mesa/src/intel/vulkan/anv_queue.c
Jason Ekstrand 017cdb10cf anv: Submit a dummy batch when only semaphores are provided.
Vulkan allows you to do a submit whose only job is to wait on and
trigger semaphores.  The easiest way for us to support that right
now is to insert a dummy execbuf.

Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
2017-08-15 19:08:26 -07:00

737 lines
26 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* This file implements VkQueue, VkFence, and VkSemaphore
*/
#include <fcntl.h>
#include <unistd.h>
#include <sys/eventfd.h>
#include "anv_private.h"
#include "vk_util.h"
#include "genxml/gen7_pack.h"
VkResult
anv_device_execbuf(struct anv_device *device,
struct drm_i915_gem_execbuffer2 *execbuf,
struct anv_bo **execbuf_bos)
{
int ret = anv_gem_execbuffer(device, execbuf);
if (ret != 0) {
/* We don't know the real error. */
device->lost = true;
return vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
}
struct drm_i915_gem_exec_object2 *objects =
(void *)(uintptr_t)execbuf->buffers_ptr;
for (uint32_t k = 0; k < execbuf->buffer_count; k++)
execbuf_bos[k]->offset = objects[k].offset;
return VK_SUCCESS;
}
VkResult
anv_device_submit_simple_batch(struct anv_device *device,
struct anv_batch *batch)
{
struct drm_i915_gem_execbuffer2 execbuf;
struct drm_i915_gem_exec_object2 exec2_objects[1];
struct anv_bo bo, *exec_bos[1];
VkResult result = VK_SUCCESS;
uint32_t size;
/* Kernel driver requires 8 byte aligned batch length */
size = align_u32(batch->next - batch->start, 8);
result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
if (result != VK_SUCCESS)
return result;
memcpy(bo.map, batch->start, size);
if (!device->info.has_llc)
gen_flush_range(bo.map, size);
exec_bos[0] = &bo;
exec2_objects[0].handle = bo.gem_handle;
exec2_objects[0].relocation_count = 0;
exec2_objects[0].relocs_ptr = 0;
exec2_objects[0].alignment = 0;
exec2_objects[0].offset = bo.offset;
exec2_objects[0].flags = 0;
exec2_objects[0].rsvd1 = 0;
exec2_objects[0].rsvd2 = 0;
execbuf.buffers_ptr = (uintptr_t) exec2_objects;
execbuf.buffer_count = 1;
execbuf.batch_start_offset = 0;
execbuf.batch_len = size;
execbuf.cliprects_ptr = 0;
execbuf.num_cliprects = 0;
execbuf.DR1 = 0;
execbuf.DR4 = 0;
execbuf.flags =
I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
execbuf.rsvd1 = device->context_id;
execbuf.rsvd2 = 0;
result = anv_device_execbuf(device, &execbuf, exec_bos);
if (result != VK_SUCCESS)
goto fail;
result = anv_device_wait(device, &bo, INT64_MAX);
fail:
anv_bo_pool_free(&device->batch_bo_pool, &bo);
return result;
}
VkResult anv_QueueSubmit(
VkQueue _queue,
uint32_t submitCount,
const VkSubmitInfo* pSubmits,
VkFence _fence)
{
ANV_FROM_HANDLE(anv_queue, queue, _queue);
ANV_FROM_HANDLE(anv_fence, fence, _fence);
struct anv_device *device = queue->device;
/* Query for device status prior to submitting. Technically, we don't need
* to do this. However, if we have a client that's submitting piles of
* garbage, we would rather break as early as possible to keep the GPU
* hanging contained. If we don't check here, we'll either be waiting for
* the kernel to kick us or we'll have to wait until the client waits on a
* fence before we actually know whether or not we've hung.
*/
VkResult result = anv_device_query_status(device);
if (result != VK_SUCCESS)
return result;
/* We lock around QueueSubmit for three main reasons:
*
* 1) When a block pool is resized, we create a new gem handle with a
* different size and, in the case of surface states, possibly a
* different center offset but we re-use the same anv_bo struct when
* we do so. If this happens in the middle of setting up an execbuf,
* we could end up with our list of BOs out of sync with our list of
* gem handles.
*
* 2) The algorithm we use for building the list of unique buffers isn't
* thread-safe. While the client is supposed to syncronize around
* QueueSubmit, this would be extremely difficult to debug if it ever
* came up in the wild due to a broken app. It's better to play it
* safe and just lock around QueueSubmit.
*
* 3) The anv_cmd_buffer_execbuf function may perform relocations in
* userspace. Due to the fact that the surface state buffer is shared
* between batches, we can't afford to have that happen from multiple
* threads at the same time. Even though the user is supposed to
* ensure this doesn't happen, we play it safe as in (2) above.
*
* Since the only other things that ever take the device lock such as block
* pool resize only rarely happen, this will almost never be contended so
* taking a lock isn't really an expensive operation in this case.
*/
pthread_mutex_lock(&device->mutex);
for (uint32_t i = 0; i < submitCount; i++) {
if (pSubmits[i].commandBufferCount == 0) {
/* If we don't have any command buffers, we need to submit a dummy
* batch to give GEM something to wait on. We could, potentially,
* come up with something more efficient but this shouldn't be a
* common case.
*/
result = anv_cmd_buffer_execbuf(device, NULL,
pSubmits[i].pWaitSemaphores,
pSubmits[i].waitSemaphoreCount,
pSubmits[i].pSignalSemaphores,
pSubmits[i].signalSemaphoreCount);
if (result != VK_SUCCESS)
goto out;
continue;
}
for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
pSubmits[i].pCommandBuffers[j]);
assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
assert(!anv_batch_has_error(&cmd_buffer->batch));
const VkSemaphore *in_semaphores = NULL, *out_semaphores = NULL;
uint32_t num_in_semaphores = 0, num_out_semaphores = 0;
if (j == 0) {
/* Only the first batch gets the in semaphores */
in_semaphores = pSubmits[i].pWaitSemaphores;
num_in_semaphores = pSubmits[i].waitSemaphoreCount;
}
if (j == pSubmits[i].commandBufferCount - 1) {
/* Only the last batch gets the out semaphores */
out_semaphores = pSubmits[i].pSignalSemaphores;
num_out_semaphores = pSubmits[i].signalSemaphoreCount;
}
result = anv_cmd_buffer_execbuf(device, cmd_buffer,
in_semaphores, num_in_semaphores,
out_semaphores, num_out_semaphores);
if (result != VK_SUCCESS)
goto out;
}
}
if (fence) {
struct anv_bo *fence_bo = &fence->bo;
result = anv_device_execbuf(device, &fence->execbuf, &fence_bo);
if (result != VK_SUCCESS)
goto out;
/* Update the fence and wake up any waiters */
assert(fence->state == ANV_FENCE_STATE_RESET);
fence->state = ANV_FENCE_STATE_SUBMITTED;
pthread_cond_broadcast(&device->queue_submit);
}
out:
if (result != VK_SUCCESS) {
/* In the case that something has gone wrong we may end up with an
* inconsistent state from which it may not be trivial to recover.
* For example, we might have computed address relocations and
* any future attempt to re-submit this job will need to know about
* this and avoid computing relocation addresses again.
*
* To avoid this sort of issues, we assume that if something was
* wrong during submission we must already be in a really bad situation
* anyway (such us being out of memory) and return
* VK_ERROR_DEVICE_LOST to ensure that clients do not attempt to
* submit the same job again to this device.
*/
result = vk_errorf(VK_ERROR_DEVICE_LOST, "vkQueueSubmit() failed");
device->lost = true;
/* If we return VK_ERROR_DEVICE LOST here, we need to ensure that
* vkWaitForFences() and vkGetFenceStatus() return a valid result
* (VK_SUCCESS or VK_ERROR_DEVICE_LOST) in a finite amount of time.
* Setting the fence status to SIGNALED ensures this will happen in
* any case.
*/
if (fence)
fence->state = ANV_FENCE_STATE_SIGNALED;
}
pthread_mutex_unlock(&device->mutex);
return result;
}
VkResult anv_QueueWaitIdle(
VkQueue _queue)
{
ANV_FROM_HANDLE(anv_queue, queue, _queue);
return anv_DeviceWaitIdle(anv_device_to_handle(queue->device));
}
VkResult anv_CreateFence(
VkDevice _device,
const VkFenceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkFence* pFence)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_bo fence_bo;
struct anv_fence *fence;
struct anv_batch batch;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
result = anv_bo_pool_alloc(&device->batch_bo_pool, &fence_bo, 4096);
if (result != VK_SUCCESS)
return result;
/* Fences are small. Just store the CPU data structure in the BO. */
fence = fence_bo.map;
fence->bo = fence_bo;
/* Place the batch after the CPU data but on its own cache line. */
const uint32_t batch_offset = align_u32(sizeof(*fence), CACHELINE_SIZE);
batch.next = batch.start = fence->bo.map + batch_offset;
batch.end = fence->bo.map + fence->bo.size;
anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
if (!device->info.has_llc) {
assert(((uintptr_t) batch.start & CACHELINE_MASK) == 0);
assert(batch.next - batch.start <= CACHELINE_SIZE);
__builtin_ia32_mfence();
__builtin_ia32_clflush(batch.start);
}
fence->exec2_objects[0].handle = fence->bo.gem_handle;
fence->exec2_objects[0].relocation_count = 0;
fence->exec2_objects[0].relocs_ptr = 0;
fence->exec2_objects[0].alignment = 0;
fence->exec2_objects[0].offset = fence->bo.offset;
fence->exec2_objects[0].flags = 0;
fence->exec2_objects[0].rsvd1 = 0;
fence->exec2_objects[0].rsvd2 = 0;
fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
fence->execbuf.buffer_count = 1;
fence->execbuf.batch_start_offset = batch.start - fence->bo.map;
fence->execbuf.batch_len = batch.next - batch.start;
fence->execbuf.cliprects_ptr = 0;
fence->execbuf.num_cliprects = 0;
fence->execbuf.DR1 = 0;
fence->execbuf.DR4 = 0;
fence->execbuf.flags =
I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
fence->execbuf.rsvd1 = device->context_id;
fence->execbuf.rsvd2 = 0;
if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
fence->state = ANV_FENCE_STATE_SIGNALED;
} else {
fence->state = ANV_FENCE_STATE_RESET;
}
*pFence = anv_fence_to_handle(fence);
return VK_SUCCESS;
}
void anv_DestroyFence(
VkDevice _device,
VkFence _fence,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_fence, fence, _fence);
if (!fence)
return;
assert(fence->bo.map == fence);
anv_bo_pool_free(&device->batch_bo_pool, &fence->bo);
}
VkResult anv_ResetFences(
VkDevice _device,
uint32_t fenceCount,
const VkFence* pFences)
{
for (uint32_t i = 0; i < fenceCount; i++) {
ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
fence->state = ANV_FENCE_STATE_RESET;
}
return VK_SUCCESS;
}
VkResult anv_GetFenceStatus(
VkDevice _device,
VkFence _fence)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_fence, fence, _fence);
if (unlikely(device->lost))
return VK_ERROR_DEVICE_LOST;
switch (fence->state) {
case ANV_FENCE_STATE_RESET:
/* If it hasn't even been sent off to the GPU yet, it's not ready */
return VK_NOT_READY;
case ANV_FENCE_STATE_SIGNALED:
/* It's been signaled, return success */
return VK_SUCCESS;
case ANV_FENCE_STATE_SUBMITTED: {
VkResult result = anv_device_bo_busy(device, &fence->bo);
if (result == VK_SUCCESS) {
fence->state = ANV_FENCE_STATE_SIGNALED;
return VK_SUCCESS;
} else {
return result;
}
}
default:
unreachable("Invalid fence status");
}
}
#define NSEC_PER_SEC 1000000000
#define INT_TYPE_MAX(type) ((1ull << (sizeof(type) * 8 - 1)) - 1)
VkResult anv_WaitForFences(
VkDevice _device,
uint32_t fenceCount,
const VkFence* pFences,
VkBool32 waitAll,
uint64_t _timeout)
{
ANV_FROM_HANDLE(anv_device, device, _device);
int ret;
if (unlikely(device->lost))
return VK_ERROR_DEVICE_LOST;
/* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
* to block indefinitely timeouts <= 0. Unfortunately, this was broken
* for a couple of kernel releases. Since there's no way to know
* whether or not the kernel we're using is one of the broken ones, the
* best we can do is to clamp the timeout to INT64_MAX. This limits the
* maximum timeout from 584 years to 292 years - likely not a big deal.
*/
int64_t timeout = MIN2(_timeout, INT64_MAX);
VkResult result = VK_SUCCESS;
uint32_t pending_fences = fenceCount;
while (pending_fences) {
pending_fences = 0;
bool signaled_fences = false;
for (uint32_t i = 0; i < fenceCount; i++) {
ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
switch (fence->state) {
case ANV_FENCE_STATE_RESET:
/* This fence hasn't been submitted yet, we'll catch it the next
* time around. Yes, this may mean we dead-loop but, short of
* lots of locking and a condition variable, there's not much that
* we can do about that.
*/
pending_fences++;
continue;
case ANV_FENCE_STATE_SIGNALED:
/* This fence is not pending. If waitAll isn't set, we can return
* early. Otherwise, we have to keep going.
*/
if (!waitAll) {
result = VK_SUCCESS;
goto done;
}
continue;
case ANV_FENCE_STATE_SUBMITTED:
/* These are the fences we really care about. Go ahead and wait
* on it until we hit a timeout.
*/
result = anv_device_wait(device, &fence->bo, timeout);
switch (result) {
case VK_SUCCESS:
fence->state = ANV_FENCE_STATE_SIGNALED;
signaled_fences = true;
if (!waitAll)
goto done;
break;
case VK_TIMEOUT:
goto done;
default:
return result;
}
}
}
if (pending_fences && !signaled_fences) {
/* If we've hit this then someone decided to vkWaitForFences before
* they've actually submitted any of them to a queue. This is a
* fairly pessimal case, so it's ok to lock here and use a standard
* pthreads condition variable.
*/
pthread_mutex_lock(&device->mutex);
/* It's possible that some of the fences have changed state since the
* last time we checked. Now that we have the lock, check for
* pending fences again and don't wait if it's changed.
*/
uint32_t now_pending_fences = 0;
for (uint32_t i = 0; i < fenceCount; i++) {
ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
if (fence->state == ANV_FENCE_STATE_RESET)
now_pending_fences++;
}
assert(now_pending_fences <= pending_fences);
if (now_pending_fences == pending_fences) {
struct timespec before;
clock_gettime(CLOCK_MONOTONIC, &before);
uint32_t abs_nsec = before.tv_nsec + timeout % NSEC_PER_SEC;
uint64_t abs_sec = before.tv_sec + (abs_nsec / NSEC_PER_SEC) +
(timeout / NSEC_PER_SEC);
abs_nsec %= NSEC_PER_SEC;
/* Avoid roll-over in tv_sec on 32-bit systems if the user
* provided timeout is UINT64_MAX
*/
struct timespec abstime;
abstime.tv_nsec = abs_nsec;
abstime.tv_sec = MIN2(abs_sec, INT_TYPE_MAX(abstime.tv_sec));
ret = pthread_cond_timedwait(&device->queue_submit,
&device->mutex, &abstime);
assert(ret != EINVAL);
struct timespec after;
clock_gettime(CLOCK_MONOTONIC, &after);
uint64_t time_elapsed =
((uint64_t)after.tv_sec * NSEC_PER_SEC + after.tv_nsec) -
((uint64_t)before.tv_sec * NSEC_PER_SEC + before.tv_nsec);
if (time_elapsed >= timeout) {
pthread_mutex_unlock(&device->mutex);
result = VK_TIMEOUT;
goto done;
}
timeout -= time_elapsed;
}
pthread_mutex_unlock(&device->mutex);
}
}
done:
if (unlikely(device->lost))
return VK_ERROR_DEVICE_LOST;
return result;
}
// Queue semaphore functions
VkResult anv_CreateSemaphore(
VkDevice _device,
const VkSemaphoreCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSemaphore* pSemaphore)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_semaphore *semaphore;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO);
semaphore = vk_alloc2(&device->alloc, pAllocator, sizeof(*semaphore), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (semaphore == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
const VkExportSemaphoreCreateInfoKHR *export =
vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO_KHR);
VkExternalSemaphoreHandleTypeFlagsKHR handleTypes =
export ? export->handleTypes : 0;
if (handleTypes == 0) {
/* The DRM execbuffer ioctl always execute in-oder so long as you stay
* on the same ring. Since we don't expose the blit engine as a DMA
* queue, a dummy no-op semaphore is a perfectly valid implementation.
*/
semaphore->permanent.type = ANV_SEMAPHORE_TYPE_DUMMY;
} else if (handleTypes & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR) {
assert(handleTypes == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR);
semaphore->permanent.type = ANV_SEMAPHORE_TYPE_BO;
VkResult result = anv_bo_cache_alloc(device, &device->bo_cache,
4096, &semaphore->permanent.bo);
if (result != VK_SUCCESS) {
vk_free2(&device->alloc, pAllocator, semaphore);
return result;
}
/* If we're going to use this as a fence, we need to *not* have the
* EXEC_OBJECT_ASYNC bit set.
*/
assert(!(semaphore->permanent.bo->flags & EXEC_OBJECT_ASYNC));
} else {
assert(!"Unknown handle type");
vk_free2(&device->alloc, pAllocator, semaphore);
return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
}
semaphore->temporary.type = ANV_SEMAPHORE_TYPE_NONE;
*pSemaphore = anv_semaphore_to_handle(semaphore);
return VK_SUCCESS;
}
static void
anv_semaphore_impl_cleanup(struct anv_device *device,
struct anv_semaphore_impl *impl)
{
switch (impl->type) {
case ANV_SEMAPHORE_TYPE_NONE:
case ANV_SEMAPHORE_TYPE_DUMMY:
/* Dummy. Nothing to do */
return;
case ANV_SEMAPHORE_TYPE_BO:
anv_bo_cache_release(device, &device->bo_cache, impl->bo);
return;
}
unreachable("Invalid semaphore type");
}
void
anv_semaphore_reset_temporary(struct anv_device *device,
struct anv_semaphore *semaphore)
{
if (semaphore->temporary.type == ANV_SEMAPHORE_TYPE_NONE)
return;
anv_semaphore_impl_cleanup(device, &semaphore->temporary);
semaphore->temporary.type = ANV_SEMAPHORE_TYPE_NONE;
}
void anv_DestroySemaphore(
VkDevice _device,
VkSemaphore _semaphore,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_semaphore, semaphore, _semaphore);
if (semaphore == NULL)
return;
anv_semaphore_impl_cleanup(device, &semaphore->temporary);
anv_semaphore_impl_cleanup(device, &semaphore->permanent);
vk_free2(&device->alloc, pAllocator, semaphore);
}
void anv_GetPhysicalDeviceExternalSemaphorePropertiesKHR(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceExternalSemaphoreInfoKHR* pExternalSemaphoreInfo,
VkExternalSemaphorePropertiesKHR* pExternalSemaphoreProperties)
{
switch (pExternalSemaphoreInfo->handleType) {
case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
pExternalSemaphoreProperties->exportFromImportedHandleTypes =
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR;
pExternalSemaphoreProperties->compatibleHandleTypes =
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR;
pExternalSemaphoreProperties->externalSemaphoreFeatures =
VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHR |
VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR;
break;
default:
pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
pExternalSemaphoreProperties->compatibleHandleTypes = 0;
pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
}
}
VkResult anv_ImportSemaphoreFdKHR(
VkDevice _device,
const VkImportSemaphoreFdInfoKHR* pImportSemaphoreFdInfo)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_semaphore, semaphore, pImportSemaphoreFdInfo->semaphore);
int fd = pImportSemaphoreFdInfo->fd;
struct anv_semaphore_impl new_impl = {
.type = ANV_SEMAPHORE_TYPE_NONE,
};
switch (pImportSemaphoreFdInfo->handleType) {
case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR: {
new_impl.type = ANV_SEMAPHORE_TYPE_BO;
VkResult result = anv_bo_cache_import(device, &device->bo_cache,
fd, 4096, &new_impl.bo);
if (result != VK_SUCCESS)
return result;
/* If we're going to use this as a fence, we need to *not* have the
* EXEC_OBJECT_ASYNC bit set.
*/
assert(!(new_impl.bo->flags & EXEC_OBJECT_ASYNC));
break;
}
default:
return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
}
if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT_KHR) {
anv_semaphore_impl_cleanup(device, &semaphore->temporary);
semaphore->temporary = new_impl;
} else {
anv_semaphore_impl_cleanup(device, &semaphore->permanent);
semaphore->permanent = new_impl;
}
return VK_SUCCESS;
}
VkResult anv_GetSemaphoreFdKHR(
VkDevice _device,
const VkSemaphoreGetFdInfoKHR* pGetFdInfo,
int* pFd)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_semaphore, semaphore, pGetFdInfo->semaphore);
VkResult result;
assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR);
struct anv_semaphore_impl *impl =
semaphore->temporary.type != ANV_SEMAPHORE_TYPE_NONE ?
&semaphore->temporary : &semaphore->permanent;
switch (impl->type) {
case ANV_SEMAPHORE_TYPE_BO:
result = anv_bo_cache_export(device, &device->bo_cache, impl->bo, pFd);
if (result != VK_SUCCESS)
return result;
break;
default:
return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
}
/* From the Vulkan 1.0.53 spec:
*
* "Export operations have the same transference as the specified handle
* types import operations. [...] If the semaphore was using a
* temporarily imported payload, the semaphores prior permanent payload
* will be restored.
*/
if (impl == &semaphore->temporary)
anv_semaphore_impl_cleanup(device, impl);
return VK_SUCCESS;
}