/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #ifdef HAVE_VALGRIND #include #include #define VG(x) x #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x)) #else #define VG(x) #endif #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "pipe/p_context.h" #include "pipe/p_screen.h" #include "util/u_inlines.h" #include "util/u_transfer.h" #include "intel/compiler/brw_compiler.h" #include "intel/common/gen_sample_positions.h" #include "iris_batch.h" #include "iris_context.h" #include "iris_resource.h" #define __gen_address_type unsigned #define __gen_user_data void static uint64_t __gen_combine_address(void *user_data, void *location, unsigned address, uint32_t delta) { return delta; } #define __genxml_cmd_length(cmd) cmd ## _length #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias #define __genxml_cmd_header(cmd) cmd ## _header #define __genxml_cmd_pack(cmd) cmd ## _pack #define iris_pack_command(cmd, dst, name) \ for (struct cmd name = { __genxml_cmd_header(cmd) }, \ *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \ ({ __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name); \ VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __genxml_cmd_length(cmd) * 4)); \ _dst = NULL; \ })) #define iris_pack_state(cmd, dst, name) \ for (struct cmd name = {}, \ *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \ __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \ _dst = NULL) #define iris_emit_cmd(batch, cmd, name) \ iris_require_command_space(batch, 4 * __genxml_cmd_length(cmd)); \ iris_pack_command(cmd, batch->cmdbuf.map_next, name) #define iris_emit_merge(batch, dwords0, dwords1) \ do { \ STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \ \ iris_require_command_space(batch, ARRAY_SIZE(dwords0)); \ uint32_t *dw = batch->cmdbuf.map_next; \ for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \ dw[i] = (dwords0)[i] | (dwords1)[i]; \ VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4)); \ } while (0) #include "genxml/genX_pack.h" #include "genxml/gen_macros.h" #define MOCS_WB (2 << 1) UNUSED static void pipe_asserts() { #define PIPE_ASSERT(x) STATIC_ASSERT((int)x) /* pipe_logicop happens to match the hardware. */ PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR); PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR); PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED); PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED); PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE); PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT); PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR); PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND); PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND); PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV); PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP); PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED); PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY); PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE); PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR); PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET); /* pipe_blend_func happens to match the hardware. */ PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE); PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA); PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA); PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE); PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA); PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA); PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR); PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA); /* pipe_blend_func happens to match the hardware. */ PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD); PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT); PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT); PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN); PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX); /* pipe_stencil_op happens to match the hardware. */ PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP); PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO); PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE); PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT); PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT); PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR); PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR); PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT); #undef PIPE_ASSERT } static unsigned translate_compare_func(enum pipe_compare_func pipe_func) { static const unsigned map[] = { [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER, [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS, [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL, [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL, [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER, [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL, [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL, [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS, }; return map[pipe_func]; } static unsigned translate_shadow_func(enum pipe_compare_func pipe_func) { /* Gallium specifies the result of shadow comparisons as: * * 1 if ref texel, * 0 otherwise. * * The hardware does: * * 0 if texel ref, * 1 otherwise. * * So we need to flip the operator and also negate. */ static const unsigned map[] = { [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS, [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL, [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL, [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS, [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL, [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL, [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER, [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER, }; return map[pipe_func]; } static unsigned translate_cull_mode(unsigned pipe_face) { static const unsigned map[4] = { [PIPE_FACE_NONE] = CULLMODE_NONE, [PIPE_FACE_FRONT] = CULLMODE_FRONT, [PIPE_FACE_BACK] = CULLMODE_BACK, [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH, }; return map[pipe_face]; } static unsigned translate_fill_mode(unsigned pipe_polymode) { static const unsigned map[4] = { [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID, [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME, [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT, [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID, }; return map[pipe_polymode]; } static void iris_upload_initial_gpu_state(struct iris_context *ice, struct iris_batch *batch) { iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) { rect.ClippedDrawingRectangleXMax = UINT16_MAX; rect.ClippedDrawingRectangleYMax = UINT16_MAX; } iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) { GEN_SAMPLE_POS_1X(pat._1xSample); GEN_SAMPLE_POS_2X(pat._2xSample); GEN_SAMPLE_POS_4X(pat._4xSample); GEN_SAMPLE_POS_8X(pat._8xSample); GEN_SAMPLE_POS_16X(pat._16xSample); } iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo); iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo); iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo); } static void iris_draw_vbo(struct pipe_context *ctx, const struct pipe_draw_info *info) { } static void iris_launch_grid(struct pipe_context *ctx, const struct pipe_grid_info *info) { } static void iris_set_blend_color(struct pipe_context *ctx, const struct pipe_blend_color *state) { struct iris_context *ice = (struct iris_context *) ctx; memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color)); ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE; } struct iris_blend_state { uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)]; uint32_t blend_state[GENX(BLEND_STATE_length)]; uint32_t blend_entries[BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)]; }; static void * iris_create_blend_state(struct pipe_context *ctx, const struct pipe_blend_state *state) { struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state)); iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) { bs.AlphaToCoverageEnable = state->alpha_to_coverage; bs.IndependentAlphaBlendEnable = state->independent_blend_enable; bs.AlphaToOneEnable = state->alpha_to_one; bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage; bs.ColorDitherEnable = state->dither; //bs.AlphaTestEnable = :( //bs.AlphaTestFunction = :( } iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) { //pb.HasWriteableRT = :( //pb.AlphaTestEnable = :( pb.AlphaToCoverageEnable = state->alpha_to_coverage; pb.IndependentAlphaBlendEnable = state->independent_blend_enable; pb.ColorBufferBlendEnable = state->rt[0].blend_enable; pb.SourceBlendFactor = state->rt[0].rgb_src_factor; pb.SourceAlphaBlendFactor = state->rt[0].alpha_func; pb.DestinationBlendFactor = state->rt[0].rgb_dst_factor; pb.DestinationAlphaBlendFactor = state->rt[0].alpha_dst_factor; } for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) { iris_pack_state(GENX(BLEND_STATE_ENTRY), &cso->blend_entries[i], be) { be.LogicOpEnable = state->logicop_enable; be.LogicOpFunction = state->logicop_func; be.PreBlendSourceOnlyClampEnable = false; be.ColorClampRange = COLORCLAMP_RTFORMAT; be.PreBlendColorClampEnable = true; be.PostBlendColorClampEnable = true; be.ColorBufferBlendEnable = state->rt[i].blend_enable; be.ColorBlendFunction = state->rt[i].rgb_func; be.AlphaBlendFunction = state->rt[i].alpha_func; be.SourceBlendFactor = state->rt[i].rgb_src_factor; be.SourceAlphaBlendFactor = state->rt[i].alpha_func; be.DestinationBlendFactor = state->rt[i].rgb_dst_factor; be.DestinationAlphaBlendFactor = state->rt[i].alpha_dst_factor; be.WriteDisableRed = state->rt[i].colormask & PIPE_MASK_R; be.WriteDisableGreen = state->rt[i].colormask & PIPE_MASK_G; be.WriteDisableBlue = state->rt[i].colormask & PIPE_MASK_B; be.WriteDisableAlpha = state->rt[i].colormask & PIPE_MASK_A; } } return cso; } static void iris_bind_blend_state(struct pipe_context *ctx, void *state) { struct iris_context *ice = (struct iris_context *) ctx; ice->state.cso_blend = state; ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT; ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL; } struct iris_depth_stencil_alpha_state { uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)]; uint32_t cc_vp[GENX(CC_VIEWPORT_length)]; struct pipe_alpha_state alpha; /* to BLEND_STATE, 3DSTATE_PS_BLEND */ }; static void * iris_create_zsa_state(struct pipe_context *ctx, const struct pipe_depth_stencil_alpha_state *state) { struct iris_depth_stencil_alpha_state *cso = malloc(sizeof(struct iris_depth_stencil_alpha_state)); cso->alpha = state->alpha; bool two_sided_stencil = state->stencil[1].enabled; /* The state tracker needs to optimize away EQUAL writes for us. */ assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask)); iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) { wmds.StencilFailOp = state->stencil[0].fail_op; wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op; wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op; wmds.StencilTestFunction = translate_compare_func(state->stencil[0].func); wmds.BackfaceStencilFailOp = state->stencil[1].fail_op; wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op; wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op; wmds.BackfaceStencilTestFunction = translate_compare_func(state->stencil[1].func); wmds.DepthTestFunction = translate_compare_func(state->depth.func); wmds.DoubleSidedStencilEnable = two_sided_stencil; wmds.StencilTestEnable = state->stencil[0].enabled; wmds.StencilBufferWriteEnable = state->stencil[0].writemask != 0 || (two_sided_stencil && state->stencil[1].writemask != 0); wmds.DepthTestEnable = state->depth.enabled; wmds.DepthBufferWriteEnable = state->depth.writemask; wmds.StencilTestMask = state->stencil[0].valuemask; wmds.StencilWriteMask = state->stencil[0].writemask; wmds.BackfaceStencilTestMask = state->stencil[1].valuemask; wmds.BackfaceStencilWriteMask = state->stencil[1].writemask; /* wmds.[Backface]StencilReferenceValue are merged later */ } iris_pack_state(GENX(CC_VIEWPORT), cso->cc_vp, ccvp) { ccvp.MinimumDepth = state->depth.bounds_min; ccvp.MaximumDepth = state->depth.bounds_max; } return cso; } static void iris_bind_zsa_state(struct pipe_context *ctx, void *state) { struct iris_context *ice = (struct iris_context *) ctx; ice->state.cso_zsa = state; ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT; ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL; } struct iris_rasterizer_state { uint32_t sf[GENX(3DSTATE_SF_length)]; uint32_t clip[GENX(3DSTATE_CLIP_length)]; uint32_t raster[GENX(3DSTATE_RASTER_length)]; uint32_t wm[GENX(3DSTATE_WM_length)]; bool flatshade; /* for shader state */ bool light_twoside; /* for shader state */ bool rasterizer_discard; /* for 3DSTATE_STREAMOUT */ enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */ uint8_t line_stipple_factor; uint16_t line_stipple_pattern; }; static void * iris_create_rasterizer_state(struct pipe_context *ctx, const struct pipe_rasterizer_state *state) { struct iris_rasterizer_state *cso = malloc(sizeof(struct iris_rasterizer_state)); #if 0 sprite_coord_mode -> SBE PointSpriteTextureCoordinateOrigin sprite_coord_enable -> SBE PointSpriteTextureCoordinateEnable point_quad_rasterization -> SBE? not necessary? { poly_smooth force_persample_interp - ? bottom_edge_rule offset_units_unscaled - cap not exposed } unsigned line_stipple_factor:8; /**< [1..256] actually */ unsigned line_stipple_pattern:16; #endif cso->flatshade = state->flatshade; cso->light_twoside = state->light_twoside; cso->rasterizer_discard = state->rasterizer_discard; cso->line_stipple_factor = state->line_stipple_factor; cso->line_stipple_pattern = state->line_stipple_pattern; // for 3DSTATE_MULTISAMPLE, if we want it. //cso->half_pixel_center = state->half_pixel_center; iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) { sf.StatisticsEnable = true; sf.ViewportTransformEnable = true; sf.AALineDistanceMode = AALINEDISTANCE_TRUE; sf.LineEndCapAntialiasingRegionWidth = state->line_smooth ? _10pixels : _05pixels; sf.LastPixelEnable = state->line_last_pixel; sf.LineWidth = state->line_width; sf.SmoothPointEnable = state->point_smooth; sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State; sf.PointWidth = state->point_size; if (state->flatshade_first) { sf.TriangleStripListProvokingVertexSelect = 2; sf.TriangleFanProvokingVertexSelect = 2; sf.LineStripListProvokingVertexSelect = 1; } else { sf.TriangleFanProvokingVertexSelect = 1; } } /* COMPLETE! */ iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) { rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise; rr.CullMode = translate_cull_mode(state->cull_face); rr.FrontFaceFillMode = translate_fill_mode(state->fill_front); rr.BackFaceFillMode = translate_fill_mode(state->fill_back); rr.DXMultisampleRasterizationEnable = state->multisample; rr.GlobalDepthOffsetEnableSolid = state->offset_tri; rr.GlobalDepthOffsetEnableWireframe = state->offset_line; rr.GlobalDepthOffsetEnablePoint = state->offset_point; rr.GlobalDepthOffsetConstant = state->offset_units; rr.GlobalDepthOffsetScale = state->offset_scale; rr.GlobalDepthOffsetClamp = state->offset_clamp; rr.SmoothPointEnable = state->point_smooth; rr.AntialiasingEnable = state->line_smooth; rr.ScissorRectangleEnable = state->scissor; rr.ViewportZNearClipTestEnable = state->depth_clip_near; rr.ViewportZFarClipTestEnable = state->depth_clip_far; //rr.ConservativeRasterizationEnable = not yet supported by Gallium... } iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) { cl.StatisticsEnable = true; cl.EarlyCullEnable = true; cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable; cl.ForceUserClipDistanceClipTestEnableBitmask = true; cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL; cl.GuardbandClipTestEnable = true; cl.ClipMode = CLIPMODE_NORMAL; cl.ClipEnable = true; cl.ViewportXYClipTestEnable = state->point_tri_clip; cl.MinimumPointWidth = 0.125; cl.MaximumPointWidth = 255.875; //.NonPerspectiveBarycentricEnable = :( //.ForceZeroRTAIndexEnable = if (state->flatshade_first) { cl.TriangleStripListProvokingVertexSelect = 2; cl.TriangleFanProvokingVertexSelect = 2; cl.LineStripListProvokingVertexSelect = 1; } else { cl.TriangleFanProvokingVertexSelect = 1; } } iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) { wm.LineAntialiasingRegionWidth = _10pixels; wm.LineEndCapAntialiasingRegionWidth = _05pixels; wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT; wm.StatisticsEnable = true; wm.LineStippleEnable = state->line_stipple_enable; wm.PolygonStippleEnable = state->poly_stipple_enable; // wm.BarycentricInterpolationMode = :( // wm.EarlyDepthStencilControl = :( } return cso; } static void iris_bind_rasterizer_state(struct pipe_context *ctx, void *state) { struct iris_context *ice = (struct iris_context *) ctx; ice->state.cso_rast = state; ice->state.dirty |= IRIS_DIRTY_RASTER; } static uint32_t translate_wrap(unsigned pipe_wrap) { static const unsigned map[] = { [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP, [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER, [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP, [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER, [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR, [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE, [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1, // XXX: ??? [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1, // XXX: ??? }; return map[pipe_wrap]; } /** * Return true if the given wrap mode requires the border color to exist. */ static bool wrap_mode_needs_border_color(unsigned wrap_mode) { return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER; } static unsigned translate_mip_filter(enum pipe_tex_mipfilter pipe_mip) { static const unsigned map[] = { [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST, [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR, [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE, }; return map[pipe_mip]; } struct iris_sampler_state { struct pipe_sampler_state base; bool needs_border_color; uint32_t sampler_state[GENX(SAMPLER_STATE_length)]; }; static void * iris_create_sampler_state(struct pipe_context *pctx, const struct pipe_sampler_state *state) { struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state); if (!cso) return NULL; STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST); STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR); unsigned wrap_s = translate_wrap(state->wrap_s); unsigned wrap_t = translate_wrap(state->wrap_t); unsigned wrap_r = translate_wrap(state->wrap_r); cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) || wrap_mode_needs_border_color(wrap_t) || wrap_mode_needs_border_color(wrap_r); iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) { samp.TCXAddressControlMode = wrap_s; samp.TCYAddressControlMode = wrap_t; samp.TCZAddressControlMode = wrap_r; samp.CubeSurfaceControlMode = state->seamless_cube_map; samp.NonnormalizedCoordinateEnable = !state->normalized_coords; samp.MinModeFilter = state->min_img_filter; samp.MagModeFilter = state->mag_img_filter; samp.MipModeFilter = translate_mip_filter(state->min_mip_filter); samp.MaximumAnisotropy = RATIO21; if (state->max_anisotropy >= 2) { if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) { samp.MinModeFilter = MAPFILTER_ANISOTROPIC; samp.AnisotropicAlgorithm = EWAApproximation; } if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR) samp.MagModeFilter = MAPFILTER_ANISOTROPIC; samp.MaximumAnisotropy = MIN2((state->max_anisotropy - 2) / 2, RATIO161); } /* Set address rounding bits if not using nearest filtering. */ if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) { samp.UAddressMinFilterRoundingEnable = true; samp.VAddressMinFilterRoundingEnable = true; samp.RAddressMinFilterRoundingEnable = true; } if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) { samp.UAddressMagFilterRoundingEnable = true; samp.VAddressMagFilterRoundingEnable = true; samp.RAddressMagFilterRoundingEnable = true; } if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) samp.ShadowFunction = translate_shadow_func(state->compare_func); const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13; samp.LODPreClampMode = CLAMP_MODE_OGL; samp.MinLOD = CLAMP(state->min_lod, 0, hw_max_lod); samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod); samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15); //samp.BorderColorPointer = <> } return cso; } static void iris_create_view_for_surface() { } static struct pipe_sampler_view * iris_create_sampler_view(struct pipe_context *ctx, struct pipe_resource *texture, const struct pipe_sampler_view *state) { struct pipe_sampler_view *sampler_view = CALLOC_STRUCT(pipe_sampler_view); if (!sampler_view) return NULL; /* initialize base object */ *sampler_view = *state; sampler_view->texture = NULL; pipe_resource_reference(&sampler_view->texture, texture); pipe_reference_init(&sampler_view->reference, 1); sampler_view->context = ctx; return sampler_view; } struct iris_surface { struct pipe_surface pipe; struct isl_view view; uint32_t surface_state[GENX(RENDER_SURFACE_STATE_length)]; }; static struct pipe_surface * iris_create_surface(struct pipe_context *ctx, struct pipe_resource *tex, const struct pipe_surface *surf_tmpl) { struct iris_screen *screen = (struct iris_screen *)ctx->screen; struct iris_surface *surf = calloc(1, sizeof(struct iris_surface)); struct pipe_surface *psurf = &surf->pipe; struct iris_resource *itex = (struct iris_resource *) tex; if (!surf) return NULL; pipe_reference_init(&psurf->reference, 1); pipe_resource_reference(&psurf->texture, tex); psurf->context = ctx; psurf->format = surf_tmpl->format; psurf->width = tex->width0; psurf->height = tex->height0; psurf->texture = tex; psurf->u.tex.first_layer = surf_tmpl->u.tex.first_layer; psurf->u.tex.last_layer = surf_tmpl->u.tex.last_layer; psurf->u.tex.level = surf_tmpl->u.tex.level; surf->view = (struct isl_view) { .format = iris_isl_format_for_pipe_format(surf_tmpl->format), .base_level = surf_tmpl->u.tex.level, .levels = 1, .base_array_layer = surf_tmpl->u.tex.first_layer, .array_len = surf_tmpl->u.tex.last_layer - surf_tmpl->u.tex.first_layer + 1, .swizzle = ISL_SWIZZLE_IDENTITY, .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT, }; isl_surf_fill_state(&screen->isl_dev, surf->surface_state, .surf = &itex->surf, .view = &surf->view, .mocs = MOCS_WB); // .address = ... // .aux_surf = // .clear_color = clear_color, return psurf; } static void iris_set_sampler_views(struct pipe_context *ctx, enum pipe_shader_type shader, unsigned start, unsigned count, struct pipe_sampler_view **views) { } static void iris_bind_sampler_states(struct pipe_context *ctx, enum pipe_shader_type shader, unsigned start, unsigned count, void **states) { } static void iris_set_clip_state(struct pipe_context *ctx, const struct pipe_clip_state *state) { } static void iris_set_polygon_stipple(struct pipe_context *ctx, const struct pipe_poly_stipple *state) { struct iris_context *ice = (struct iris_context *) ctx; memcpy(&ice->state.poly_stipple, state, sizeof(*state)); ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE; } static void iris_set_sample_mask(struct pipe_context *pipe, unsigned sample_mask) { } static void iris_set_scissor_states(struct pipe_context *ctx, unsigned start_slot, unsigned num_scissors, const struct pipe_scissor_state *state) { struct iris_context *ice = (struct iris_context *) ctx; // XXX: start_slot ice->state.num_scissors = num_scissors; for (unsigned i = start_slot; i < start_slot + num_scissors; i++) { ice->state.scissors[i] = *state; } ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT; } static void iris_set_stencil_ref(struct pipe_context *ctx, const struct pipe_stencil_ref *state) { struct iris_context *ice = (struct iris_context *) ctx; memcpy(&ice->state.stencil_ref, state, sizeof(*state)); ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL; } struct iris_viewport_state { uint32_t sf_cl_vp[GENX(3DSTATE_SF_length)]; }; static float extent_from_matrix(const struct pipe_viewport_state *state, int axis) { return fabsf(state->scale[axis]) * state->translate[axis]; } #if 0 static void calculate_guardband_size(uint32_t fb_width, uint32_t fb_height, float m00, float m11, float m30, float m31, float *xmin, float *xmax, float *ymin, float *ymax) { /* According to the "Vertex X,Y Clamping and Quantization" section of the * Strips and Fans documentation: * * "The vertex X and Y screen-space coordinates are also /clamped/ to the * fixed-point "guardband" range supported by the rasterization hardware" * * and * * "In almost all circumstances, if an object’s vertices are actually * modified by this clamping (i.e., had X or Y coordinates outside of * the guardband extent the rendered object will not match the intended * result. Therefore software should take steps to ensure that this does * not happen - e.g., by clipping objects such that they do not exceed * these limits after the Drawing Rectangle is applied." * * I believe the fundamental restriction is that the rasterizer (in * the SF/WM stages) have a limit on the number of pixels that can be * rasterized. We need to ensure any coordinates beyond the rasterizer * limit are handled by the clipper. So effectively that limit becomes * the clipper's guardband size. * * It goes on to say: * * "In addition, in order to be correctly rendered, objects must have a * screenspace bounding box not exceeding 8K in the X or Y direction. * This additional restriction must also be comprehended by software, * i.e., enforced by use of clipping." * * This makes no sense. Gen7+ hardware supports 16K render targets, * and you definitely need to be able to draw polygons that fill the * surface. Our assumption is that the rasterizer was limited to 8K * on Sandybridge, which only supports 8K surfaces, and it was actually * increased to 16K on Ivybridge and later. * * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge. */ const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f; if (m00 != 0 && m11 != 0) { /* First, we compute the screen-space render area */ const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00); const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00); const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11); const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11); /* We want the guardband to be centered on that */ const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size; const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size; const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size; const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size; /* Now we need it in native device coordinates */ const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00; const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00; const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11; const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11; /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be * flipped upside-down. X should be fine though. */ assert(ndc_gb_xmin <= ndc_gb_xmax); *xmin = ndc_gb_xmin; *xmax = ndc_gb_xmax; *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax); *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax); } else { /* The viewport scales to 0, so nothing will be rendered. */ *xmin = 0.0f; *xmax = 0.0f; *ymin = 0.0f; *ymax = 0.0f; } } #endif static void iris_set_viewport_states(struct pipe_context *ctx, unsigned start_slot, unsigned num_viewports, const struct pipe_viewport_state *state) { struct iris_context *ice = (struct iris_context *) ctx; struct iris_viewport_state *cso = malloc(sizeof(struct iris_viewport_state)); for (unsigned i = start_slot; i < start_slot + num_viewports; i++) { float x_extent = extent_from_matrix(&state[i], 0); float y_extent = extent_from_matrix(&state[i], 1); iris_pack_state(GENX(SF_CLIP_VIEWPORT), cso->sf_cl_vp, vp) { vp.ViewportMatrixElementm00 = state[i].scale[0]; vp.ViewportMatrixElementm11 = state[i].scale[1]; vp.ViewportMatrixElementm22 = state[i].scale[2]; vp.ViewportMatrixElementm30 = state[i].translate[0]; vp.ViewportMatrixElementm31 = state[i].translate[1]; vp.ViewportMatrixElementm32 = state[i].translate[2]; /* XXX: in i965 this is computed based on the drawbuffer size, * but we don't have that here... */ vp.XMinClipGuardband = -1.0; vp.XMaxClipGuardband = 1.0; vp.YMinClipGuardband = -1.0; vp.YMaxClipGuardband = 1.0; vp.XMinViewPort = -x_extent; vp.XMaxViewPort = x_extent; vp.YMinViewPort = -y_extent; vp.YMaxViewPort = y_extent; } } ice->state.cso_vp = cso; // XXX: start_slot ice->state.num_viewports = num_viewports; ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT; } struct iris_framebuffer_state { struct pipe_framebuffer_state pipe; }; static void iris_set_framebuffer_state(struct pipe_context *ctx, const struct pipe_framebuffer_state *state) { struct iris_context *ice = (struct iris_context *) ctx; struct iris_framebuffer_state *cso = malloc(sizeof(struct iris_framebuffer_state)); #if 0 unsigned i; for (i = 0; i < framebuffer->nr_cbufs; i++) pipe_surface_reference(&cso->pipe.cbufs[i], framebuffer->cbufs[i]); for (; i < vc5->framebuffer.nr_cbufs; i++) pipe_surface_reference(&cso->pipe.cbufs[i], NULL); cso->pipe.nr_cbufs = state->nr_cbufs; pipe_surface_reference(&cso->pipe.zsbuf, framebuffer->zsbuf); // ice->state.cso_fb = cso; // ice->state.dirty |= IRIS_DIRTY_FRAMEBUFFER; // XXX: unreference them when destroying context #endif } static void iris_set_constant_buffer(struct pipe_context *ctx, enum pipe_shader_type shader, uint index, const struct pipe_constant_buffer *cb) { } static void iris_sampler_view_destroy(struct pipe_context *ctx, struct pipe_sampler_view *state) { pipe_resource_reference(&state->texture, NULL); free(state); } static void iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *surface) { pipe_resource_reference(&surface->texture, NULL); free(surface); } static void iris_delete_state(struct pipe_context *ctx, void *state) { free(state); } struct iris_vertex_buffer_state { uint32_t vertex_buffers[1 + 33 * GENX(VERTEX_BUFFER_STATE_length)]; unsigned length; /* length of 3DSTATE_VERTEX_BUFFERS in DWords */ }; static void iris_set_vertex_buffers(struct pipe_context *ctx, unsigned start_slot, unsigned count, const struct pipe_vertex_buffer *buffers) { struct iris_vertex_buffer_state *cso = malloc(sizeof(struct iris_vertex_buffer_state)); cso->length = 4 * count - 1; iris_pack_state(GENX(3DSTATE_VERTEX_BUFFERS), cso->vertex_buffers, vb) { vb.DWordLength = cso->length; } /* If there are no buffers, do nothing. We can leave the stale * 3DSTATE_VERTEX_BUFFERS in place - as long as there are no vertex * elements that point to them, it should be fine. */ if (!buffers) return; uint32_t *vb_pack_dest = &cso->vertex_buffers[1]; for (unsigned i = 0; i < count; i++) { assert(!buffers[i].is_user_buffer); iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) { vb.VertexBufferIndex = start_slot + i; vb.MOCS = MOCS_WB; vb.AddressModifyEnable = true; vb.BufferPitch = buffers[i].stride; //vb.BufferStartingAddress = ro_bo(bo, buffers[i].buffer_offset); //vb.BufferSize = bo->size; } vb_pack_dest += GENX(VERTEX_BUFFER_STATE_length); } /* XXX: actually do something with this! */ } struct iris_vertex_element_state { uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)]; uint32_t vf_instancing[GENX(3DSTATE_VF_INSTANCING_length)]; unsigned count; }; static void * iris_create_vertex_elements(struct pipe_context *ctx, unsigned count, const struct pipe_vertex_element *state) { struct iris_vertex_element_state *cso = malloc(sizeof(struct iris_vertex_element_state)); cso->count = count; /* TODO: * - create edge flag one * - create SGV ones * - if those are necessary, use count + 1/2/3... OR in the length */ iris_pack_state(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve); uint32_t *ve_pack_dest = &cso->vertex_elements[1]; for (int i = 0; i < count; i++) { iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) { ve.VertexBufferIndex = state[i].vertex_buffer_index; ve.Valid = true; ve.SourceElementOffset = state[i].src_offset; ve.SourceElementFormat = iris_isl_format_for_pipe_format(state[i].src_format); } iris_pack_state(GENX(3DSTATE_VF_INSTANCING), cso->vf_instancing, vi) { vi.VertexElementIndex = i; vi.InstancingEnable = state[i].instance_divisor > 0; vi.InstanceDataStepRate = state[i].instance_divisor; } ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length); } return cso; } static void * iris_create_compute_state(struct pipe_context *ctx, const struct pipe_compute_state *state) { return malloc(1); } static struct pipe_stream_output_target * iris_create_stream_output_target(struct pipe_context *ctx, struct pipe_resource *res, unsigned buffer_offset, unsigned buffer_size) { struct pipe_stream_output_target *t = CALLOC_STRUCT(pipe_stream_output_target); if (!t) return NULL; pipe_reference_init(&t->reference, 1); pipe_resource_reference(&t->buffer, res); t->buffer_offset = buffer_offset; t->buffer_size = buffer_size; return t; } static void iris_stream_output_target_destroy(struct pipe_context *ctx, struct pipe_stream_output_target *t) { pipe_resource_reference(&t->buffer, NULL); free(t); } static void iris_set_stream_output_targets(struct pipe_context *ctx, unsigned num_targets, struct pipe_stream_output_target **targets, const unsigned *offsets) { } void iris_upload_render_state(struct iris_context *ice, struct iris_batch *batch) { const uint64_t dirty = ice->state.dirty; if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) { struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa; struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref; uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)]; iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) { wmds.StencilReferenceValue = p_stencil_refs->ref_value[0]; wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1]; } iris_emit_merge(batch, cso->wmds, stencil_refs); } if (dirty & IRIS_DIRTY_CC_VIEWPORT) { struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa; iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) { ptr.CCViewportPointer = iris_emit_state(batch, cso->cc_vp, sizeof(cso->cc_vp), 32); } } if (dirty & IRIS_DIRTY_PS_BLEND) { struct iris_blend_state *cso = ice->state.cso_blend; iris_batch_emit(batch, cso->ps_blend, sizeof(cso->ps_blend)); } if (dirty & IRIS_DIRTY_BLEND_STATE) { struct iris_blend_state *cso = ice->state.cso_blend; // XXX: 3DSTATE_BLEND_STATE_POINTERS - BLEND_STATE // -> from iris_blend_state (most) + iris_depth_stencil_alpha_state // (alpha test function/enable) + has writeable RT from ??????? } if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) { struct iris_viewport_state *cso = ice->state.cso_vp; iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) { ptr.SFClipViewportPointer = iris_emit_state(batch, cso->sf_cl_vp, sizeof(cso->sf_cl_vp), 64); } } if (dirty & IRIS_DIRTY_CLIP) { struct iris_rasterizer_state *cso = ice->state.cso_rast; uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)]; iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) { //.NonPerspectiveBarycentricEnable = :( //.ForceZeroRTAIndexEnable = } iris_emit_merge(batch, cso->clip, dynamic_clip); } if (dirty & IRIS_DIRTY_RASTER) { struct iris_rasterizer_state *cso = ice->state.cso_rast; iris_batch_emit(batch, cso->raster, sizeof(cso->raster)); iris_batch_emit(batch, cso->sf, sizeof(cso->sf)); } if (dirty & IRIS_DIRTY_SCISSOR) { uint32_t scissor_offset = iris_emit_state(batch, ice->state.scissors, sizeof(struct pipe_scissor_state) * ice->state.num_scissors, 32); iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) { ptr.ScissorRectPointer = scissor_offset; } } #if 0 l3 configuration 3DSTATE_PUSH_CONSTANT_ALLOC_* 3DSTATE_URB_* -> TODO 3DSTATE_CC_STATE_POINTERS - COLOR_CALC_STATE -> from ice->state.blend_color + iris_depth_stencil_alpha_state (ref_value) 3DSTATE_CONSTANT_* - push constants -> TODO Surfaces: - pull constants - ubos/ssbos/abos - images - textures - render targets - write and read 3DSTATE_BINDING_TABLE_POINTERS_* -> TODO 3DSTATE_SAMPLER_STATE_POINTERS_* -> TODO 3DSTATE_MULTISAMPLE 3DSTATE_SAMPLE_MASK 3DSTATE_VS 3DSTATE_HS 3DSTATE_TE 3DSTATE_DS 3DSTATE_GS 3DSTATE_PS_EXTRA 3DSTATE_PS 3DSTATE_STREAMOUT 3DSTATE_SO_BUFFER 3DSTATE_SO_DECL_LIST 3DSTATE_WM -> iris_raster_state + FS state (barycentric, EDSC) 3DSTATE_SBE -> iris_raster_state (point sprite texture coordinate origin) -> bunch of shader state... 3DSTATE_SBE_SWIZ -> FS state 3DSTATE_DEPTH_BUFFER 3DSTATE_HIER_DEPTH_BUFFER 3DSTATE_STENCIL_BUFFER 3DSTATE_CLEAR_PARAMS -> iris_framebuffer_state? 3DSTATE_VF_TOPOLOGY -> pipe_draw_info (prim_mode) 3DSTATE_VF -> pipe_draw_info (restart_index, primitive_restart) 3DSTATE_INDEX_BUFFER -> pipe_draw_info (index) 3DSTATE_VERTEX_BUFFERS -> pipe_vertex_buffer (set_vertex_buffer hook) 3DSTATE_VERTEX_ELEMENTS -> iris_vertex_element 3DSTATE_VF_INSTANCING -> iris_vertex_element 3DSTATE_VF_SGVS -> TODO ??? 3DSTATE_VF_COMPONENT_PACKING -> TODO ??? 3DPRIMITIVE -> pipe_draw_info rare: 3DSTATE_POLY_STIPPLE_OFFSET 3DSTATE_POLY_STIPPLE_PATTERN -> ice->state.poly_stipple 3DSTATE_LINE_STIPPLE -> iris_raster_state #endif } static void iris_bind_state(struct pipe_context *ctx, void *state) { } static void iris_destroy_state(struct iris_context *ice) { // XXX: unreference resources/surfaces. } void iris_init_state_functions(struct pipe_context *ctx) { ctx->create_blend_state = iris_create_blend_state; ctx->create_depth_stencil_alpha_state = iris_create_zsa_state; ctx->create_rasterizer_state = iris_create_rasterizer_state; ctx->create_sampler_state = iris_create_sampler_state; ctx->create_sampler_view = iris_create_sampler_view; ctx->create_surface = iris_create_surface; ctx->create_vertex_elements_state = iris_create_vertex_elements; ctx->create_compute_state = iris_create_compute_state; ctx->bind_blend_state = iris_bind_blend_state; ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state; ctx->bind_sampler_states = iris_bind_sampler_states; ctx->bind_fs_state = iris_bind_state; ctx->bind_rasterizer_state = iris_bind_rasterizer_state; ctx->bind_vertex_elements_state = iris_bind_state; ctx->bind_compute_state = iris_bind_state; ctx->bind_tcs_state = iris_bind_state; ctx->bind_tes_state = iris_bind_state; ctx->bind_gs_state = iris_bind_state; ctx->bind_vs_state = iris_bind_state; ctx->delete_blend_state = iris_delete_state; ctx->delete_depth_stencil_alpha_state = iris_delete_state; ctx->delete_fs_state = iris_delete_state; ctx->delete_rasterizer_state = iris_delete_state; ctx->delete_sampler_state = iris_delete_state; ctx->delete_vertex_elements_state = iris_delete_state; ctx->delete_compute_state = iris_delete_state; ctx->delete_tcs_state = iris_delete_state; ctx->delete_tes_state = iris_delete_state; ctx->delete_gs_state = iris_delete_state; ctx->delete_vs_state = iris_delete_state; ctx->set_blend_color = iris_set_blend_color; ctx->set_clip_state = iris_set_clip_state; ctx->set_constant_buffer = iris_set_constant_buffer; ctx->set_sampler_views = iris_set_sampler_views; ctx->set_framebuffer_state = iris_set_framebuffer_state; ctx->set_polygon_stipple = iris_set_polygon_stipple; ctx->set_sample_mask = iris_set_sample_mask; ctx->set_scissor_states = iris_set_scissor_states; ctx->set_stencil_ref = iris_set_stencil_ref; ctx->set_vertex_buffers = iris_set_vertex_buffers; ctx->set_viewport_states = iris_set_viewport_states; ctx->sampler_view_destroy = iris_sampler_view_destroy; ctx->surface_destroy = iris_surface_destroy; ctx->draw_vbo = iris_draw_vbo; ctx->launch_grid = iris_launch_grid; ctx->create_stream_output_target = iris_create_stream_output_target; ctx->stream_output_target_destroy = iris_stream_output_target_destroy; ctx->set_stream_output_targets = iris_set_stream_output_targets; }