mesa: convert a bunch of math macros to inline functions

This commit is contained in:
Brian Paul 2012-08-25 06:33:16 -06:00
parent 454e23776d
commit fd9afb87d8

View file

@ -584,34 +584,31 @@ do { \
/*@}*/
/** \name Linear interpolation macros */
/** \name Linear interpolation functions */
/*@{*/
/**
* Linear interpolation
*
* \note \p OUT argument is evaluated twice!
* \note Be wary of using *coord++ as an argument to any of these macros!
*/
#define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT)))
static inline GLfloat
LINTERP(GLfloat t, GLfloat out, GLfloat in)
{
return out + t * (in - out);
}
#define INTERP_F( t, dstf, outf, inf ) \
dstf = LINTERP( t, outf, inf )
static inline void
INTERP_3F(GLfloat t, GLfloat dst[3], const GLfloat out[3], const GLfloat in[3])
{
dst[0] = LINTERP( t, out[0], in[0] );
dst[1] = LINTERP( t, out[1], in[1] );
dst[2] = LINTERP( t, out[2], in[2] );
}
#define INTERP_4F( t, dst, out, in ) \
do { \
dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \
dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \
dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \
dst[3] = LINTERP( (t), (out)[3], (in)[3] ); \
} while (0)
#define INTERP_3F( t, dst, out, in ) \
do { \
dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \
dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \
dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \
} while (0)
static inline void
INTERP_4F(GLfloat t, GLfloat dst[4], const GLfloat out[4], const GLfloat in[4])
{
dst[0] = LINTERP( t, out[0], in[0] );
dst[1] = LINTERP( t, out[1], in[1] );
dst[2] = LINTERP( t, out[2], in[2] );
dst[3] = LINTERP( t, out[3], in[3] );
}
/*@}*/
@ -630,43 +627,76 @@ do { \
#define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
#define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
/** Dot product of two 2-element vectors */
#define DOT2( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] )
/** Dot product of two 3-element vectors */
#define DOT3( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] )
/** Dot product of two 4-element vectors */
#define DOT4( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + \
(a)[2]*(b)[2] + (a)[3]*(b)[3] )
/** Cross product of two 3-element vectors */
#define CROSS3(n, u, v) \
do { \
(n)[0] = (u)[1]*(v)[2] - (u)[2]*(v)[1]; \
(n)[1] = (u)[2]*(v)[0] - (u)[0]*(v)[2]; \
(n)[2] = (u)[0]*(v)[1] - (u)[1]*(v)[0]; \
} while (0)
static inline void
CROSS3(GLfloat n[3], const GLfloat u[3], const GLfloat v[3])
{
n[0] = u[1] * v[2] - u[2] * v[1];
n[1] = u[2] * v[0] - u[0] * v[2];
n[2] = u[0] * v[1] - u[1] * v[0];
}
/** Dot product of two 2-element vectors */
static inline GLfloat
DOT2(const GLfloat a[2], const GLfloat b[2])
{
return a[0] * b[0] + a[1] * b[1];
}
static inline GLfloat
DOT3(const GLfloat a[3], const GLfloat b[3])
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
static inline GLfloat
DOT4(const GLfloat a[4], const GLfloat b[4])
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
}
static inline GLfloat
LEN_SQUARED_3FV(const GLfloat v[3])
{
return DOT3(v, v);
}
static inline GLfloat
LEN_SQUARED_2FV(const GLfloat v[2])
{
return DOT2(v, v);
}
static inline GLfloat
LEN_3FV(const GLfloat v[3])
{
return SQRTF(LEN_SQUARED_3FV(v));
}
static inline GLfloat
LEN_2FV(const GLfloat v[2])
{
return SQRTF(LEN_SQUARED_2FV(v));
}
/* Normalize a 3-element vector to unit length. */
#define NORMALIZE_3FV( V ) \
do { \
GLfloat len = (GLfloat) LEN_SQUARED_3FV(V); \
if (len) { \
len = INV_SQRTF(len); \
(V)[0] = (GLfloat) ((V)[0] * len); \
(V)[1] = (GLfloat) ((V)[1] * len); \
(V)[2] = (GLfloat) ((V)[2] * len); \
} \
} while(0)
#define LEN_3FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2]))
#define LEN_2FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]))
#define LEN_SQUARED_3FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2])
#define LEN_SQUARED_2FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1])
static inline void
NORMALIZE_3FV(GLfloat v[3])
{
GLfloat len = (GLfloat) LEN_SQUARED_3FV(v);
if (len) {
len = INV_SQRTF(len);
v[0] *= len;
v[1] *= len;
v[2] *= len;
}
}
/** Compute ceiling of integer quotient of A divided by B. */