges[i].offset,
|
|
MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
|
|
}
|
|
}
|
|
|
|
VkResult anv_FlushMappedMemoryRanges(
|
|
VkDevice _device,
|
|
uint32_t memoryRangeCount,
|
|
const VkMappedMemoryRange* pMemoryRanges)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (device->info.has_llc)
|
|
return VK_SUCCESS;
|
|
|
|
/* Make sure the writes we're flushing have landed. */
|
|
__builtin_ia32_mfence();
|
|
|
|
clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_InvalidateMappedMemoryRanges(
|
|
VkDevice _device,
|
|
uint32_t memoryRangeCount,
|
|
const VkMappedMemoryRange* pMemoryRanges)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (device->info.has_llc)
|
|
return VK_SUCCESS;
|
|
|
|
clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
|
|
|
|
/* Make sure no reads get moved up above the invalidate. */
|
|
__builtin_ia32_mfence();
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_GetBufferMemoryRequirements(
|
|
VkDevice _device,
|
|
VkBuffer _buffer,
|
|
VkMemoryRequirements* pMemoryRequirements)
|
|
{
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
/* The Vulkan spec (git aaed022) says:
|
|
*
|
|
* memoryTypeBits is a bitfield and contains one bit set for every
|
|
* supported memory type for the resource. The bit `1<<i` is set if and
|
|
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
|
|
* structure for the physical device is supported.
|
|
*/
|
|
uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
|
|
|
|
/* Base alignment requirement of a cache line */
|
|
uint32_t alignment = 16;
|
|
|
|
if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
|
|
alignment = MAX2(alignment, ANV_UBO_ALIGNMENT);
|
|
|
|
pMemoryRequirements->size = buffer->size;
|
|
pMemoryRequirements->alignment = alignment;
|
|
|
|
/* Storage and Uniform buffers should have their size aligned to
|
|
* 32-bits to avoid boundary checks when last DWord is not complete.
|
|
* This would ensure that not internal padding would be needed for
|
|
* 16-bit types.
|
|
*/
|
|
if (device->robust_buffer_access &&
|
|
(buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
|
|
buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
|
|
pMemoryRequirements->size = align_u64(buffer->size, 4);
|
|
|
|
pMemoryRequirements->memoryTypeBits = memory_types;
|
|
}
|
|
|
|
void anv_GetBufferMemoryRequirements2(
|
|
VkDevice _device,
|
|
const VkBufferMemoryRequirementsInfo2* pInfo,
|
|
VkMemoryRequirements2* pMemoryRequirements)
|
|
{
|
|
anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
|
|
&pMemoryRequirements->memoryRequirements);
|
|
|
|
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
|
|
VkMemoryDedicatedRequirements *requirements = (void *)ext;
|
|
requirements->prefersDedicatedAllocation = false;
|
|
requirements->requiresDedicatedAllocation = false;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void anv_GetImageMemoryRequirements(
|
|
VkDevice _device,
|
|
VkImage _image,
|
|
VkMemoryRequirements* pMemoryRequirements)
|
|
{
|
|
ANV_FROM_HANDLE(anv_image, image, _image);
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
/* The Vulkan spec (git aaed022) says:
|
|
*
|
|
* memoryTypeBits is a bitfield and contains one bit set for every
|
|
* supported memory type for the resource. The bit `1<<i` is set if and
|
|
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
|
|
* structure for the physical device is supported.
|
|
*
|
|
* All types are currently supported for images.
|
|
*/
|
|
uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
|
|
|
|
pMemoryRequirements->size = image->size;
|
|
pMemoryRequirements->alignment = image->alignment;
|
|
pMemoryRequirements->memoryTypeBits = memory_types;
|
|
}
|
|
|
|
void anv_GetImageMemoryRequirements2(
|
|
VkDevice _device,
|
|
const VkImageMemoryRequirementsInfo2* pInfo,
|
|
VkMemoryRequirements2* pMemoryRequirements)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_image, image, pInfo->image);
|
|
|
|
anv_GetImageMemoryRequirements(_device, pInfo->image,
|
|
&pMemoryRequirements->memoryRequirements);
|
|
|
|
vk_foreach_struct_const(ext, pInfo->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
|
|
const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
|
|
(const VkImagePlaneMemoryRequirementsInfo *) ext;
|
|
uint32_t plane = anv_image_aspect_to_plane(image->aspects,
|
|
plane_reqs->planeAspect);
|
|
|
|
assert(image->planes[plane].offset == 0);
|
|
|
|
/* The Vulkan spec (git aaed022) says:
|
|
*
|
|
* memoryTypeBits is a bitfield and contains one bit set for every
|
|
* supported memory type for the resource. The bit `1<<i` is set
|
|
* if and only if the memory type `i` in the
|
|
* VkPhysicalDeviceMemoryProperties structure for the physical
|
|
* device is supported.
|
|
*
|
|
* All types are currently supported for images.
|
|
*/
|
|
pMemoryRequirements->memoryRequirements.memoryTypeBits =
|
|
(1ull << device->physical->memory.type_count) - 1;
|
|
|
|
pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
|
|
pMemoryRequirements->memoryRequirements.alignment =
|
|
image->planes[plane].alignment;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
|
|
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
|
|
VkMemoryDedicatedRequirements *requirements = (void *)ext;
|
|
if (image->needs_set_tiling || image->external_format) {
|
|
/* If we need to set the tiling for external consumers, we need a
|
|
* dedicated allocation.
|
|
*
|
|
* See also anv_AllocateMemory.
|
|
*/
|
|
requirements->prefersDedicatedAllocation = true;
|
|
requirements->requiresDedicatedAllocation = true;
|
|
} else {
|
|
requirements->prefersDedicatedAllocation = false;
|
|
requirements->requiresDedicatedAllocation = false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void anv_GetImageSparseMemoryRequirements(
|
|
VkDevice device,
|
|
VkImage image,
|
|
uint32_t* pSparseMemoryRequirementCount,
|
|
VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
|
|
{
|
|
*pSparseMemoryRequirementCount = 0;
|
|
}
|
|
|
|
void anv_GetImageSparseMemoryRequirements2(
|
|
VkDevice device,
|
|
const VkImageSparseMemoryRequirementsInfo2* pInfo,
|
|
uint32_t* pSparseMemoryRequirementCount,
|
|
VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
|
|
{
|
|
*pSparseMemoryRequirementCount = 0;
|
|
}
|
|
|
|
void anv_GetDeviceMemoryCommitment(
|
|
VkDevice device,
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize* pCommittedMemoryInBytes)
|
|
{
|
|
*pCommittedMemoryInBytes = 0;
|
|
}
|
|
|
|
static void
|
|
anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
|
|
|
|
assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
|
|
|
|
if (mem) {
|
|
buffer->address = (struct anv_address) {
|
|
.bo = mem->bo,
|
|
.offset = pBindInfo->memoryOffset,
|
|
};
|
|
} else {
|
|
buffer->address = ANV_NULL_ADDRESS;
|
|
}
|
|
}
|
|
|
|
VkResult anv_BindBufferMemory(
|
|
VkDevice device,
|
|
VkBuffer buffer,
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize memoryOffset)
|
|
{
|
|
anv_bind_buffer_memory(
|
|
&(VkBindBufferMemoryInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
|
|
.buffer = buffer,
|
|
.memory = memory,
|
|
.memoryOffset = memoryOffset,
|
|
});
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_BindBufferMemory2(
|
|
VkDevice device,
|
|
uint32_t bindInfoCount,
|
|
const VkBindBufferMemoryInfo* pBindInfos)
|
|
{
|
|
for (uint32_t i = 0; i < bindInfoCount; i++)
|
|
anv_bind_buffer_memory(&pBindInfos[i]);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_QueueBindSparse(
|
|
VkQueue _queue,
|
|
uint32_t bindInfoCount,
|
|
const VkBindSparseInfo* pBindInfo,
|
|
VkFence fence)
|
|
{
|
|
ANV_FROM_HANDLE(anv_queue, queue, _queue);
|
|
if (anv_device_is_lost(queue->device))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
|
|
}
|
|
|
|
// Event functions
|
|
|
|
VkResult anv_CreateEvent(
|
|
VkDevice _device,
|
|
const VkEventCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkEvent* pEvent)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_event *event;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
|
|
|
|
event = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*event), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (event == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
vk_object_base_init(&device->vk, &event->base, VK_OBJECT_TYPE_EVENT);
|
|
event->state = anv_state_pool_alloc(&device->dynamic_state_pool,
|
|
sizeof(uint64_t), 8);
|
|
*(uint64_t *)event->state.map = VK_EVENT_RESET;
|
|
|
|
*pEvent = anv_event_to_handle(event);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyEvent(
|
|
VkDevice _device,
|
|
VkEvent _event,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
if (!event)
|
|
return;
|
|
|
|
anv_state_pool_free(&device->dynamic_state_pool, event->state);
|
|
|
|
vk_object_base_finish(&event->base);
|
|
vk_free2(&device->vk.alloc, pAllocator, event);
|
|
}
|
|
|
|
VkResult anv_GetEventStatus(
|
|
VkDevice _device,
|
|
VkEvent _event)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
if (anv_device_is_lost(device))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
return *(uint64_t *)event->state.map;
|
|
}
|
|
|
|
VkResult anv_SetEvent(
|
|
VkDevice _device,
|
|
VkEvent _event)
|
|
{
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
*(uint64_t *)event->state.map = VK_EVENT_SET;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_ResetEvent(
|
|
VkDevice _device,
|
|
VkEvent _event)
|
|
{
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
*(uint64_t *)event->state.map = VK_EVENT_RESET;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
// Buffer functions
|
|
|
|
VkResult anv_CreateBuffer(
|
|
VkDevice _device,
|
|
const VkBufferCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkBuffer* pBuffer)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_buffer *buffer;
|
|
|
|
/* Don't allow creating buffers bigger than our address space. The real
|
|
* issue here is that we may align up the buffer size and we don't want
|
|
* doing so to cause roll-over. However, no one has any business
|
|
* allocating a buffer larger than our GTT size.
|
|
*/
|
|
if (pCreateInfo->size > device->physical->gtt_size)
|
|
return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
|
|
|
|
buffer = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*buffer), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (buffer == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
vk_object_base_init(&device->vk, &buffer->base, VK_OBJECT_TYPE_BUFFER);
|
|
buffer->size = pCreateInfo->size;
|
|
buffer->usage = pCreateInfo->usage;
|
|
buffer->address = ANV_NULL_ADDRESS;
|
|
|
|
*pBuffer = anv_buffer_to_handle(buffer);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyBuffer(
|
|
VkDevice _device,
|
|
VkBuffer _buffer,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
|
|
|
|
if (!buffer)
|
|
return;
|
|
|
|
vk_object_base_finish(&buffer->base);
|
|
vk_free2(&device->vk.alloc, pAllocator, buffer);
|
|
}
|
|
|
|
VkDeviceAddress anv_GetBufferDeviceAddress(
|
|
VkDevice device,
|
|
const VkBufferDeviceAddressInfoKHR* pInfo)
|
|
{
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
|
|
|
|
assert(!anv_address_is_null(buffer->address));
|
|
assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
|
|
|
|
return anv_address_physical(buffer->address);
|
|
}
|
|
|
|
uint64_t anv_GetBufferOpaqueCaptureAddress(
|
|
VkDevice device,
|
|
const VkBufferDeviceAddressInfoKHR* pInfo)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress(
|
|
VkDevice device,
|
|
const VkDeviceMemoryOpaqueCaptureAddressInfoKHR* pInfo)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
|
|
|
|
assert(memory->bo->flags & EXEC_OBJECT_PINNED);
|
|
assert(memory->bo->has_client_visible_address);
|
|
|
|
return gen_48b_address(memory->bo->offset);
|
|
}
|
|
|
|
void
|
|
anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
|
|
enum isl_format format,
|
|
isl_surf_usage_flags_t usage,
|
|
struct anv_address address,
|
|
uint32_t range, uint32_t stride)
|
|
{
|
|
isl_buffer_fill_state(&device->isl_dev, state.map,
|
|
.address = anv_address_physical(address),
|
|
.mocs = isl_mocs(&device->isl_dev, usage),
|
|
.size_B = range,
|
|
.format = format,
|
|
.swizzle = ISL_SWIZZLE_IDENTITY,
|
|
.stride_B = stride);
|
|
}
|
|
|
|
void anv_DestroySampler(
|
|
VkDevice _device,
|
|
VkSampler _sampler,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
|
|
|
|
if (!sampler)
|
|
return;
|
|
|
|
if (sampler->bindless_state.map) {
|
|
anv_state_pool_free(&device->dynamic_state_pool,
|
|
sampler->bindless_state);
|
|
}
|
|
|
|
if (sampler->custom_border_color.map) {
|
|
anv_state_reserved_pool_free(&device->custom_border_colors,
|
|
sampler->custom_border_color);
|
|
}
|
|
|
|
vk_object_base_finish(&sampler->base);
|
|
vk_free2(&device->vk.alloc, pAllocator, sampler);
|
|
}
|
|
|
|
VkResult anv_CreateFramebuffer(
|
|
VkDevice _device,
|
|
const VkFramebufferCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkFramebuffer* pFramebuffer)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_framebuffer *framebuffer;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
|
|
|
|
size_t size = sizeof(*framebuffer);
|
|
|
|
/* VK_KHR_imageless_framebuffer extension says:
|
|
*
|
|
* If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
|
|
* parameter pAttachments is ignored.
|
|
*/
|
|
if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
|
|
size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
|
|
framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (framebuffer == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
|
|
ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
|
|
framebuffer->attachments[i] = iview;
|
|
}
|
|
framebuffer->attachment_count = pCreateInfo->attachmentCount;
|
|
} else {
|
|
framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (framebuffer == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
framebuffer->attachment_count = 0;
|
|
}
|
|
|
|
vk_object_base_init(&device->vk, &framebuffer->base,
|
|
VK_OBJECT_TYPE_FRAMEBUFFER);
|
|
|
|
framebuffer->width = pCreateInfo->width;
|
|
framebuffer->height = pCreateInfo->height;
|
|
framebuffer->layers = pCreateInfo->layers;
|
|
|
|
*pFramebuffer = anv_framebuffer_to_handle(framebuffer);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyFramebuffer(
|
|
VkDevice _device,
|
|
VkFramebuffer _fb,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
|
|
|
|
if (!fb)
|
|
return;
|
|
|
|
vk_object_base_finish(&fb->base);
|
|
vk_free2(&device->vk.alloc, pAllocator, fb);
|
|
}
|
|
|
|
static const VkTimeDomainEXT anv_time_domains[] = {
|
|
VK_TIME_DOMAIN_DEVICE_EXT,
|
|
VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
|
|
#ifdef CLOCK_MONOTONIC_RAW
|
|
VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
|
|
#endif
|
|
};
|
|
|
|
VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
|
|
VkPhysicalDevice physicalDevice,
|
|
uint32_t *pTimeDomainCount,
|
|
VkTimeDomainEXT *pTimeDomains)
|
|
{
|
|
int d;
|
|
VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
|
|
|
|
for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
|
|
vk_outarray_append(&out, i) {
|
|
*i = anv_time_domains[d];
|
|
}
|
|
}
|
|
|
|
return vk_outarray_status(&out);
|
|
}
|
|
|
|
static uint64_t
|
|
anv_clock_gettime(clockid_t clock_id)
|
|
{
|
|
struct timespec current;
|
|
int ret;
|
|
|
|
ret = clock_gettime(clock_id, ¤t);
|
|
#ifdef CLOCK_MONOTONIC_RAW
|
|
if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
|
|
ret = clock_gettime(CLOCK_MONOTONIC, ¤t);
|
|
#endif
|
|
if (ret < 0)
|
|
return 0;
|
|
|
|
return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
|
|
}
|
|
|
|
VkResult anv_GetCalibratedTimestampsEXT(
|
|
VkDevice _device,
|
|
uint32_t timestampCount,
|
|
const VkCalibratedTimestampInfoEXT *pTimestampInfos,
|
|
uint64_t *pTimestamps,
|
|
uint64_t *pMaxDeviation)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
uint64_t timestamp_frequency = device->info.timestamp_frequency;
|
|
int ret;
|
|
int d;
|
|
uint64_t begin, end;
|
|
uint64_t max_clock_period = 0;
|
|
|
|
#ifdef CLOCK_MONOTONIC_RAW
|
|
begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
|
|
#else
|
|
begin = anv_clock_gettime(CLOCK_MONOTONIC);
|
|
#endif
|
|
|
|
for (d = 0; d < timestampCount; d++) {
|
|
switch (pTimestampInfos[d].timeDomain) {
|
|
case VK_TIME_DOMAIN_DEVICE_EXT:
|
|
ret = anv_gem_reg_read(device->fd, TIMESTAMP | I915_REG_READ_8B_WA,
|
|
&pTimestamps[d]);
|
|
|
|
if (ret != 0) {
|
|
return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
|
|
"register: %m");
|
|
}
|
|
uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
|
|
max_clock_period = MAX2(max_clock_period, device_period);
|
|
break;
|
|
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
|
|
pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
|
|
max_clock_period = MAX2(max_clock_period, 1);
|
|
break;
|
|
|
|
#ifdef CLOCK_MONOTONIC_RAW
|
|
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
|
|
pTimestamps[d] = begin;
|
|
break;
|
|
#endif
|
|
default:
|
|
pTimestamps[d] = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef CLOCK_MONOTONIC_RAW
|
|
end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
|
|
#else
|
|
end = anv_clock_gettime(CLOCK_MONOTONIC);
|
|
#endif
|
|
|
|
/*
|
|
* The maximum deviation is the sum of the interval over which we
|
|
* perform the sampling and the maximum period of any sampled
|
|
* clock. That's because the maximum skew between any two sampled
|
|
* clock edges is when the sampled clock with the largest period is
|
|
* sampled at the end of that period but right at the beginning of the
|
|
* sampling interval and some other clock is sampled right at the
|
|
* begining of its sampling period and right at the end of the
|
|
* sampling interval. Let's assume the GPU has the longest clock
|
|
* period and that the application is sampling GPU and monotonic:
|
|
*
|
|
* s e
|
|
* w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
|
|
* Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
|
|
*
|
|
* g
|
|
* 0 1 2 3
|
|
* GPU -----_____-----_____-----_____-----_____
|
|
*
|
|
* m
|
|
* x y z 0 1 2 3 4 5 6 7 8 9 a b c
|
|
* Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
|
|
*
|
|
* Interval <----------------->
|
|
* Deviation <-------------------------->
|
|
*
|
|
* s = read(raw) 2
|
|
* g = read(GPU) 1
|
|
* m = read(monotonic) 2
|
|
* e = read(raw) b
|
|
*
|
|
* We round the sample interval up by one tick to cover sampling error
|
|
* in the interval clock
|
|
*/
|
|
|
|
uint64_t sample_interval = end - begin + 1;
|
|
|
|
*pMaxDeviation = sample_interval + max_clock_period;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/* vk_icd.h does not declare this function, so we declare it here to
|
|
* suppress Wmissing-prototypes.
|
|
*/
|
|
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
|
|
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
|
|
|
|
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
|
|
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
|
|
{
|
|
/* For the full details on loader interface versioning, see
|
|
* <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
|
|
* What follows is a condensed summary, to help you navigate the large and
|
|
* confusing official doc.
|
|
*
|
|
* - Loader interface v0 is incompatible with later versions. We don't
|
|
* support it.
|
|
*
|
|
* - In loader interface v1:
|
|
* - The first ICD entrypoint called by the loader is
|
|
* vk_icdGetInstanceProcAddr(). The ICD must statically expose this
|
|
* entrypoint.
|
|
* - The ICD must statically expose no other Vulkan symbol unless it is
|
|
* linked with -Bsymbolic.
|
|
* - Each dispatchable Vulkan handle created by the ICD must be
|
|
* a pointer to a struct whose first member is VK_LOADER_DATA. The
|
|
* ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
|
|
* - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
|
|
* vkDestroySurfaceKHR(). The ICD must be capable of working with
|
|
* such loader-managed surfaces.
|
|
*
|
|
* - Loader interface v2 differs from v1 in:
|
|
* - The first ICD entrypoint called by the loader is
|
|
* vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
|
|
* statically expose this entrypoint.
|
|
*
|
|
* - Loader interface v3 differs from v2 in:
|
|
* - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
|
|
* vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
|
|
* because the loader no longer does so.
|
|
*
|
|
* - Loader interface v4 differs from v3 in:
|
|
* - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
|
|
*/
|
|
*pSupportedVersion = MIN2(*pSupportedVersion, 4u);
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_CreatePrivateDataSlotEXT(
|
|
VkDevice _device,
|
|
const VkPrivateDataSlotCreateInfoEXT* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkPrivateDataSlotEXT* pPrivateDataSlot)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
return vk_private_data_slot_create(&device->vk, pCreateInfo, pAllocator,
|
|
pPrivateDataSlot);
|
|
}
|
|
|
|
void anv_DestroyPrivateDataSlotEXT(
|
|
VkDevice _device,
|
|
VkPrivateDataSlotEXT privateDataSlot,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
vk_private_data_slot_destroy(&device->vk, privateDataSlot, pAllocator);
|
|
}
|
|
|
|
VkResult anv_SetPrivateDataEXT(
|
|
VkDevice _device,
|
|
VkObjectType objectType,
|
|
uint64_t objectHandle,
|
|
VkPrivateDataSlotEXT privateDataSlot,
|
|
uint64_t data)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
return vk_object_base_set_private_data(&device->vk,
|
|
objectType, objectHandle,
|
|
privateDataSlot, data);
|
|
}
|
|
|
|
void anv_GetPrivateDataEXT(
|
|
VkDevice _device,
|
|
VkObjectType objectType,
|
|
uint64_t objectHandle,
|
|
VkPrivateDataSlotEXT privateDataSlot,
|
|
uint64_t* pData)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
vk_object_base_get_private_data(&device->vk,
|
|
objectType, objectHandle,
|
|
privateDataSlot, pData);
|
|
}
|