Other nir_src_as_* functions just take a nir_src. It's not that much
more memory copying and the constness preserving really isn't worth the
cognitive dissonance.
Reviewed-by: Eric Anholt <eric@anholt.net>
Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com>
v2:
- Adapted unit tests to make them consistent with the changes done
to the validation of half-float conversions.
v3 (Curro):
- Check all the accummulators
- Constify declarations
- Do not check src1 type in single-source instructions.
- Check for all instructions that read accumulator (either implicitly or
explicitly)
- Check restrictions in src1 too.
- Merge conditional block
- Add invalid test case.
v4 (Curro):
- Assert on 3-src instructions, as they are not validated.
- Get rid of types_are_mixed_float(), as we know instruction is mixed
float at that point.
- Remove conditions from not verified case.
- Fix brackets on conditional.
Reviewed-by: Francisco Jerez <currojerez@riseup.net>
v2:
- Add some tests with UB type too (Jason)
v3:
- consider implicit conversions from 2src instructions too (Curro).
v4:
- Do not check src1 type in single-source instructions (Curro).
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> (v2)
v2:
- Consider implicit conversions in 2-src instructions too (Curro)
- For restrictions that involve destination stride requirements
only validate them for Align1, since Align16 always requires
packed data.
- Skip general rule for the dst/execution type size ratio for
mixed float instructions on CHV and SKL+, these have their own
set of rules that we'll be validated separately.
v3 (Curro):
- Do not check src1 type in single-source instructions.
- Check restriction on src1.
- Remove invalid test.
Reviewed-by: Francisco Jerez <currojerez@riseup.net>
The section 'Execution Data Types' of 3D Media GPGPU volume, which
describes execution types, is exactly the same in BDW and SKL+.
Also, this section states that there is a single execution type, so it
makes sense that this is the wider of the two floating point types
involved in mixed float mode, which is what we do for SKL+ and CHV.
v2:
- Make sure we also account for the destination type in mixed mode (Curro).
Acked-by: Francisco Jerez <currojerez@riseup.net>
It is very likely that this optimzation is never useful and we'll probably
just end up removing it, so let's not bother adding more cases to it for
now.
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
NIR already has these and correctly considers exact/inexact qualification,
whereas the backend doesn't and can apply the optimizations where it
shouldn't. This happened to be the case in a handful of Tomb Raider shaders,
where NIR would skip the optimizations because of a precise qualification
but the backend would then (incorrectly) apply them anyway.
Besides this, considering that we are not emitting much math in the backend
these days it is unlikely that these optimizations are useful in general. A
shader-db run confirms that MAD and LRP optimizations, for example, were only
being triggered in cases where NIR would skip them due to precise
requirements, so in the near future we might want to remove more of these,
but for now we just remove the ones that are not completely correct.
Suggested-by: Jason Ekstrand <jason@jlekstrand.net>
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
There are no 8-bit immediates, so assert in that case.
16-bit immediates are replicated in each word of a 32-bit immediate, so
we only need to check the lower 16-bits.
v2:
- Fix is_zero with half-float to consider -0 as well (Jason).
- Fix is_negative_one for word type.
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
At the very least we need it to handle HF too, since we are doing
constant propagation for MAD and LRP, which relies on this pass
to promote the immediates to GRF in the end, but ideally
we want it to support even more types so we can take advantage
of it to improve register pressure in some scenarios.
v2 (Jason):
- Support 64-bit types too.
- Check if we need to set the half-float flag if the immediate already
existed.
- Multiply the size of the immediate by the width of the copy
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
The hardware only allows a stride of 1 on a Byte destination for raw
byte MOV instructions. This is required even when the destination
is the NULL register.
Rather than making sure that we emit a proper NULL:B destination
every time we need one, just fix it at emission time.
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Now that we have the regioning lowering pass we can just put all of these
opcodes together in a single block and we can just assert on the few cases
of conversion instructions that are not supported in hardware and that should
be lowered in brw_nir_lower_conversions.
The only cases what we still handle separately are the conversions from float
to half-float since the rounding variants would need to fallthrough and we
are already doing this for boolean opcodes (since they need to negate), plus
there is also a large comment about these opcodes that we probably want to
keep so it is just easier to keep these separate.
Suggested-by: Jason Ekstrand <jason@jlekstrand.net>
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
This function is used in two different scenarios that for 32-bit
instructions are the same, but for 16-bit instructions are not.
One scenario is that in which we are working at a SIMD8 register
level and we need to know if a register is fully defined or written.
This is useful, for example, in the context of liveness analysis or
register allocation, where we work with units of registers.
The other scenario is that in which we want to know if an instruction
is writing a full scalar component or just some subset of it. This is
useful, for example, in the context of some optimization passes
like copy propagation.
For 32-bit instructions (or larger), a SIMD8 dispatch will always write
at least a full SIMD8 register (32B) if the write is not partial. The
function is_partial_write() checks this to determine if we have a partial
write. However, when we deal with 16-bit instructions, that logic disables
some optimizations that should be safe. For example, a SIMD8 16-bit MOV will
only update half of a SIMD register, but it is still a complete write of the
variable for a SIMD8 dispatch, so we should not prevent copy propagation in
this scenario because we don't write all 32 bytes in the SIMD register
or because the write starts at offset 16B (wehere we pack components Y or
W of 16-bit vectors).
This is a problem for SIMD8 executions (VS, TCS, TES, GS) of 16-bit
instructions, which lose a number of optimizations because of this, most
important of which is copy-propagation.
This patch splits is_partial_write() into is_partial_reg_write(), which
represents the current is_partial_write(), useful for things like
liveness analysis, and is_partial_var_write(), which considers
the dispatch size to check if we are writing a full variable (rather
than a full register) to decide if the write is partial or not, which
is what we really want in many optimization passes.
Then the patch goes on and rewrites all uses of is_partial_write() to use
one or the other version. Specifically, we use is_partial_var_write()
in the following places: copy propagation, cmod propagation, common
subexpression elimination, saturate propagation and sel peephole.
Notice that the semantics of is_partial_var_write() exactly match the
current implementation of is_partial_write() for anything that is
32-bit or larger, so no changes are expected for 32-bit instructions.
Tested against ~5000 tests involving 16-bit instructions in CTS produced
the following changes in instruction counts:
Patched | Master | % |
================================================
SIMD8 | 621,900 | 706,721 | -12.00% |
================================================
SIMD16 | 93,252 | 93,252 | 0.00% |
================================================
As expected, the change only affects SIMD8 dispatches.
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com>
Empirical testing shows that gen8 has a bug where MAD instructions with
a half-float source starting at a non-zero offset fail to execute
properly.
This scenario usually happened in SIMD8 executions, where we used to
pack vector components Y and W in the second half of SIMD registers
(therefore, with a 16B offset). It looks like we are not currently doing
this any more but this would handle the situation properly if we ever
happen to produce code like this again.
v2 (Jason):
- Move this workaround to the lower_regioning pass as an additional case
to has_invalid_src_region()
- Do not apply the workaround if the stride of the source operand is 0,
testing suggests the problem doesn't exist in that case.
v3 (Jason):
- We want offset % REG_SIZE > 0, not just offset > 0
- Use a helper to compute the offset
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com> (v1)
Broadwell has restrictions that apply to Align16 half-float that
make the Align16 implementation of this invalid for this platform.
Use the gen11 path for this instead, which uses Align1 mode.
The restriction is not present in cherryview, gen9 or gen10, where
the Align16 implementation seems to work just fine.
v2:
- Rework the comment in the code, move the PRM citation from the
commit message to the comment in the code (Matt)
- Cherryview isn't affected, only Broadwell (Matt)
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> (v1)
Reviewed-by: Matt Turner <mattst88@gmail.com>
We were assuming 32-bit elements. Also, In SIMD8 we pack 2 vector components
in a single SIMD register, so for example, component Y of a 16-bit vec2
starts is at byte offset 16B. This means that when we compute the offset of
the elements to be differentiated we should not stomp whatever base offset we
have, but instead add to it.
v2
- Use byte_offset() helper (Jason)
- Merge the fix for SIMD8: using byte_offset() fixes that too.
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> (v1)
Reviewed-by: Matt Turner <mattst88@gmail.com>
Source0 and Destination extract the floating-point precision automatically
from the SrcType and DstType instruction fields respectively when they are
set to types :F or :HF. For Source1 and Source2 operands, we use the new
1-bit fields Src1Type and Src2Type, where 0 means normal precision and 1
means half-precision. Since we always use the type of the destination for
all operands when we emit 3-source instructions, we only need set Src1Type
and Src2Type to 1 when we are emitting a half-precision instruction.
v2:
- Set the bit separately for each source based on its type so we can
do mixed floating-point mode in the future (Topi).
v3:
- Use regular citation style for the comment referencing the PRM (Matt).
- Decided not to add asserts in the emission code to check that only
mixed HF/F types are used since such checks would break negative tests
for brw_eu_validate.c (Matt)
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com>
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Reviewed-by: Matt Turner <mattst88@gmail.com>
We are now using these bits, so don't assert that they are not set. In gen8,
if these bits are set compaction is not possible. On gen9 and CHV platforms
set_3src_control_index() checks these bits (and others) against a table to
validate if the particular bit combination is eligible for compaction or not.
v2
- Add more detail in the commit message explaining the situation for SKL+
and CHV (Jason)
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com>
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Reviewed-by: Matt Turner <mattst88@gmail.com>
This is available since gen8.
v2: restore previously existing assertion.
v3: don't use separate tables for gen7 and gen8, just assert that we
don't use half-float before gen8 (Matt)
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com> (v1)
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
The original SrcType is a 3-bit field that takes a subset of the types
supported for the hardware for 3-source instructions. Since gen8,
when the half-float type was added, 3-source floating point operations
can use use mixed precision mode, where not all the operands have the
same floating-point precision. While the precision for the first operand
is taken from the type in SrcType, the bits in Src1Type (bit 36) and
Src2Type (bit 35) define the precision for the other operands
(0: normal precision, 1: half precision).
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com>
Reviewed-by: Matt Turner <mattst88@gmail.com>
Acked-by: Jason Ekstrand <jason@jlekstrand.net>
v2:
- make 16-bit be its own separate case (Jason)
v3:
- Drop the result_int temporary (Jason)
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com> (v1)
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Extended math with half-float operands is only supported since gen9,
but it is limited to SIMD8. In gen8 we lower it to 32-bit.
v2: quashed together the following patches (Jason):
- intel/compiler: allow extended math functions with HF operands
- intel/compiler: lower 16-bit extended math to 32-bit prior to gen9
- intel/compiler: extended Math is limited to SIMD8 on half-float
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com>
(allow extended math functions with HF operands,
extended Math is limited to SIMD8 on half-float)
The hardware doesn't support half-float for these.
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com>
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
There are some hardware restrictions that brw_nir_lower_conversions should
have taken care of before we get here.
v2:
- rebased on top of regioning lowering pass
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com> (v1)
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Since we handle booleans as integers this makes more sense.
v2:
- rebased to incorporate new boolean conversion opcodes
v3:
- rebased on top regioning lowering pass
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> (v1)
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com> (v2)
Going forward having these split is a bit more convenient since these two
groups have different restrictions.
v2:
- Rebased on top of new regioning lowering pass.
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com> (v1)
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Some conversions are not directly supported in hardware and need to be
split in two conversion instructions going through an intermediary type.
Doing this at the NIR level simplifies a bit the complexity in the backend.
v2:
- Consider fp16 rounding conversion opcodes
- Properly handle swizzles on conversion sources.
v3
- Run the pass earlier, right after nir_opt_algebraic_late (Jason)
- NIR alu output types already have the bit-size (Jason)
- Use 'is_conversion' to identify conversion operations (Jason)
v4:
- Be careful about the intermediate types we use so we don't lose
range and avoid incorrect rounding semantics (Jason)
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com> (v1)
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
The i965 driver has a bunch of code to compare two sets of program keys
and print out the differences. This can be useful for debugging why a
shader needed to be recompiled on the fly due to non-orthogonal state
dependencies. anv doesn't do recompiles, so we didn't need to share
this in the past - but I'd like to use it in iris.
This moves the bulk of the code to the compiler where it can be reused.
To make that possible, we need to decouple it from i965 - we can't get
at the brw program cache directly, nor use brw_context to print things.
Instead, we use compiler->shader_perf_log(), and simply pass in keys.
We put all of this debugging code in brw_debug_recompile.c, and only
export a single function, for simplicity. I also tidied the code a
bit while moving it, now that it all lives in one file.
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
If we write to the flag register changing the swizzle would change
what channels are written to the flag register.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=110201
Fixes: 4cd1a0be
Signed-off-by: Danylo Piliaiev <danylo.piliaiev@globallogic.com>
Reviewed-by: <ian.d.romanick@intel.com>
v2: remove & operator in a couple of memsets
add some memsets
v3: fixup lima
Signed-off-by: Karol Herbst <kherbst@redhat.com>
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> (v2)
We will never hit a condition where we have src1 and src2 as immediate
operands.
Signed-off-by: Sagar Ghuge <sagar.ghuge@intel.com>
Reviewed-by: Matt Turner <mattst88@gmail.com>
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
libintel_common depends on libintel_compiler, but it contains debug
functionality that is needed by libintel_compiler. Break the circular
dependency by moving gen_debug files to libintel_dev.
Suggested-by: Kenneth Graunke <kenneth@whitecape.org>
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
This will make that step visible in NIR_PRINT=1.
v2: Also use the macro for the cleanup passes.
Reviewed-by: Ian Romanick <ian.d.romanick@intel.com>
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
This was needed when certain intrinsics were lowered to other ones
that were defined by the same pass. After 060817b2 "intel,nir: Move
gl_LocalInvocationID lowering to nir_lower_system_values" we don't
need the loop anymore.
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
When using quads, instead of mapping the elements to the next 4 local
invocation indices, we map the two next in the "current" row and two
next in the "next row". A side effect is that a thread will execute
the indices in a different order.
We now perform the lowering of both local invocation ID and index
together -- and don't rely anymore on lowering done by
nir_lower_system_values. That is convenient when doing the math for
quads, because we need X and Y to get the right invocation index.
When the pass progresses, fold the constants and clean up to reduce
the noise from the indexing math.
This implements the derivative_group_quadsNV semantics from
NV_compute_shader_derivatives.
v2: Take subgroup_id into account, otherwise only values in the first
subgroup would be used. (Jason)
v3: Calculate invocation index and ID together, to avoid duplicating
some math in the quads case when both index and ID are used. (Jason)
v4: Don't call cleanup passes as part of the lowering, let that to the
call site. (Jason)
Change calculation to use less instructions. (Jason)
Reviewed-by: Ian Romanick <ian.d.romanick@intel.com> (v3)
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>