/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "anv_private.h" #include "gen7_pack.h" #include "gen75_pack.h" static uint32_t cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer) { static const uint32_t push_constant_opcodes[] = { [MESA_SHADER_VERTEX] = 21, [MESA_SHADER_TESS_CTRL] = 25, /* HS */ [MESA_SHADER_TESS_EVAL] = 26, /* DS */ [MESA_SHADER_GEOMETRY] = 22, [MESA_SHADER_FRAGMENT] = 23, [MESA_SHADER_COMPUTE] = 0, }; VkShaderStageFlags flushed = 0; anv_foreach_stage(stage, cmd_buffer->state.push_constants_dirty) { if (stage == MESA_SHADER_COMPUTE) continue; struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage); if (state.offset == 0) continue; anv_batch_emit(&cmd_buffer->batch, GEN7_3DSTATE_CONSTANT_VS, ._3DCommandSubOpcode = push_constant_opcodes[stage], .ConstantBody = { .PointerToConstantBuffer0 = { .offset = state.offset }, .ConstantBuffer0ReadLength = DIV_ROUND_UP(state.alloc_size, 32), }); flushed |= mesa_to_vk_shader_stage(stage); } cmd_buffer->state.push_constants_dirty &= ~flushed; return flushed; } GENX_FUNC(GEN7, GEN7) void genX(cmd_buffer_emit_descriptor_pointers)(struct anv_cmd_buffer *cmd_buffer, uint32_t stages) { static const uint32_t sampler_state_opcodes[] = { [MESA_SHADER_VERTEX] = 43, [MESA_SHADER_TESS_CTRL] = 44, /* HS */ [MESA_SHADER_TESS_EVAL] = 45, /* DS */ [MESA_SHADER_GEOMETRY] = 46, [MESA_SHADER_FRAGMENT] = 47, [MESA_SHADER_COMPUTE] = 0, }; static const uint32_t binding_table_opcodes[] = { [MESA_SHADER_VERTEX] = 38, [MESA_SHADER_TESS_CTRL] = 39, [MESA_SHADER_TESS_EVAL] = 40, [MESA_SHADER_GEOMETRY] = 41, [MESA_SHADER_FRAGMENT] = 42, [MESA_SHADER_COMPUTE] = 0, }; anv_foreach_stage(s, stages) { if (cmd_buffer->state.samplers[s].alloc_size > 0) { anv_batch_emit(&cmd_buffer->batch, GEN7_3DSTATE_SAMPLER_STATE_POINTERS_VS, ._3DCommandSubOpcode = sampler_state_opcodes[s], .PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset); } /* Always emit binding table pointers if we're asked to, since on SKL * this is what flushes push constants. */ anv_batch_emit(&cmd_buffer->batch, GEN7_3DSTATE_BINDING_TABLE_POINTERS_VS, ._3DCommandSubOpcode = binding_table_opcodes[s], .PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset); } } GENX_FUNC(GEN7, GEN7) uint32_t genX(cmd_buffer_flush_descriptor_sets)(struct anv_cmd_buffer *cmd_buffer) { VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty & cmd_buffer->state.pipeline->active_stages; VkResult result = VK_SUCCESS; anv_foreach_stage(s, dirty) { result = anv_cmd_buffer_emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]); if (result != VK_SUCCESS) break; result = anv_cmd_buffer_emit_binding_table(cmd_buffer, s, &cmd_buffer->state.binding_tables[s]); if (result != VK_SUCCESS) break; } if (result != VK_SUCCESS) { assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY); result = anv_cmd_buffer_new_binding_table_block(cmd_buffer); assert(result == VK_SUCCESS); /* Re-emit state base addresses so we get the new surface state base * address before we start emitting binding tables etc. */ anv_cmd_buffer_emit_state_base_address(cmd_buffer); /* Re-emit all active binding tables */ dirty |= cmd_buffer->state.pipeline->active_stages; anv_foreach_stage(s, dirty) { result = anv_cmd_buffer_emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]); if (result != VK_SUCCESS) return result; result = anv_cmd_buffer_emit_binding_table(cmd_buffer, s, &cmd_buffer->state.binding_tables[s]); if (result != VK_SUCCESS) return result; } } cmd_buffer->state.descriptors_dirty &= ~dirty; return dirty; } static inline int64_t clamp_int64(int64_t x, int64_t min, int64_t max) { if (x < min) return min; else if (x < max) return x; else return max; } static void emit_scissor_state(struct anv_cmd_buffer *cmd_buffer, uint32_t count, const VkRect2D *scissors) { struct anv_state scissor_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32); for (uint32_t i = 0; i < count; i++) { const VkRect2D *s = &scissors[i]; /* Since xmax and ymax are inclusive, we have to have xmax < xmin or * ymax < ymin for empty clips. In case clip x, y, width height are all * 0, the clamps below produce 0 for xmin, ymin, xmax, ymax, which isn't * what we want. Just special case empty clips and produce a canonical * empty clip. */ static const struct GEN7_SCISSOR_RECT empty_scissor = { .ScissorRectangleYMin = 1, .ScissorRectangleXMin = 1, .ScissorRectangleYMax = 0, .ScissorRectangleXMax = 0 }; const int max = 0xffff; struct GEN7_SCISSOR_RECT scissor = { /* Do this math using int64_t so overflow gets clamped correctly. */ .ScissorRectangleYMin = clamp_int64(s->offset.y, 0, max), .ScissorRectangleXMin = clamp_int64(s->offset.x, 0, max), .ScissorRectangleYMax = clamp_int64((uint64_t) s->offset.y + s->extent.height - 1, 0, max), .ScissorRectangleXMax = clamp_int64((uint64_t) s->offset.x + s->extent.width - 1, 0, max) }; if (s->extent.width <= 0 || s->extent.height <= 0) { GEN7_SCISSOR_RECT_pack(NULL, scissor_state.map + i * 8, &empty_scissor); } else { GEN7_SCISSOR_RECT_pack(NULL, scissor_state.map + i * 8, &scissor); } } anv_batch_emit(&cmd_buffer->batch, GEN7_3DSTATE_SCISSOR_STATE_POINTERS, .ScissorRectPointer = scissor_state.offset); if (!cmd_buffer->device->info.has_llc) anv_state_clflush(scissor_state); } GENX_FUNC(GEN7, GEN7) void genX(cmd_buffer_emit_scissor)(struct anv_cmd_buffer *cmd_buffer) { if (cmd_buffer->state.dynamic.scissor.count > 0) { emit_scissor_state(cmd_buffer, cmd_buffer->state.dynamic.scissor.count, cmd_buffer->state.dynamic.scissor.scissors); } else { /* Emit a default scissor based on the currently bound framebuffer */ emit_scissor_state(cmd_buffer, 1, &(VkRect2D) { .offset = { .x = 0, .y = 0, }, .extent = { .width = cmd_buffer->state.framebuffer->width, .height = cmd_buffer->state.framebuffer->height, }, }); } } static const uint32_t vk_to_gen_index_type[] = { [VK_INDEX_TYPE_UINT16] = INDEX_WORD, [VK_INDEX_TYPE_UINT32] = INDEX_DWORD, }; static const uint32_t restart_index_for_type[] = { [VK_INDEX_TYPE_UINT16] = UINT16_MAX, [VK_INDEX_TYPE_UINT32] = UINT32_MAX, }; void genX(CmdBindIndexBuffer)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, VkIndexType indexType) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); cmd_buffer->state.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER; if (ANV_IS_HASWELL) cmd_buffer->state.restart_index = restart_index_for_type[indexType]; cmd_buffer->state.gen7.index_buffer = buffer; cmd_buffer->state.gen7.index_type = vk_to_gen_index_type[indexType]; cmd_buffer->state.gen7.index_offset = offset; } static VkResult flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer) { struct anv_device *device = cmd_buffer->device; struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline; struct anv_state surfaces = { 0, }, samplers = { 0, }; VkResult result; result = anv_cmd_buffer_emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers); if (result != VK_SUCCESS) return result; result = anv_cmd_buffer_emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces); if (result != VK_SUCCESS) return result; struct anv_state push_state = anv_cmd_buffer_cs_push_constants(cmd_buffer); const struct brw_cs_prog_data *cs_prog_data = &pipeline->cs_prog_data; const struct brw_stage_prog_data *prog_data = &cs_prog_data->base; unsigned local_id_dwords = cs_prog_data->local_invocation_id_regs * 8; unsigned push_constant_data_size = (prog_data->nr_params + local_id_dwords) * 4; unsigned reg_aligned_constant_size = ALIGN(push_constant_data_size, 32); unsigned push_constant_regs = reg_aligned_constant_size / 32; if (push_state.alloc_size) { anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), .CURBETotalDataLength = push_state.alloc_size, .CURBEDataStartAddress = push_state.offset); } assert(prog_data->total_shared <= 64 * 1024); uint32_t slm_size = 0; if (prog_data->total_shared > 0) { /* slm_size is in 4k increments, but must be a power of 2. */ slm_size = 4 * 1024; while (slm_size < prog_data->total_shared) slm_size <<= 1; slm_size /= 4 * 1024; } struct anv_state state = anv_state_pool_emit(&device->dynamic_state_pool, GEN7_INTERFACE_DESCRIPTOR_DATA, 64, .KernelStartPointer = pipeline->cs_simd, .BindingTablePointer = surfaces.offset, .SamplerStatePointer = samplers.offset, .ConstantURBEntryReadLength = push_constant_regs, .ConstantURBEntryReadOffset = 0, .BarrierEnable = cs_prog_data->uses_barrier, .SharedLocalMemorySize = slm_size, .NumberofThreadsinGPGPUThreadGroup = pipeline->cs_thread_width_max); const uint32_t size = GEN7_INTERFACE_DESCRIPTOR_DATA_length * sizeof(uint32_t); anv_batch_emit(&cmd_buffer->batch, GEN7_MEDIA_INTERFACE_DESCRIPTOR_LOAD, .InterfaceDescriptorTotalLength = size, .InterfaceDescriptorDataStartAddress = state.offset); return VK_SUCCESS; } static void cmd_buffer_flush_compute_state(struct anv_cmd_buffer *cmd_buffer) { struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline; VkResult result; assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT); if (cmd_buffer->state.current_pipeline != GPGPU) { anv_batch_emit(&cmd_buffer->batch, GEN7_PIPELINE_SELECT, .PipelineSelection = GPGPU); cmd_buffer->state.current_pipeline = GPGPU; } if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE) anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch); if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) || (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) { /* FIXME: figure out descriptors for gen7 */ result = flush_compute_descriptor_set(cmd_buffer); assert(result == VK_SUCCESS); cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT; } cmd_buffer->state.compute_dirty = 0; } static void cmd_buffer_flush_state(struct anv_cmd_buffer *cmd_buffer) { struct anv_pipeline *pipeline = cmd_buffer->state.pipeline; uint32_t *p; uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used; assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0); if (cmd_buffer->state.current_pipeline != _3D) { anv_batch_emit(&cmd_buffer->batch, GEN7_PIPELINE_SELECT, .PipelineSelection = _3D); cmd_buffer->state.current_pipeline = _3D; } if (vb_emit) { const uint32_t num_buffers = __builtin_popcount(vb_emit); const uint32_t num_dwords = 1 + num_buffers * 4; p = anv_batch_emitn(&cmd_buffer->batch, num_dwords, GEN7_3DSTATE_VERTEX_BUFFERS); uint32_t vb, i = 0; for_each_bit(vb, vb_emit) { struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer; uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset; struct GEN7_VERTEX_BUFFER_STATE state = { .VertexBufferIndex = vb, .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA, .VertexBufferMemoryObjectControlState = GEN7_MOCS, .AddressModifyEnable = true, .BufferPitch = pipeline->binding_stride[vb], .BufferStartingAddress = { buffer->bo, buffer->offset + offset }, .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1}, .InstanceDataStepRate = 1 }; GEN7_VERTEX_BUFFER_STATE_pack(&cmd_buffer->batch, &p[1 + i * 4], &state); i++; } } if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_PIPELINE) { /* If somebody compiled a pipeline after starting a command buffer the * scratch bo may have grown since we started this cmd buffer (and * emitted STATE_BASE_ADDRESS). If we're binding that pipeline now, * reemit STATE_BASE_ADDRESS so that we use the bigger scratch bo. */ if (cmd_buffer->state.scratch_size < pipeline->total_scratch) gen7_cmd_buffer_emit_state_base_address(cmd_buffer); anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch); } if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT || cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) { /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1: * * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth * stall needs to be sent just prior to any 3DSTATE_VS, * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS, * 3DSTATE_BINDING_TABLE_POINTER_VS, * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one * PIPE_CONTROL needs to be sent before any combination of VS * associated 3DSTATE." */ anv_batch_emit(&cmd_buffer->batch, GEN7_PIPE_CONTROL, .DepthStallEnable = true, .PostSyncOperation = WriteImmediateData, .Address = { &cmd_buffer->device->workaround_bo, 0 }); } uint32_t dirty = 0; if (cmd_buffer->state.descriptors_dirty) { dirty = gen7_cmd_buffer_flush_descriptor_sets(cmd_buffer); gen7_cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty); } if (cmd_buffer->state.push_constants_dirty) cmd_buffer_flush_push_constants(cmd_buffer); /* We use the gen8 state here because it only contains the additional * min/max fields and, since they occur at the end of the packet and * don't change the stride, they work on gen7 too. */ if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT) gen8_cmd_buffer_emit_viewport(cmd_buffer); if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR) gen7_cmd_buffer_emit_scissor(cmd_buffer); if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)) { bool enable_bias = cmd_buffer->state.dynamic.depth_bias.bias != 0.0f || cmd_buffer->state.dynamic.depth_bias.slope != 0.0f; uint32_t sf_dw[GEN7_3DSTATE_SF_length]; struct GEN7_3DSTATE_SF sf = { GEN7_3DSTATE_SF_header, .LineWidth = cmd_buffer->state.dynamic.line_width, .GlobalDepthOffsetEnableSolid = enable_bias, .GlobalDepthOffsetEnableWireframe = enable_bias, .GlobalDepthOffsetEnablePoint = enable_bias, .GlobalDepthOffsetConstant = cmd_buffer->state.dynamic.depth_bias.bias, .GlobalDepthOffsetScale = cmd_buffer->state.dynamic.depth_bias.slope, .GlobalDepthOffsetClamp = cmd_buffer->state.dynamic.depth_bias.clamp }; GEN7_3DSTATE_SF_pack(NULL, sf_dw, &sf); anv_batch_emit_merge(&cmd_buffer->batch, sf_dw, pipeline->gen7.sf); } if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) { struct anv_state cc_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, GEN7_COLOR_CALC_STATE_length * 4, 64); struct GEN7_COLOR_CALC_STATE cc = { .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0], .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1], .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2], .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3], .StencilReferenceValue = cmd_buffer->state.dynamic.stencil_reference.front, .BackFaceStencilReferenceValue = cmd_buffer->state.dynamic.stencil_reference.back, }; GEN7_COLOR_CALC_STATE_pack(NULL, cc_state.map, &cc); if (!cmd_buffer->device->info.has_llc) anv_state_clflush(cc_state); anv_batch_emit(&cmd_buffer->batch, GEN7_3DSTATE_CC_STATE_POINTERS, .ColorCalcStatePointer = cc_state.offset); } if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_RENDER_TARGETS | ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK)) { uint32_t depth_stencil_dw[GEN7_DEPTH_STENCIL_STATE_length]; const struct anv_image_view *iview = anv_cmd_buffer_get_depth_stencil_view(cmd_buffer); struct GEN7_DEPTH_STENCIL_STATE depth_stencil = { .StencilBufferWriteEnable = iview && (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT), .StencilTestMask = cmd_buffer->state.dynamic.stencil_compare_mask.front & 0xff, .StencilWriteMask = cmd_buffer->state.dynamic.stencil_write_mask.front & 0xff, .BackfaceStencilTestMask = cmd_buffer->state.dynamic.stencil_compare_mask.back & 0xff, .BackfaceStencilWriteMask = cmd_buffer->state.dynamic.stencil_write_mask.back & 0xff, }; GEN7_DEPTH_STENCIL_STATE_pack(NULL, depth_stencil_dw, &depth_stencil); struct anv_state ds_state = anv_cmd_buffer_merge_dynamic(cmd_buffer, depth_stencil_dw, pipeline->gen7.depth_stencil_state, GEN7_DEPTH_STENCIL_STATE_length, 64); anv_batch_emit(&cmd_buffer->batch, GEN7_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, .PointertoDEPTH_STENCIL_STATE = ds_state.offset); } if (cmd_buffer->state.gen7.index_buffer && cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_INDEX_BUFFER)) { struct anv_buffer *buffer = cmd_buffer->state.gen7.index_buffer; uint32_t offset = cmd_buffer->state.gen7.index_offset; if (ANV_IS_HASWELL) { anv_batch_emit(&cmd_buffer->batch, GEN75_3DSTATE_VF, .IndexedDrawCutIndexEnable = pipeline->primitive_restart, .CutIndex = cmd_buffer->state.restart_index); } anv_batch_emit(&cmd_buffer->batch, GEN7_3DSTATE_INDEX_BUFFER, .CutIndexEnable = pipeline->primitive_restart, .IndexFormat = cmd_buffer->state.gen7.index_type, .MemoryObjectControlState = GEN7_MOCS, .BufferStartingAddress = { buffer->bo, buffer->offset + offset }, .BufferEndingAddress = { buffer->bo, buffer->offset + buffer->size }); } cmd_buffer->state.vb_dirty &= ~vb_emit; cmd_buffer->state.dirty = 0; } static void emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer, struct anv_bo *bo, uint32_t offset) { uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(3DSTATE_VERTEX_BUFFERS)); GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1, &(struct GENX(VERTEX_BUFFER_STATE)) { .VertexBufferIndex = 32, /* Reserved for this */ .VertexBufferMemoryObjectControlState = GENX(MOCS), .AddressModifyEnable = true, .BufferPitch = 0, .BufferStartingAddress = { bo, offset }, .EndAddress = { bo, offset + 8 }, }); } static void emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer, uint32_t base_vertex, uint32_t base_instance) { struct anv_state id_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4); ((uint32_t *)id_state.map)[0] = base_vertex; ((uint32_t *)id_state.map)[1] = base_instance; if (!cmd_buffer->device->info.has_llc) anv_state_clflush(id_state); emit_base_vertex_instance_bo(cmd_buffer, &cmd_buffer->device->dynamic_state_block_pool.bo, id_state.offset); } void genX(CmdDraw)( VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_pipeline *pipeline = cmd_buffer->state.pipeline; cmd_buffer_flush_state(cmd_buffer); if (cmd_buffer->state.pipeline->vs_prog_data.uses_basevertex || cmd_buffer->state.pipeline->vs_prog_data.uses_baseinstance) emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance); anv_batch_emit(&cmd_buffer->batch, GEN7_3DPRIMITIVE, .VertexAccessType = SEQUENTIAL, .PrimitiveTopologyType = pipeline->topology, .VertexCountPerInstance = vertexCount, .StartVertexLocation = firstVertex, .InstanceCount = instanceCount, .StartInstanceLocation = firstInstance, .BaseVertexLocation = 0); } void genX(CmdDrawIndexed)( VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_pipeline *pipeline = cmd_buffer->state.pipeline; cmd_buffer_flush_state(cmd_buffer); if (cmd_buffer->state.pipeline->vs_prog_data.uses_basevertex || cmd_buffer->state.pipeline->vs_prog_data.uses_baseinstance) emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance); anv_batch_emit(&cmd_buffer->batch, GEN7_3DPRIMITIVE, .VertexAccessType = RANDOM, .PrimitiveTopologyType = pipeline->topology, .VertexCountPerInstance = indexCount, .StartVertexLocation = firstIndex, .InstanceCount = instanceCount, .StartInstanceLocation = firstInstance, .BaseVertexLocation = vertexOffset); } static void gen7_batch_lrm(struct anv_batch *batch, uint32_t reg, struct anv_bo *bo, uint32_t offset) { anv_batch_emit(batch, GEN7_MI_LOAD_REGISTER_MEM, .RegisterAddress = reg, .MemoryAddress = { bo, offset }); } static void gen7_batch_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm) { anv_batch_emit(batch, GEN7_MI_LOAD_REGISTER_IMM, .RegisterOffset = reg, .DataDWord = imm); } /* Auto-Draw / Indirect Registers */ #define GEN7_3DPRIM_END_OFFSET 0x2420 #define GEN7_3DPRIM_START_VERTEX 0x2430 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438 #define GEN7_3DPRIM_START_INSTANCE 0x243C #define GEN7_3DPRIM_BASE_VERTEX 0x2440 void genX(CmdDrawIndirect)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); struct anv_pipeline *pipeline = cmd_buffer->state.pipeline; struct anv_bo *bo = buffer->bo; uint32_t bo_offset = buffer->offset + offset; cmd_buffer_flush_state(cmd_buffer); if (cmd_buffer->state.pipeline->vs_prog_data.uses_basevertex || cmd_buffer->state.pipeline->vs_prog_data.uses_baseinstance) emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8); gen7_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset); gen7_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4); gen7_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8); gen7_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12); gen7_batch_lri(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, 0); anv_batch_emit(&cmd_buffer->batch, GEN7_3DPRIMITIVE, .IndirectParameterEnable = true, .VertexAccessType = SEQUENTIAL, .PrimitiveTopologyType = pipeline->topology); } void genX(CmdDrawIndexedIndirect)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); struct anv_pipeline *pipeline = cmd_buffer->state.pipeline; struct anv_bo *bo = buffer->bo; uint32_t bo_offset = buffer->offset + offset; cmd_buffer_flush_state(cmd_buffer); if (cmd_buffer->state.pipeline->vs_prog_data.uses_basevertex || cmd_buffer->state.pipeline->vs_prog_data.uses_baseinstance) emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12); gen7_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset); gen7_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4); gen7_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8); gen7_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12); gen7_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16); anv_batch_emit(&cmd_buffer->batch, GEN7_3DPRIMITIVE, .IndirectParameterEnable = true, .VertexAccessType = RANDOM, .PrimitiveTopologyType = pipeline->topology); } void genX(CmdDispatch)( VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline; struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data; if (prog_data->uses_num_work_groups) { struct anv_state state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4); uint32_t *sizes = state.map; sizes[0] = x; sizes[1] = y; sizes[2] = z; if (!cmd_buffer->device->info.has_llc) anv_state_clflush(state); cmd_buffer->state.num_workgroups_offset = state.offset; cmd_buffer->state.num_workgroups_bo = &cmd_buffer->device->dynamic_state_block_pool.bo; } cmd_buffer_flush_compute_state(cmd_buffer); anv_batch_emit(&cmd_buffer->batch, GEN7_GPGPU_WALKER, .SIMDSize = prog_data->simd_size / 16, .ThreadDepthCounterMaximum = 0, .ThreadHeightCounterMaximum = 0, .ThreadWidthCounterMaximum = pipeline->cs_thread_width_max - 1, .ThreadGroupIDXDimension = x, .ThreadGroupIDYDimension = y, .ThreadGroupIDZDimension = z, .RightExecutionMask = pipeline->cs_right_mask, .BottomExecutionMask = 0xffffffff); anv_batch_emit(&cmd_buffer->batch, GEN7_MEDIA_STATE_FLUSH); } #define GPGPU_DISPATCHDIMX 0x2500 #define GPGPU_DISPATCHDIMY 0x2504 #define GPGPU_DISPATCHDIMZ 0x2508 void genX(CmdDispatchIndirect)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline; struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data; struct anv_bo *bo = buffer->bo; uint32_t bo_offset = buffer->offset + offset; if (prog_data->uses_num_work_groups) { cmd_buffer->state.num_workgroups_offset = bo_offset; cmd_buffer->state.num_workgroups_bo = bo; } cmd_buffer_flush_compute_state(cmd_buffer); gen7_batch_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMX, bo, bo_offset); gen7_batch_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4); gen7_batch_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8); anv_batch_emit(&cmd_buffer->batch, GEN7_GPGPU_WALKER, .IndirectParameterEnable = true, .SIMDSize = prog_data->simd_size / 16, .ThreadDepthCounterMaximum = 0, .ThreadHeightCounterMaximum = 0, .ThreadWidthCounterMaximum = pipeline->cs_thread_width_max - 1, .RightExecutionMask = pipeline->cs_right_mask, .BottomExecutionMask = 0xffffffff); anv_batch_emit(&cmd_buffer->batch, GEN7_MEDIA_STATE_FLUSH); } static void cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer) { const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer; const struct anv_image_view *iview = anv_cmd_buffer_get_depth_stencil_view(cmd_buffer); const struct anv_image *image = iview ? iview->image : NULL; /* XXX: isl needs to grow depth format support */ const struct anv_format *anv_format = iview ? anv_format_for_vk_format(iview->vk_format) : NULL; const bool has_depth = iview && anv_format->depth_format; const bool has_stencil = iview && anv_format->has_stencil; /* Emit 3DSTATE_DEPTH_BUFFER */ if (has_depth) { anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER), .SurfaceType = SURFTYPE_2D, .DepthWriteEnable = true, .StencilWriteEnable = has_stencil, .HierarchicalDepthBufferEnable = false, .SurfaceFormat = anv_format->depth_format, .SurfacePitch = image->depth_surface.isl.row_pitch - 1, .SurfaceBaseAddress = { .bo = image->bo, .offset = image->depth_surface.offset, }, .Height = fb->height - 1, .Width = fb->width - 1, .LOD = 0, .Depth = 1 - 1, .MinimumArrayElement = 0, .DepthBufferObjectControlState = GENX(MOCS), .RenderTargetViewExtent = 1 - 1); } else { /* Even when no depth buffer is present, the hardware requires that * 3DSTATE_DEPTH_BUFFER be programmed correctly. The Broadwell PRM says: * * If a null depth buffer is bound, the driver must instead bind depth as: * 3DSTATE_DEPTH.SurfaceType = SURFTYPE_2D * 3DSTATE_DEPTH.Width = 1 * 3DSTATE_DEPTH.Height = 1 * 3DSTATE_DEPTH.SuraceFormat = D16_UNORM * 3DSTATE_DEPTH.SurfaceBaseAddress = 0 * 3DSTATE_DEPTH.HierarchicalDepthBufferEnable = 0 * 3DSTATE_WM_DEPTH_STENCIL.DepthTestEnable = 0 * 3DSTATE_WM_DEPTH_STENCIL.DepthBufferWriteEnable = 0 * * The PRM is wrong, though. The width and height must be programmed to * actual framebuffer's width and height, even when neither depth buffer * nor stencil buffer is present. */ anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER), .SurfaceType = SURFTYPE_2D, .SurfaceFormat = D16_UNORM, .Width = fb->width - 1, .Height = fb->height - 1, .StencilWriteEnable = has_stencil); } /* Emit 3DSTATE_STENCIL_BUFFER */ if (has_stencil) { anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER), # if (ANV_IS_HASWELL) .StencilBufferEnable = true, # endif .StencilBufferObjectControlState = GENX(MOCS), /* Stencil buffers have strange pitch. The PRM says: * * The pitch must be set to 2x the value computed based on width, * as the stencil buffer is stored with two rows interleaved. */ .SurfacePitch = 2 * image->stencil_surface.isl.row_pitch - 1, .SurfaceBaseAddress = { .bo = image->bo, .offset = image->offset + image->stencil_surface.offset, }); } else { anv_batch_emit(&cmd_buffer->batch, GEN7_3DSTATE_STENCIL_BUFFER); } /* Disable hierarchial depth buffers. */ anv_batch_emit(&cmd_buffer->batch, GEN7_3DSTATE_HIER_DEPTH_BUFFER); /* Clear the clear params. */ anv_batch_emit(&cmd_buffer->batch, GEN7_3DSTATE_CLEAR_PARAMS); } /** * @see anv_cmd_buffer_set_subpass() */ GENX_FUNC(GEN7, GEN7) void genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer, struct anv_subpass *subpass) { cmd_buffer->state.subpass = subpass; cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS; cmd_buffer_emit_depth_stencil(cmd_buffer); } void genX(CmdBeginRenderPass)( VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin, VkSubpassContents contents) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass); ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer); cmd_buffer->state.framebuffer = framebuffer; cmd_buffer->state.pass = pass; anv_cmd_state_setup_attachments(cmd_buffer, pRenderPassBegin); const VkRect2D *render_area = &pRenderPassBegin->renderArea; anv_batch_emit(&cmd_buffer->batch, GEN7_3DSTATE_DRAWING_RECTANGLE, .ClippedDrawingRectangleYMin = render_area->offset.y, .ClippedDrawingRectangleXMin = render_area->offset.x, .ClippedDrawingRectangleYMax = render_area->offset.y + render_area->extent.height - 1, .ClippedDrawingRectangleXMax = render_area->offset.x + render_area->extent.width - 1, .DrawingRectangleOriginY = 0, .DrawingRectangleOriginX = 0); gen7_cmd_buffer_set_subpass(cmd_buffer, pass->subpasses); anv_cmd_buffer_clear_subpass(cmd_buffer); } void genX(CmdNextSubpass)( VkCommandBuffer commandBuffer, VkSubpassContents contents) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); anv_cmd_buffer_resolve_subpass(cmd_buffer); gen7_cmd_buffer_set_subpass(cmd_buffer, cmd_buffer->state.subpass + 1); anv_cmd_buffer_clear_subpass(cmd_buffer); } void genX(CmdEndRenderPass)( VkCommandBuffer commandBuffer) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); anv_cmd_buffer_resolve_subpass(cmd_buffer); /* Emit a flushing pipe control at the end of a pass. This is kind of a * hack but it ensures that render targets always actually get written. * Eventually, we should do flushing based on image format transitions * or something of that nature. */ anv_batch_emit(&cmd_buffer->batch, GEN7_PIPE_CONTROL, .PostSyncOperation = NoWrite, .RenderTargetCacheFlushEnable = true, .InstructionCacheInvalidateEnable = true, .DepthCacheFlushEnable = true, .VFCacheInvalidationEnable = true, .TextureCacheInvalidationEnable = true, .CommandStreamerStallEnable = true); } void genX(CmdSetEvent)( VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) { stub(); } void genX(CmdResetEvent)( VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) { stub(); } void genX(CmdWaitEvents)( VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent* pEvents, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags destStageMask, uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers) { stub(); }