/* * Copyright 2023 Intel Corporation * SPDX-License-Identifier: MIT */ /** * \file brw_nir_lower_cooperative_matrix.c * Lower cooperative matrix to subgroup operations. * * All supported matrix types are assumed to have either 8 rows or 8 * columns. The other dimension of the matrix is typically 8 times the number * of data elements that can be stored in a 32-bit dword. Matrix data is * indexed by a combination of an array element and a subgroup invocation ID. * * Two layouts for matrix data are used. In the first layout, * subgroupShuffle(slice[N], ...) accesses row N of the matrix. This will be * called row-major hereafter. In the other layout, * subgroupShuffle(slice[...], M) accesses column M of the matrix. This will * be called column-major hereafter. In cases where a single 32-bit value is * stored in each entry, these layouts are identical. * * The subtle difference arises when multiple values are packed into a single * 32-bit dword. If two 16-bit values are packed in a single 32-bit value in * column-major, subgroupShuffle(slice[0], 1) holds matrix entries m[1][1] and * m[2][1] (in m[row][column] notation). In row-major, that same shuffle holds * m[0][2] and m[0][3]. * * There is an alternate way to think about the matrix layouts. Every matrix * size supported by the Intel driver is either Sx8 (e.g., 16x8 for float16 B * matrix) or Sx8T (e.g., 8x32 for int8 A matrix). The A matrix and B matrix * layouts are such that a single 8 dword register hold an entire row of the * matrix. * * Consider a matrix stored starting in register g32. In an A matrix, the * packed dwords of g32 contain only the data for a single row of the * matrix. g32 is row 0, g33 is row 1, etc. In a B matrix, the packed dwords * of g(32+N).X contain only the data for a single column of the * matrix. g[32:40].0 is column 0, g[32:40].1 is column 1, etc. * * This leads to some shenanigans in \c lower_cmat_load_store. * * In the common case, A, C, and result matrices are stored row major while B * matrices are stored column major. This arrangement facilitates efficient * dot product operations using DPAS or DP4A instructions. * * Future optimizations are possible when row and column major are * flipped. That is, efficient dot products are also possible when A, C, and * result matrices are column major while B is row major. */ #include "brw_nir.h" typedef struct { /* Vector type that holds the elements packed. */ const glsl_type *type; /* How many cmat elements per slice element. */ unsigned packing_factor; struct glsl_cmat_description desc; /* Used by the tables. Variable holding a slice or * arrays-of-arrays of slices. * * If present, the var->type (without arrays!) should match * the type above. */ nir_variable *var; } slice_info; #define BRW_MAX_PACKING_FACTOR 4 struct lower_cmat_state { void *temp_ctx; nir_shader *shader; struct hash_table *slice_var_to_slice_info; struct hash_table *mat_var_to_slice_info; unsigned subgroup_size; struct { nir_def *tmp[NIR_MAX_VEC_COMPONENTS * BRW_MAX_PACKING_FACTOR]; } scratch; }; static bool cmat_descriptions_are_equal(struct glsl_cmat_description a, struct glsl_cmat_description b) { return a.element_type == b.element_type && a.scope == b.scope && a.rows == b.rows && a.cols == b.cols && a.use == b.use; } static void print_coop_types(struct lower_cmat_state *state) { fprintf(stderr, "--- Slices to Cooperative Matrix type table\n"); hash_table_foreach(state->slice_var_to_slice_info, e) { nir_variable *var = (void *)e->key; const slice_info *info = e->data; fprintf(stderr, "%p: %s -> %s\n", var, var->name, glsl_get_type_name(glsl_cmat_type(&info->desc))); } fprintf(stderr, "\n\n"); } static const slice_info * get_slice_info(struct lower_cmat_state *state, nir_deref_instr *deref) { nir_variable *var = nir_deref_instr_get_variable(deref); struct hash_entry *entry = _mesa_hash_table_search(state->slice_var_to_slice_info, var); assert(entry != NULL); return entry->data; } static bool lower_cmat_filter(const nir_instr *instr, const void *_state) { if (instr->type == nir_instr_type_deref) { nir_deref_instr *deref = nir_instr_as_deref(instr); return glsl_type_is_cmat(deref->type); } if (instr->type != nir_instr_type_intrinsic) return false; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_cmat_construct: case nir_intrinsic_cmat_load: case nir_intrinsic_cmat_store: case nir_intrinsic_cmat_length: case nir_intrinsic_cmat_muladd: case nir_intrinsic_cmat_convert: case nir_intrinsic_cmat_unary_op: case nir_intrinsic_cmat_binary_op: case nir_intrinsic_cmat_scalar_op: case nir_intrinsic_cmat_bitcast: case nir_intrinsic_cmat_insert: case nir_intrinsic_cmat_extract: case nir_intrinsic_cmat_copy: return true; default: return false; } } static void init_slice_info(struct lower_cmat_state *state, struct glsl_cmat_description desc, slice_info *info) { enum glsl_base_type base_type; /* Number of matrix elements stored by each subgroup invocation. If the * data is packed, the slice size will be less than this. */ const unsigned elements_per_invocation = (desc.rows * desc.cols) / state->subgroup_size; assert(elements_per_invocation > 0); const unsigned element_bits = 32; const unsigned bits = glsl_base_type_get_bit_size(desc.element_type); /* Each invocation must have at least one dword of data, and that dword * must be tightly packed with values. No matter the matrix dimensions, a * matrix of uint8_t data must pack 4 values in each entry. */ const unsigned packing_factor = element_bits / bits; assert(packing_factor <= BRW_MAX_PACKING_FACTOR); assert(elements_per_invocation >= packing_factor); switch (desc.element_type) { case GLSL_TYPE_FLOAT: base_type = GLSL_TYPE_FLOAT; break; case GLSL_TYPE_UINT: case GLSL_TYPE_FLOAT16: case GLSL_TYPE_BFLOAT16: case GLSL_TYPE_UINT8: case GLSL_TYPE_UINT16: base_type = GLSL_TYPE_UINT; break; case GLSL_TYPE_INT: case GLSL_TYPE_INT8: case GLSL_TYPE_INT16: base_type = GLSL_TYPE_INT; break; default: unreachable("Invalid cooperative matrix element type."); } unsigned len = elements_per_invocation / packing_factor; /* Supported matrix sizes are designed to fill either 4 or 8 SIMD8 * registers on DG2. That means: * * 4 regsiters 8 registers * SIMD32 len = 1 len = 2 * SIMD16 len = 2 len = 4 * SIMD8 len = 4 len = 8 * * On Xe2, supported matrix sizes are still designed to fill 4 registers * (e.g., 8x32 uint8_t) or 8 registers (e.g., 16x16 float16). However, the * 16x16 float16 matrix will assign 16 elements per channel at SIMD16. */ assert(len == 1 || len == 2 || len == 4 || len == 8 || len == 16); const struct glsl_type *slice_type = glsl_vector_type(base_type, len); info->type = slice_type; info->desc = desc; info->packing_factor = packing_factor; } static void lower_cmat_load_store(nir_builder *b, nir_intrinsic_instr *intrin, struct lower_cmat_state *state) { const bool load = intrin->intrinsic == nir_intrinsic_cmat_load; const unsigned mat_src = load ? 0 : 1; const unsigned ptr_src = load ? 1 : 0; nir_deref_instr *slice = nir_src_as_deref(intrin->src[mat_src]); const slice_info *info = get_slice_info(state, slice); const struct glsl_cmat_description desc = info->desc; nir_def *results[NIR_MAX_VEC_COMPONENTS]; const unsigned num_components = glsl_get_vector_elements(slice->type); nir_deref_instr *pointer = nir_src_as_deref(intrin->src[ptr_src]); const unsigned ptr_comp_width = glsl_get_bit_size(pointer->type); const unsigned ptr_num_comps = glsl_get_vector_elements(pointer->type); /* The stride is given in number of elements of the pointed type, which * doesn't necessarily match the matrix element type, so we need to adjust * it considering it may be a vector and have a different bit-width. */ nir_def *stride = nir_udiv_imm(b, nir_imul_imm(b, intrin->src[2].ssa, ptr_comp_width * ptr_num_comps), glsl_base_type_get_bit_size(desc.element_type)); /* The data that will be packed is in successive columns for A and * accumulator matrices. The data that will be packed for B matrices is in * successive rows. */ const unsigned cols = desc.use != GLSL_CMAT_USE_B ? desc.cols / info->packing_factor : desc.cols; nir_def *invocation = nir_load_subgroup_invocation(b); nir_def *invocation_div_cols = nir_udiv_imm(b, invocation, cols); nir_def *invocation_mod_cols = nir_umod_imm(b, invocation, cols); nir_def *i_stride; const bool memory_layout_matches_register_layout = (nir_intrinsic_matrix_layout(intrin) == GLSL_MATRIX_LAYOUT_ROW_MAJOR) == (desc.use != GLSL_CMAT_USE_B); if (memory_layout_matches_register_layout) { /* In the row-major arrangement, data is loaded a dword at a time * instead of a single element at a time. For this reason the stride is * divided by the packing factor. */ i_stride = nir_udiv_imm(b, stride, info->packing_factor); } else { /* In the column-major arrangement, data is loaded a single element at a * time. Because the data elements are transposed, the step direction * that moves a single (packed) element in the row-major arrangement has * to explicitly step over the packing factor count of elements. For * this reason the stride is multiplied by the packing factor. * * NOTE: The unscaled stride is also still needed when stepping from one * packed element to the next. This occurs in the for-j loop below. */ i_stride = nir_imul_imm(b, stride, info->packing_factor); } nir_def *base_offset; nir_def *i_step; if (nir_intrinsic_matrix_layout(intrin) == GLSL_MATRIX_LAYOUT_ROW_MAJOR) { base_offset = nir_iadd(b, nir_imul(b, invocation_div_cols, i_stride), invocation_mod_cols); i_step = nir_imul_imm(b, i_stride, state->subgroup_size / cols); } else { base_offset = nir_iadd(b, nir_imul(b, invocation_mod_cols, i_stride), invocation_div_cols); i_step = nir_imm_int(b, state->subgroup_size / cols); } if (memory_layout_matches_register_layout) { const struct glsl_type *element_type = glsl_scalar_type(glsl_get_base_type(slice->type)); pointer = nir_build_deref_cast(b, &pointer->def, pointer->modes, element_type, glsl_get_bit_size(element_type) / 8); for (unsigned i = 0; i < num_components; i++) { nir_def *offset = nir_imul_imm(b, i_step, i); nir_deref_instr *memory_deref = nir_build_deref_ptr_as_array(b, pointer, nir_i2iN(b, nir_iadd(b, base_offset, offset), pointer->def.bit_size)); if (load) { results[i] = nir_load_deref(b, memory_deref); } else { nir_def *src = nir_channel(b, nir_load_deref(b, slice), i); nir_store_deref(b, memory_deref, src, 0x1); } } } else { const struct glsl_type *element_type = glsl_scalar_type(desc.element_type); const unsigned element_bits = glsl_base_type_get_bit_size(desc.element_type); const unsigned element_stride = element_bits / 8; pointer = nir_build_deref_cast(b, &pointer->def, pointer->modes, element_type, element_stride); for (unsigned i = 0; i < num_components; i++) { nir_def *i_offset = nir_imul_imm(b, i_step, i); nir_def *v[4]; for (unsigned j = 0; j < info->packing_factor; j++) { nir_def *offset = nir_iadd(b, nir_imul_imm(b, stride, j), i_offset); nir_deref_instr *memory_deref = nir_build_deref_ptr_as_array(b, pointer, nir_i2iN(b, nir_iadd(b, base_offset, offset), pointer->def.bit_size)); if (load) { v[j] = nir_load_deref(b, memory_deref); } else { nir_def *src = nir_channel(b, nir_load_deref(b, slice), i); nir_def *v = nir_channel(b, nir_unpack_bits(b, src, element_bits), j); nir_store_deref(b, memory_deref, v, 0x1); } } if (load) { results[i] = nir_pack_bits(b, nir_vec(b, v, info->packing_factor), info->packing_factor * element_bits); } } } if (load) nir_store_deref(b, slice, nir_vec(b, results, num_components), nir_component_mask(num_components)); } /* Unpack, apply operation, then pack again. */ static nir_def * emit_packed_alu1(nir_builder *b, struct lower_cmat_state *state, const slice_info *src_info, const slice_info *dst_info, nir_op op, nir_def *src) { const unsigned dst_bits = glsl_base_type_bit_size(dst_info->desc.element_type); const unsigned src_bits = glsl_base_type_bit_size(src_info->desc.element_type); const unsigned src_components = glsl_get_vector_elements(src_info->type); const unsigned dst_components = glsl_get_vector_elements(dst_info->type); assert(src_components * src_info->packing_factor == dst_components * dst_info->packing_factor); /* Store the result of all individual unpacked values. */ assert(src_components * src_info->packing_factor <= ARRAY_SIZE(state->scratch.tmp)); nir_def **tmp = state->scratch.tmp; for (unsigned i = 0; i < src_components; i++) { nir_def *chan = nir_channel(b, src, i); for (unsigned j = 0; j < src_info->packing_factor; j++) { const unsigned pos = (i * src_info->packing_factor) + j; nir_def *val = nir_channel(b, nir_unpack_bits(b, chan, src_bits), j); tmp[pos] = nir_build_alu1(b, op, val); } } /* Store each element of the result, might pack multiple values. */ nir_def *results[NIR_MAX_VEC_COMPONENTS] = {}; assert(dst_components <= ARRAY_SIZE(results)); /* Store each packed element in destination, to be combined * into results. */ nir_def *partial[BRW_MAX_PACKING_FACTOR]; for (unsigned i = 0; i < dst_components; i++) { for (unsigned j = 0; j < dst_info->packing_factor; j++) { const unsigned pos = (i * dst_info->packing_factor) + j; partial[j] = tmp[pos]; } results[i] = nir_pack_bits(b, nir_vec(b, partial, dst_info->packing_factor), dst_info->packing_factor * dst_bits); } return nir_vec(b, results, dst_components); } static nir_op get_cmat_conversion_op(enum glsl_base_type src, enum glsl_base_type dst) { if (src == GLSL_TYPE_BFLOAT16) { assert(dst == GLSL_TYPE_FLOAT); return nir_op_bf2f; } else if (dst == GLSL_TYPE_BFLOAT16) { assert(src == GLSL_TYPE_FLOAT); return nir_op_f2bf; } else { return nir_type_conversion_op(nir_get_nir_type_for_glsl_base_type(src), nir_get_nir_type_for_glsl_base_type(dst), nir_rounding_mode_undef); } } static void lower_cmat_convert(nir_builder *b, nir_intrinsic_instr *intrin, struct lower_cmat_state *state) { nir_deref_instr *dst_slice = nir_src_as_deref(intrin->src[0]); nir_deref_instr *src_slice = nir_src_as_deref(intrin->src[1]); const slice_info *dst_info = get_slice_info(state, dst_slice); const slice_info *src_info = get_slice_info(state, src_slice); const nir_cmat_signed cmat_signed_mask = nir_intrinsic_cmat_signed_mask(intrin); enum glsl_base_type src_element_type = glsl_apply_signedness_to_base_type( src_info->desc.element_type, cmat_signed_mask & NIR_CMAT_A_SIGNED); enum glsl_base_type dst_element_type = glsl_apply_signedness_to_base_type( dst_info->desc.element_type, cmat_signed_mask & NIR_CMAT_RESULT_SIGNED); bool needs_intermediate = (src_element_type == GLSL_TYPE_BFLOAT16 && dst_element_type != GLSL_TYPE_FLOAT) || (src_element_type != GLSL_TYPE_FLOAT && dst_element_type == GLSL_TYPE_BFLOAT16); nir_def *result; nir_def *src = nir_load_deref(b, src_slice); if (needs_intermediate) { /* Cooperative matrices must have the same "shape" to be converted. */ assert(src_info->desc.rows == dst_info->desc.rows); assert(src_info->desc.cols == dst_info->desc.cols); assert(src_info->desc.use == dst_info->desc.use); assert(src_info->desc.scope == dst_info->desc.scope); struct glsl_cmat_description float_desc = src_info->desc; float_desc.element_type = GLSL_TYPE_FLOAT; slice_info float_info = {}; init_slice_info(state, float_desc, &float_info); nir_op op1 = get_cmat_conversion_op(src_element_type, GLSL_TYPE_FLOAT); nir_op op2 = get_cmat_conversion_op(GLSL_TYPE_FLOAT, dst_element_type); nir_def *tmp = emit_packed_alu1(b, state, src_info, &float_info, op1, src); result = emit_packed_alu1(b, state, &float_info, dst_info, op2, tmp); } else { const unsigned dst_components = glsl_get_vector_elements(dst_info->type); const unsigned dst_bits = glsl_base_type_bit_size(dst_info->desc.element_type); result = nir_convert_cmat_intel(b, dst_components, dst_info->packing_factor * dst_bits, src, .dst_cmat_desc = dst_info->desc, .src_cmat_desc = src_info->desc); } nir_store_deref(b, dst_slice, result, nir_component_mask(result->num_components)); } static void lower_cmat_unary_op(nir_builder *b, nir_intrinsic_instr *intrin, struct lower_cmat_state *state) { nir_deref_instr *dst_slice = nir_src_as_deref(intrin->src[0]); nir_deref_instr *src_slice = nir_src_as_deref(intrin->src[1]); const slice_info *dst_info = get_slice_info(state, dst_slice); const slice_info *src_info = get_slice_info(state, src_slice); assert(cmat_descriptions_are_equal(src_info->desc, dst_info->desc)); nir_def *result = emit_packed_alu1(b, state, src_info, dst_info, nir_intrinsic_alu_op(intrin), nir_load_deref(b, src_slice)); nir_store_deref(b, dst_slice, result, nir_component_mask(result->num_components)); } static void lower_cmat_binary_op(nir_builder *b, nir_intrinsic_instr *intrin, struct lower_cmat_state *state) { nir_deref_instr *dst_slice = nir_src_as_deref(intrin->src[0]); nir_deref_instr *src_a_slice = nir_src_as_deref(intrin->src[1]); nir_deref_instr *src_b_slice = nir_src_as_deref(intrin->src[2]); nir_def *src_a = nir_load_deref(b, src_a_slice); nir_def *src_b = nir_load_deref(b, src_b_slice); nir_def *results[NIR_MAX_VEC_COMPONENTS]; const unsigned num_components = glsl_get_vector_elements(dst_slice->type); const slice_info *info = get_slice_info(state, dst_slice); ASSERTED const slice_info *src_a_info = get_slice_info(state, src_a_slice); ASSERTED const slice_info *src_b_info = get_slice_info(state, src_b_slice); assert(cmat_descriptions_are_equal(info->desc, src_a_info->desc)); assert(cmat_descriptions_are_equal(info->desc, src_b_info->desc)); const unsigned bits = glsl_base_type_bit_size(info->desc.element_type); for (unsigned i = 0; i < num_components; i++) { nir_def *val_a = nir_channel(b, src_a, i); nir_def *val_b = nir_channel(b, src_b, i); results[i] = nir_pack_bits(b, nir_build_alu2(b, nir_intrinsic_alu_op(intrin), nir_unpack_bits(b, val_a, bits), nir_unpack_bits(b, val_b, bits)), info->packing_factor * bits); } nir_store_deref(b, dst_slice, nir_vec(b, results, num_components), nir_component_mask(num_components)); } static void lower_cmat_scalar_op(nir_builder *b, nir_intrinsic_instr *intrin, struct lower_cmat_state *state) { nir_deref_instr *dst_slice = nir_src_as_deref(intrin->src[0]); nir_deref_instr *src_slice = nir_src_as_deref(intrin->src[1]); nir_def *scalar = intrin->src[2].ssa; nir_def *src = nir_load_deref(b, src_slice); nir_def *results[NIR_MAX_VEC_COMPONENTS]; const unsigned num_components = glsl_get_vector_elements(dst_slice->type); const slice_info *info = get_slice_info(state, dst_slice); ASSERTED const slice_info *src_info = get_slice_info(state, src_slice); assert(cmat_descriptions_are_equal(info->desc, src_info->desc)); const unsigned bits = glsl_base_type_bit_size(info->desc.element_type); for (unsigned i = 0; i < num_components; i++) { nir_def *val = nir_channel(b, src, i); results[i] = nir_pack_bits(b, nir_build_alu2(b, nir_intrinsic_alu_op(intrin), nir_unpack_bits(b, val, bits), scalar), info->packing_factor * bits); } nir_store_deref(b, dst_slice, nir_vec(b, results, num_components), nir_component_mask(num_components)); } static nir_deref_instr * lower_cmat_deref(nir_builder *b, nir_deref_instr *deref, struct lower_cmat_state *state) { nir_deref_instr *parent = nir_deref_instr_parent(deref); if (parent) { assert(deref->deref_type == nir_deref_type_array); parent = lower_cmat_deref(b, parent, state); return nir_build_deref_array(b, parent, deref->arr.index.ssa); } else { assert(deref->deref_type == nir_deref_type_var); assert(deref->var); assert(glsl_type_is_cmat(glsl_without_array(deref->var->type))); struct hash_entry *entry = _mesa_hash_table_search(state->mat_var_to_slice_info, deref->var); assert(entry); const slice_info *info = entry->data; return nir_build_deref_var(b, info->var); } } static nir_def * lower_cmat_instr(nir_builder *b, nir_instr *instr, void *_state) { struct lower_cmat_state *state = _state; if (instr->type == nir_instr_type_deref) { nir_deref_instr *deref = lower_cmat_deref(b, nir_instr_as_deref(instr), state); return &deref->def; } nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_cmat_load: case nir_intrinsic_cmat_store: lower_cmat_load_store(b, intrin, state); return NIR_LOWER_INSTR_PROGRESS_REPLACE; case nir_intrinsic_cmat_construct: { nir_deref_instr *slice = nir_src_as_deref(intrin->src[0]); nir_def *src = intrin->src[1].ssa; const slice_info *info = get_slice_info(state, slice); if (info->packing_factor > 1) { src = nir_pack_bits(b, nir_replicate(b, src, info->packing_factor), info->packing_factor * glsl_base_type_get_bit_size(info->desc.element_type)); } const unsigned num_components = glsl_get_vector_elements(slice->type); nir_store_deref(b, slice, nir_replicate(b, src, num_components), nir_component_mask(num_components)); return NIR_LOWER_INSTR_PROGRESS_REPLACE; } case nir_intrinsic_cmat_convert: lower_cmat_convert(b, intrin, state); return NIR_LOWER_INSTR_PROGRESS_REPLACE; case nir_intrinsic_cmat_unary_op: lower_cmat_unary_op(b, intrin, state); return NIR_LOWER_INSTR_PROGRESS_REPLACE; case nir_intrinsic_cmat_binary_op: lower_cmat_binary_op(b, intrin, state); return NIR_LOWER_INSTR_PROGRESS_REPLACE; case nir_intrinsic_cmat_scalar_op: lower_cmat_scalar_op(b, intrin, state); return NIR_LOWER_INSTR_PROGRESS_REPLACE; case nir_intrinsic_cmat_length: { slice_info info = {}; init_slice_info(state, nir_intrinsic_cmat_desc(intrin), &info); return nir_imm_intN_t(b, info.packing_factor * glsl_get_vector_elements(info.type), 32); } case nir_intrinsic_cmat_muladd: { nir_deref_instr *dst_slice = nir_src_as_deref(intrin->src[0]); nir_deref_instr *A_slice = nir_src_as_deref(intrin->src[1]); nir_deref_instr *B_slice = nir_src_as_deref(intrin->src[2]); nir_deref_instr *accum_slice = nir_src_as_deref(intrin->src[3]); const slice_info *dst_info = get_slice_info(state, dst_slice); const slice_info *src_info = get_slice_info(state, A_slice); const unsigned num_components = glsl_get_vector_elements(dst_slice->type); const nir_cmat_signed cmat_signed_mask = nir_intrinsic_cmat_signed_mask(intrin); assert(((cmat_signed_mask & NIR_CMAT_A_SIGNED) == 0) == ((cmat_signed_mask & NIR_CMAT_B_SIGNED) == 0)); assert(((cmat_signed_mask & NIR_CMAT_A_SIGNED) == 0) == ((cmat_signed_mask & NIR_CMAT_C_SIGNED) == 0)); assert(((cmat_signed_mask & NIR_CMAT_A_SIGNED) == 0) == ((cmat_signed_mask & NIR_CMAT_RESULT_SIGNED) == 0)); enum glsl_base_type src_type = src_info->desc.element_type; enum glsl_base_type dst_type = dst_info->desc.element_type; /* For integer types, the signedness is determined by flags on the * muladd instruction. The types of the sources play no role. Adjust the * types passed to the dpas_intel intrinsic to match. */ if (glsl_base_type_is_integer(src_type)) { if ((cmat_signed_mask & NIR_CMAT_A_SIGNED) == 0) { src_type = glsl_unsigned_base_type_of(src_type); dst_type = glsl_unsigned_base_type_of(dst_type); } else { src_type = glsl_signed_base_type_of(src_type); dst_type = glsl_signed_base_type_of(dst_type); } } nir_def *result = nir_dpas_intel(b, dst_info->packing_factor * glsl_base_type_get_bit_size(dst_info->desc.element_type), nir_load_deref(b, accum_slice), nir_load_deref(b, A_slice), nir_load_deref(b, B_slice), .dest_base_type = dst_type, .src_base_type = src_type, .saturate = nir_intrinsic_saturate(intrin), .systolic_depth = 8, .repeat_count = 8); nir_store_deref(b, dst_slice, result, nir_component_mask(num_components)); return NIR_LOWER_INSTR_PROGRESS_REPLACE; } case nir_intrinsic_cmat_bitcast: { nir_deref_instr *dst_slice = nir_src_as_deref(intrin->src[0]); nir_deref_instr *src_slice = nir_src_as_deref(intrin->src[1]); const unsigned num_components = glsl_get_vector_elements(dst_slice->type); assert(glsl_get_vector_elements(src_slice->type) == num_components); nir_store_deref(b, dst_slice, nir_load_deref(b, src_slice), nir_component_mask(num_components)); return NIR_LOWER_INSTR_PROGRESS_REPLACE; } case nir_intrinsic_cmat_copy: nir_copy_deref(b, nir_src_as_deref(intrin->src[0]), nir_src_as_deref(intrin->src[1])); return NIR_LOWER_INSTR_PROGRESS_REPLACE; case nir_intrinsic_cmat_insert: { nir_deref_instr *dst_slice = nir_src_as_deref(intrin->src[0]); nir_def *scalar = intrin->src[1].ssa; nir_deref_instr *src_slice = nir_src_as_deref(intrin->src[2]); const nir_src dst_index = intrin->src[3]; const slice_info *info = get_slice_info(state, dst_slice); ASSERTED const slice_info *src_info = get_slice_info(state, src_slice); assert(cmat_descriptions_are_equal(info->desc, src_info->desc)); const unsigned bits = glsl_base_type_bit_size(info->desc.element_type); const unsigned num_components = glsl_get_vector_elements(dst_slice->type); nir_def *slice_index = nir_udiv_imm(b, dst_index.ssa, info->packing_factor); nir_def *vector_index = nir_umod_imm(b, dst_index.ssa, info->packing_factor); nir_def *results[NIR_MAX_VEC_COMPONENTS]; const int slice_constant_index = nir_src_is_const(dst_index) ? nir_src_as_uint(dst_index) / info->packing_factor : -1; for (unsigned i = 0; i < num_components; i++) { nir_def *val = nir_channel(b, nir_load_deref(b, src_slice), i); nir_def *insert; if (slice_constant_index < 0 || slice_constant_index == i) { if (info->packing_factor == 1) { insert = scalar; } else { nir_def *unpacked = nir_unpack_bits(b, val, bits); nir_def *v = nir_vector_insert(b, unpacked, scalar, vector_index); insert = nir_pack_bits(b, v, bits * info->packing_factor); } } else { insert = val; } results[i] = slice_constant_index < 0 ? nir_bcsel(b, nir_ieq_imm(b, slice_index, i), insert, val) : insert; } nir_store_deref(b, dst_slice, nir_vec(b, results, num_components), nir_component_mask(num_components)); return NIR_LOWER_INSTR_PROGRESS_REPLACE; } case nir_intrinsic_cmat_extract: { nir_deref_instr *slice = nir_src_as_deref(intrin->src[0]); const slice_info *info = get_slice_info(state, slice); nir_def *index = intrin->src[1].ssa; const unsigned bits = glsl_base_type_bit_size(info->desc.element_type); nir_def *src = nir_vector_extract(b, nir_load_deref(b, slice), nir_udiv_imm(b, index, info->packing_factor)); if (info->packing_factor == 1) { return src; } else { return nir_vector_extract(b, nir_unpack_bits(b, src, bits), nir_umod_imm(b, index, info->packing_factor)); } return NIR_LOWER_INSTR_PROGRESS_REPLACE; } default: unreachable("invalid cooperative matrix intrinsic"); } } static const glsl_type * make_aoa_slice_type(const glsl_type *t, const glsl_type *slice_type) { if (glsl_type_is_array(t)) { const glsl_type *s = make_aoa_slice_type(glsl_get_array_element(t), slice_type); return glsl_array_type(s, glsl_array_size(t), 0); } assert(glsl_type_is_cmat(t)); return slice_type; } static void create_slice_var(struct lower_cmat_state *state, nir_variable *var, nir_function_impl *impl) { const struct glsl_type *mat_type = glsl_without_array(var->type); assert(glsl_type_is_cmat(mat_type)); assert((!impl && var->data.mode == nir_var_shader_temp) || ( impl && var->data.mode == nir_var_function_temp)); slice_info *info = rzalloc(state->temp_ctx, slice_info); init_slice_info(state, *glsl_get_cmat_description(mat_type), info); const glsl_type *aoa_slice_type = make_aoa_slice_type(var->type, info->type); const char *slice_name = ralloc_asprintf(state->shader, "%s_slice", var->name); info->var = impl ? nir_local_variable_create(impl, aoa_slice_type, slice_name) : nir_variable_create(state->shader, var->data.mode, aoa_slice_type, slice_name); _mesa_hash_table_insert(state->mat_var_to_slice_info, var, info); _mesa_hash_table_insert(state->slice_var_to_slice_info, info->var, info); } bool brw_nir_lower_cmat(nir_shader *shader, unsigned subgroup_size) { void *temp_ctx = ralloc_context(NULL); struct lower_cmat_state state = { .temp_ctx = temp_ctx, .shader = shader, .slice_var_to_slice_info = _mesa_pointer_hash_table_create(temp_ctx), .mat_var_to_slice_info = _mesa_pointer_hash_table_create(temp_ctx), .subgroup_size = subgroup_size, }; /* Create a slice array for each variable and add a map from the original * variable back to it, so it can be reached during lowering. * * TODO: Cooperative matrix inside struct? */ nir_foreach_variable_in_shader(var, shader) { if (glsl_type_is_cmat(glsl_without_array(var->type))) create_slice_var(&state, var, NULL); } nir_foreach_function(func, shader) { nir_foreach_function_temp_variable(var, func->impl) { if (glsl_type_is_cmat(glsl_without_array(var->type))) create_slice_var(&state, var, func->impl); } } bool progress = nir_shader_lower_instructions(shader, lower_cmat_filter, lower_cmat_instr, &state); ralloc_free(temp_ctx); return progress; }