/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "brw_cfg.h" #include "util/u_dynarray.h" #include "brw_shader.h" /** @file * * Walks the shader instructions generated and creates a set of basic * blocks with successor/predecessor edges connecting them. */ static bblock_t * pop_stack(exec_list *list) { bblock_link *link = (bblock_link *)list->get_tail(); bblock_t *block = link->block; link->link.remove(); return block; } static exec_node * link(void *mem_ctx, bblock_t *block, enum bblock_link_kind kind) { bblock_link *l = new(mem_ctx) bblock_link(block, kind); return &l->link; } void push_stack(exec_list *list, void *mem_ctx, bblock_t *block) { /* The kind of the link is immaterial, but we need to provide one since * this is (ab)using the edge data structure in order to implement a stack. */ list->push_tail(link(mem_ctx, block, bblock_link_logical)); } bblock_t::bblock_t(cfg_t *cfg) : cfg(cfg), start_ip(0), end_ip(0), end_ip_delta(0), num(0) { instructions.make_empty(); parents.make_empty(); children.make_empty(); } void bblock_t::add_successor(void *mem_ctx, bblock_t *successor, enum bblock_link_kind kind) { successor->parents.push_tail(::link(mem_ctx, this, kind)); children.push_tail(::link(mem_ctx, successor, kind)); } static void append_inst(bblock_t *block, brw_inst *inst) { assert(inst->block == NULL); inst->block = block; block->instructions.push_tail(inst); } cfg_t::cfg_t(brw_shader *s, exec_list *instructions) : s(s) { mem_ctx = ralloc_context(NULL); block_list.make_empty(); blocks = NULL; num_blocks = 0; bblock_t *cur = NULL; int ip = 0; bblock_t *entry = new_block(); bblock_t *cur_if = NULL; /**< BB ending with IF. */ bblock_t *cur_else = NULL; /**< BB ending with ELSE. */ bblock_t *cur_do = NULL; /**< BB starting with DO. */ bblock_t *cur_while = NULL; /**< BB immediately following WHILE. */ exec_list if_stack, else_stack, do_stack, while_stack; bblock_t *next; set_next_block(&cur, entry, ip); foreach_in_list_safe(brw_inst, inst, instructions) { /* set_next_block wants the post-incremented ip */ ip++; inst->exec_node::remove(); switch (inst->opcode) { case SHADER_OPCODE_FLOW: append_inst(cur, inst); next = new_block(); cur->add_successor(mem_ctx, next, bblock_link_logical); set_next_block(&cur, next, ip); break; case BRW_OPCODE_IF: append_inst(cur, inst); /* Push our information onto a stack so we can recover from * nested ifs. */ push_stack(&if_stack, mem_ctx, cur_if); push_stack(&else_stack, mem_ctx, cur_else); cur_if = cur; cur_else = NULL; /* Set up our immediately following block, full of "then" * instructions. */ next = new_block(); cur_if->add_successor(mem_ctx, next, bblock_link_logical); set_next_block(&cur, next, ip); break; case BRW_OPCODE_ELSE: append_inst(cur, inst); cur_else = cur; next = new_block(); assert(cur_if != NULL); cur_if->add_successor(mem_ctx, next, bblock_link_logical); cur_else->add_successor(mem_ctx, next, bblock_link_physical); set_next_block(&cur, next, ip); break; case BRW_OPCODE_ENDIF: { bblock_t *cur_endif; if (cur->instructions.is_empty()) { /* New block was just created; use it. */ cur_endif = cur; } else { cur_endif = new_block(); cur->add_successor(mem_ctx, cur_endif, bblock_link_logical); set_next_block(&cur, cur_endif, ip - 1); } append_inst(cur, inst); if (cur_else) { cur_else->add_successor(mem_ctx, cur_endif, bblock_link_logical); } else { assert(cur_if != NULL); cur_if->add_successor(mem_ctx, cur_endif, bblock_link_logical); } assert(cur_if->end()->opcode == BRW_OPCODE_IF); assert(!cur_else || cur_else->end()->opcode == BRW_OPCODE_ELSE); /* Pop the stack so we're in the previous if/else/endif */ cur_if = pop_stack(&if_stack); cur_else = pop_stack(&else_stack); break; } case BRW_OPCODE_DO: /* Push our information onto a stack so we can recover from * nested loops. */ push_stack(&do_stack, mem_ctx, cur_do); push_stack(&while_stack, mem_ctx, cur_while); /* Set up the block just after the while. Don't know when exactly * it will start, yet. */ cur_while = new_block(); if (cur->instructions.is_empty()) { /* New block was just created; use it. */ cur_do = cur; } else { cur_do = new_block(); cur->add_successor(mem_ctx, cur_do, bblock_link_logical); set_next_block(&cur, cur_do, ip - 1); } append_inst(cur, inst); /* Represent divergent execution of the loop as a pair of alternative * edges coming out of the DO instruction: For any physical iteration * of the loop a given logical thread can either start off enabled * (which is represented as the "next" successor), or disabled (if it * has reached a non-uniform exit of the loop during a previous * iteration, which is represented as the "cur_while" successor). * * The disabled edge will be taken by the logical thread anytime we * arrive at the DO instruction through a back-edge coming from a * conditional exit of the loop where divergent control flow started. * * This guarantees that there is a control-flow path from any * divergence point of the loop into the convergence point * (immediately past the WHILE instruction) such that it overlaps the * whole IP region of divergent control flow (potentially the whole * loop) *and* doesn't imply the execution of any instructions part * of the loop (since the corresponding execution mask bit will be * disabled for a diverging thread). * * This way we make sure that any variables that are live throughout * the region of divergence for an inactive logical thread are also * considered to interfere with any other variables assigned by * active logical threads within the same physical region of the * program, since otherwise we would risk cross-channel data * corruption. */ next = new_block(); cur->add_successor(mem_ctx, next, bblock_link_logical); cur->add_successor(mem_ctx, cur_while, bblock_link_physical); set_next_block(&cur, next, ip); break; case BRW_OPCODE_CONTINUE: append_inst(cur, inst); /* A conditional CONTINUE may start a region of divergent control * flow until the start of the next loop iteration (*not* until the * end of the loop which is why the successor is not the top-level * divergence point at cur_do). The live interval of any variable * extending through a CONTINUE edge is guaranteed to overlap the * whole region of divergent execution, because any variable live-out * at the CONTINUE instruction will also be live-in at the top of the * loop, and therefore also live-out at the bottom-most point of the * loop which is reachable from the top (since a control flow path * exists from a definition of the variable through this CONTINUE * instruction, the top of the loop, the (reachable) bottom of the * loop, the top of the loop again, into a use of the variable). */ assert(cur_do != NULL); cur->add_successor(mem_ctx, cur_do->next(), bblock_link_logical); next = new_block(); if (inst->predicate) cur->add_successor(mem_ctx, next, bblock_link_logical); else cur->add_successor(mem_ctx, next, bblock_link_physical); set_next_block(&cur, next, ip); break; case BRW_OPCODE_BREAK: append_inst(cur, inst); /* A conditional BREAK instruction may start a region of divergent * control flow until the end of the loop if the condition is * non-uniform, in which case the loop will execute additional * iterations with the present channel disabled. We model this as a * control flow path from the divergence point to the convergence * point that overlaps the whole IP range of the loop and skips over * the execution of any other instructions part of the loop. * * See the DO case for additional explanation. */ assert(cur_do != NULL); cur->add_successor(mem_ctx, cur_do, bblock_link_physical); cur->add_successor(mem_ctx, cur_while, bblock_link_logical); next = new_block(); if (inst->predicate) cur->add_successor(mem_ctx, next, bblock_link_logical); else cur->add_successor(mem_ctx, next, bblock_link_physical); set_next_block(&cur, next, ip); break; case BRW_OPCODE_WHILE: append_inst(cur, inst); assert(cur_do != NULL && cur_while != NULL); /* A conditional WHILE instruction may start a region of divergent * control flow until the end of the loop, just like the BREAK * instruction. See the BREAK case for more details. OTOH an * unconditional WHILE instruction is non-divergent (just like an * unconditional CONTINUE), and will necessarily lead to the * execution of an additional iteration of the loop for all enabled * channels, so we may skip over the divergence point at the top of * the loop to keep the CFG as unambiguous as possible. */ if (inst->predicate) { cur->add_successor(mem_ctx, cur_do, bblock_link_logical); } else { cur->add_successor(mem_ctx, cur_do->next(), bblock_link_logical); } set_next_block(&cur, cur_while, ip); /* Pop the stack so we're in the previous loop */ cur_do = pop_stack(&do_stack); cur_while = pop_stack(&while_stack); break; default: append_inst(cur, inst); break; } } cur->end_ip = ip - 1; make_block_array(); } cfg_t::~cfg_t() { ralloc_free(mem_ctx); } void cfg_t::remove_block(bblock_t *block) { foreach_list_typed_safe (bblock_link, predecessor, link, &block->parents) { /* cfg_t::validate checks that predecessor and successor lists are well * formed, so it is known that the loop here would find exactly one * block. Set old_link_kind to silence "variable used but not set" * warnings. */ bblock_link_kind old_link_kind = bblock_link_logical; /* Remove block from all of its predecessors' successor lists. */ foreach_list_typed_safe (bblock_link, successor, link, &predecessor->block->children) { if (block == successor->block) { old_link_kind = successor->kind; successor->link.remove(); ralloc_free(successor); break; } } /* Add removed-block's successors to its predecessors' successor lists. */ foreach_list_typed (bblock_link, successor, link, &block->children) { bool need_to_link = true; bblock_link_kind new_link_kind = MAX2(old_link_kind, successor->kind); foreach_list_typed_safe (bblock_link, child, link, &predecessor->block->children) { /* There is already a link between the two blocks. If the links * are the same kind or the link is logical, do nothing. If the * existing link is physical and the proposed new link is logical, * promote the existing link to logical. * * This is accomplished by taking the minimum of the existing link * kind and the proposed link kind. */ if (child->block == successor->block) { child->kind = MIN2(child->kind, new_link_kind); need_to_link = false; break; } } if (need_to_link) { predecessor->block->children.push_tail(link(mem_ctx, successor->block, new_link_kind)); } } } foreach_list_typed_safe (bblock_link, successor, link, &block->children) { /* cfg_t::validate checks that predecessor and successor lists are well * formed, so it is known that the loop here would find exactly one * block. Set old_link_kind to silence "variable used but not set" * warnings. */ bblock_link_kind old_link_kind = bblock_link_logical; /* Remove block from all of its childrens' parents lists. */ foreach_list_typed_safe (bblock_link, predecessor, link, &successor->block->parents) { if (block == predecessor->block) { old_link_kind = predecessor->kind; predecessor->link.remove(); ralloc_free(predecessor); } } /* Add removed-block's predecessors to its successors' predecessor lists. */ foreach_list_typed (bblock_link, predecessor, link, &block->parents) { bool need_to_link = true; bblock_link_kind new_link_kind = MAX2(old_link_kind, predecessor->kind); foreach_list_typed_safe (bblock_link, parent, link, &successor->block->parents) { /* There is already a link between the two blocks. If the links * are the same kind or the link is logical, do nothing. If the * existing link is physical and the proposed new link is logical, * promote the existing link to logical. * * This is accomplished by taking the minimum of the existing link * kind and the proposed link kind. */ if (parent->block == predecessor->block) { parent->kind = MIN2(parent->kind, new_link_kind); need_to_link = false; break; } } if (need_to_link) { successor->block->parents.push_tail(link(mem_ctx, predecessor->block, new_link_kind)); } } } block->link.remove(); for (int b = block->num; b < this->num_blocks - 1; b++) { this->blocks[b] = this->blocks[b + 1]; this->blocks[b]->num = b; } this->blocks[this->num_blocks - 1]->num = this->num_blocks - 2; this->num_blocks--; } bblock_t * cfg_t::new_block() { bblock_t *block = new(mem_ctx) bblock_t(this); return block; } void cfg_t::set_next_block(bblock_t **cur, bblock_t *block, int ip) { if (*cur) { (*cur)->end_ip = ip - 1; } block->start_ip = ip; block->num = num_blocks++; block_list.push_tail(&block->link); *cur = block; } void cfg_t::make_block_array() { blocks = ralloc_array(mem_ctx, bblock_t *, num_blocks); int i = 0; foreach_block (block, this) { blocks[i++] = block; } assert(i == num_blocks); } void cfg_t::dump_cfg() { printf("digraph CFG {\n"); for (int b = 0; b < num_blocks; b++) { bblock_t *block = this->blocks[b]; foreach_list_typed_safe (bblock_link, child, link, &block->children) { printf("\t%d -> %d\n", b, child->block->num); } } printf("}\n"); } void brw_calculate_cfg(brw_shader &s) { if (s.cfg) return; s.cfg = new(s.mem_ctx) cfg_t(&s, &s.instructions); } #define cfgv_assert(assertion) \ { \ if (!(assertion)) { \ fprintf(stderr, "ASSERT: CFG validation in %s failed!\n", stage_abbrev); \ fprintf(stderr, "%s:%d: '%s' failed\n", __FILE__, __LINE__, #assertion); \ abort(); \ } \ } #ifndef NDEBUG void cfg_t::validate(const char *stage_abbrev) { foreach_block(block, this) { foreach_list_typed(bblock_link, successor, link, &block->children) { /* Each successor of a block must have one predecessor link back to * the block. */ bool successor_links_back_to_predecessor = false; bblock_t *succ_block = successor->block; foreach_list_typed(bblock_link, predecessor, link, &succ_block->parents) { if (predecessor->block == block) { cfgv_assert(!successor_links_back_to_predecessor); cfgv_assert(successor->kind == predecessor->kind); successor_links_back_to_predecessor = true; } } cfgv_assert(successor_links_back_to_predecessor); /* Each successor block must appear only once in the list of * successors. */ foreach_list_typed_from(bblock_link, later_successor, link, &block->children, successor->link.next) { cfgv_assert(successor->block != later_successor->block); } } foreach_list_typed(bblock_link, predecessor, link, &block->parents) { /* Each predecessor of a block must have one successor link back to * the block. */ bool predecessor_links_back_to_successor = false; bblock_t *pred_block = predecessor->block; foreach_list_typed(bblock_link, successor, link, &pred_block->children) { if (successor->block == block) { cfgv_assert(!predecessor_links_back_to_successor); cfgv_assert(successor->kind == predecessor->kind); predecessor_links_back_to_successor = true; } } cfgv_assert(predecessor_links_back_to_successor); /* Each precessor block must appear only once in the list of * precessors. */ foreach_list_typed_from(bblock_link, later_precessor, link, &block->parents, predecessor->link.next) { cfgv_assert(predecessor->block != later_precessor->block); } } cfgv_assert(!block->instructions.is_empty()); foreach_inst_in_block(brw_inst, inst, block) { cfgv_assert(block == inst->block); } brw_inst *first_inst = block->start(); if (first_inst->opcode == BRW_OPCODE_DO) { /* DO instructions both begin and end a block, so the DO instruction * must be the only instruction in the block. */ cfgv_assert(exec_list_is_singular(&block->instructions)); /* A block starting with DO should have exactly two successors. One * is a physical link to the block starting after the WHILE * instruction. The other is a logical link to the block starting the * body of the loop. */ bblock_t *physical_block = nullptr; bblock_t *logical_block = nullptr; foreach_list_typed(bblock_link, child, link, &block->children) { if (child->kind == bblock_link_physical) { cfgv_assert(physical_block == nullptr); physical_block = child->block; } else { cfgv_assert(logical_block == nullptr); logical_block = child->block; } } cfgv_assert(logical_block != nullptr); cfgv_assert(physical_block != nullptr); /* A flow block (block ending with SHADER_OPCODE_FLOW) is * used to ensure that the block right after DO is always * present even if it doesn't have actual instructions. * * This way predicated WHILE and CONTINUE don't need to be * repaired when adding instructions right after the DO. * They will point to the flow block whether is empty or not. */ cfgv_assert(logical_block->end()->opcode == SHADER_OPCODE_FLOW); } brw_inst *last_inst = block->end(); if (last_inst->opcode == SHADER_OPCODE_FLOW) { /* A flow block only has one successor -- the instruction disappears * when generating code. */ cfgv_assert(block->children.length() == 1); } } } #endif