tgsi/exec: Cleanup the remaining arithmetic instructions.

As a result remove some nasty macros.
This commit is contained in:
Michal Krol 2010-11-04 11:37:24 +01:00
parent d3fcadf840
commit ee9366ab36

View file

@ -428,6 +428,24 @@ micro_sne(union tgsi_exec_channel *dst,
dst->f[3] = src0->f[3] != src1->f[3] ? 1.0f : 0.0f;
}
static void
micro_sfl(union tgsi_exec_channel *dst)
{
dst->f[0] = 0.0f;
dst->f[1] = 0.0f;
dst->f[2] = 0.0f;
dst->f[3] = 0.0f;
}
static void
micro_str(union tgsi_exec_channel *dst)
{
dst->f[0] = 1.0f;
dst->f[1] = 1.0f;
dst->f[2] = 1.0f;
dst->f[3] = 1.0f;
}
static void
micro_trunc(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
@ -453,22 +471,6 @@ enum tgsi_exec_datatype {
/*
* Shorthand locations of various utility registers (_I = Index, _C = Channel)
*/
#define TEMP_0_I TGSI_EXEC_TEMP_00000000_I
#define TEMP_0_C TGSI_EXEC_TEMP_00000000_C
#define TEMP_7F_I TGSI_EXEC_TEMP_7FFFFFFF_I
#define TEMP_7F_C TGSI_EXEC_TEMP_7FFFFFFF_C
#define TEMP_80_I TGSI_EXEC_TEMP_80000000_I
#define TEMP_80_C TGSI_EXEC_TEMP_80000000_C
#define TEMP_FF_I TGSI_EXEC_TEMP_FFFFFFFF_I
#define TEMP_FF_C TGSI_EXEC_TEMP_FFFFFFFF_C
#define TEMP_1_I TGSI_EXEC_TEMP_ONE_I
#define TEMP_1_C TGSI_EXEC_TEMP_ONE_C
#define TEMP_2_I TGSI_EXEC_TEMP_TWO_I
#define TEMP_2_C TGSI_EXEC_TEMP_TWO_C
#define TEMP_128_I TGSI_EXEC_TEMP_128_I
#define TEMP_128_C TGSI_EXEC_TEMP_128_C
#define TEMP_M128_I TGSI_EXEC_TEMP_MINUS_128_I
#define TEMP_M128_C TGSI_EXEC_TEMP_MINUS_128_C
#define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I
#define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C
#define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I
@ -477,26 +479,6 @@ enum tgsi_exec_datatype {
#define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C
#define TEMP_CC_I TGSI_EXEC_TEMP_CC_I
#define TEMP_CC_C TGSI_EXEC_TEMP_CC_C
#define TEMP_3_I TGSI_EXEC_TEMP_THREE_I
#define TEMP_3_C TGSI_EXEC_TEMP_THREE_C
#define TEMP_HALF_I TGSI_EXEC_TEMP_HALF_I
#define TEMP_HALF_C TGSI_EXEC_TEMP_HALF_C
#define TEMP_R0 TGSI_EXEC_TEMP_R0
#define TEMP_P0 TGSI_EXEC_TEMP_P0
#define IS_CHANNEL_ENABLED(INST, CHAN)\
((INST).Dst[0].Register.WriteMask & (1 << (CHAN)))
#define IS_CHANNEL_ENABLED2(INST, CHAN)\
((INST).Dst[1].Register.WriteMask & (1 << (CHAN)))
#define FOR_EACH_ENABLED_CHANNEL(INST, CHAN)\
for (CHAN = 0; CHAN < NUM_CHANNELS; CHAN++)\
if (IS_CHANNEL_ENABLED( INST, CHAN ))
#define FOR_EACH_ENABLED_CHANNEL2(INST, CHAN)\
for (CHAN = 0; CHAN < NUM_CHANNELS; CHAN++)\
if (IS_CHANNEL_ENABLED2( INST, CHAN ))
/** The execution mask depends on the conditional mask and the loop mask */
@ -511,6 +493,14 @@ static const union tgsi_exec_channel OneVec = {
{1.0f, 1.0f, 1.0f, 1.0f}
};
static const union tgsi_exec_channel P128Vec = {
{128.0f, 128.0f, 128.0f, 128.0f}
};
static const union tgsi_exec_channel M128Vec = {
{-128.0f, -128.0f, -128.0f, -128.0f}
};
/**
* Assert that none of the float values in 'chan' are infinite or NaN.
@ -572,8 +562,6 @@ tgsi_exec_set_constant_buffers(struct tgsi_exec_machine *mach,
}
/**
* Check if there's a potential src/dst register data dependency when
* using SOA execution.
@ -607,18 +595,20 @@ tgsi_check_soa_dependencies(const struct tgsi_full_instruction *inst)
inst->Dst[0].Register.File) &&
((inst->Src[i].Register.Index ==
inst->Dst[0].Register.Index) ||
inst->Src[i].Register.Indirect ||
inst->Dst[0].Register.Indirect)) {
inst->Src[i].Register.Indirect ||
inst->Dst[0].Register.Indirect)) {
/* loop over dest channels */
uint channelsWritten = 0x0;
FOR_EACH_ENABLED_CHANNEL(*inst, chan) {
/* check if we're reading a channel that's been written */
uint swizzle = tgsi_util_get_full_src_register_swizzle(&inst->Src[i], chan);
if (channelsWritten & (1 << swizzle)) {
return TRUE;
}
for (chan = 0; chan < NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
/* check if we're reading a channel that's been written */
uint swizzle = tgsi_util_get_full_src_register_swizzle(&inst->Src[i], chan);
if (channelsWritten & (1 << swizzle)) {
return TRUE;
}
channelsWritten |= (1 << chan);
channelsWritten |= (1 << chan);
}
}
}
}
@ -813,18 +803,18 @@ tgsi_exec_machine_create( void )
mach->MaxGeometryShaderOutputs = TGSI_MAX_TOTAL_VERTICES;
mach->Predicates = &mach->Temps[TGSI_EXEC_TEMP_P0];
/* Setup constants. */
/* Setup constants needed by the SSE2 executor. */
for( i = 0; i < 4; i++ ) {
mach->Temps[TEMP_0_I].xyzw[TEMP_0_C].u[i] = 0x00000000;
mach->Temps[TEMP_7F_I].xyzw[TEMP_7F_C].u[i] = 0x7FFFFFFF;
mach->Temps[TEMP_80_I].xyzw[TEMP_80_C].u[i] = 0x80000000;
mach->Temps[TEMP_FF_I].xyzw[TEMP_FF_C].u[i] = 0xFFFFFFFF;
mach->Temps[TEMP_1_I].xyzw[TEMP_1_C].f[i] = 1.0f;
mach->Temps[TEMP_2_I].xyzw[TEMP_2_C].f[i] = 2.0f;
mach->Temps[TEMP_128_I].xyzw[TEMP_128_C].f[i] = 128.0f;
mach->Temps[TEMP_M128_I].xyzw[TEMP_M128_C].f[i] = -128.0f;
mach->Temps[TEMP_3_I].xyzw[TEMP_3_C].f[i] = 3.0f;
mach->Temps[TEMP_HALF_I].xyzw[TEMP_HALF_C].f[i] = 0.5f;
mach->Temps[TGSI_EXEC_TEMP_00000000_I].xyzw[TGSI_EXEC_TEMP_00000000_C].u[i] = 0x00000000;
mach->Temps[TGSI_EXEC_TEMP_7FFFFFFF_I].xyzw[TGSI_EXEC_TEMP_7FFFFFFF_C].u[i] = 0x7FFFFFFF;
mach->Temps[TGSI_EXEC_TEMP_80000000_I].xyzw[TGSI_EXEC_TEMP_80000000_C].u[i] = 0x80000000;
mach->Temps[TGSI_EXEC_TEMP_FFFFFFFF_I].xyzw[TGSI_EXEC_TEMP_FFFFFFFF_C].u[i] = 0xFFFFFFFF; /* not used */
mach->Temps[TGSI_EXEC_TEMP_ONE_I].xyzw[TGSI_EXEC_TEMP_ONE_C].f[i] = 1.0f;
mach->Temps[TGSI_EXEC_TEMP_TWO_I].xyzw[TGSI_EXEC_TEMP_TWO_C].f[i] = 2.0f; /* not used */
mach->Temps[TGSI_EXEC_TEMP_128_I].xyzw[TGSI_EXEC_TEMP_128_C].f[i] = 128.0f;
mach->Temps[TGSI_EXEC_TEMP_MINUS_128_I].xyzw[TGSI_EXEC_TEMP_MINUS_128_C].f[i] = -128.0f;
mach->Temps[TGSI_EXEC_TEMP_THREE_I].xyzw[TGSI_EXEC_TEMP_THREE_C].f[i] = 3.0f;
mach->Temps[TGSI_EXEC_TEMP_HALF_I].xyzw[TGSI_EXEC_TEMP_HALF_C].f[i] = 0.5f;
}
#ifdef DEBUG
@ -886,27 +876,35 @@ micro_div(
}
static void
micro_float_clamp(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
micro_rcc(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src)
{
uint i;
for (i = 0; i < 4; i++) {
if (src->f[i] > 0.0f) {
if (src->f[i] > 1.884467e+019f)
float recip = 1.0f / src->f[i];
if (recip > 0.0f) {
if (recip > 1.884467e+019f) {
dst->f[i] = 1.884467e+019f;
else if (src->f[i] < 5.42101e-020f)
}
else if (recip < 5.42101e-020f) {
dst->f[i] = 5.42101e-020f;
else
dst->f[i] = src->f[i];
}
else {
dst->f[i] = recip;
}
}
else {
if (src->f[i] < -1.884467e+019f)
if (recip < -1.884467e+019f) {
dst->f[i] = -1.884467e+019f;
else if (src->f[i] > -5.42101e-020f)
}
else if (recip > -5.42101e-020f) {
dst->f[i] = -5.42101e-020f;
else
dst->f[i] = src->f[i];
}
else {
dst->f[i] = recip;
}
}
}
}
@ -958,60 +956,6 @@ micro_mul(union tgsi_exec_channel *dst,
dst->f[3] = src0->f[3] * src1->f[3];
}
#if 0
static void
micro_imul64(
union tgsi_exec_channel *dst0,
union tgsi_exec_channel *dst1,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1 )
{
dst1->i[0] = src0->i[0] * src1->i[0];
dst1->i[1] = src0->i[1] * src1->i[1];
dst1->i[2] = src0->i[2] * src1->i[2];
dst1->i[3] = src0->i[3] * src1->i[3];
dst0->i[0] = 0;
dst0->i[1] = 0;
dst0->i[2] = 0;
dst0->i[3] = 0;
}
#endif
#if 0
static void
micro_umul64(
union tgsi_exec_channel *dst0,
union tgsi_exec_channel *dst1,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1 )
{
dst1->u[0] = src0->u[0] * src1->u[0];
dst1->u[1] = src0->u[1] * src1->u[1];
dst1->u[2] = src0->u[2] * src1->u[2];
dst1->u[3] = src0->u[3] * src1->u[3];
dst0->u[0] = 0;
dst0->u[1] = 0;
dst0->u[2] = 0;
dst0->u[3] = 0;
}
#endif
#if 0
static void
micro_movc(
union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1,
const union tgsi_exec_channel *src2 )
{
dst->u[0] = src0->u[0] ? src1->u[0] : src2->u[0];
dst->u[1] = src0->u[1] ? src1->u[1] : src2->u[1];
dst->u[2] = src0->u[2] ? src1->u[2] : src2->u[2];
dst->u[3] = src0->u[3] ? src1->u[3] : src2->u[3];
}
#endif
static void
micro_neg(
union tgsi_exec_channel *dst,
@ -1607,9 +1551,6 @@ store_dest(struct tgsi_exec_machine *mach,
#define FETCH(VAL,INDEX,CHAN)\
fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
#define STORE(VAL,INDEX,CHAN)\
store_dest(mach, VAL, &inst->Dst[INDEX], inst, CHAN, TGSI_EXEC_DATA_FLOAT)
/**
* Execute ARB-style KIL which is predicated by a src register.
@ -1753,7 +1694,7 @@ exec_tex(struct tgsi_exec_machine *mach,
union tgsi_exec_channel r[4];
const union tgsi_exec_channel *lod = &ZeroVec;
enum tgsi_sampler_control control;
uint chan_index;
uint chan;
if (modifier != TEX_MODIFIER_NONE) {
FETCH(&r[3], 0, CHAN_W);
@ -1825,8 +1766,10 @@ exec_tex(struct tgsi_exec_machine *mach,
assert(0);
}
FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
STORE(&r[chan_index], 0, chan_index);
for (chan = 0; chan < NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
@ -1836,7 +1779,7 @@ exec_txd(struct tgsi_exec_machine *mach,
{
const uint unit = inst->Src[3].Register.Index;
union tgsi_exec_channel r[4];
uint chan_index;
uint chan;
/*
* XXX: This is fake TXD -- the derivatives are not taken into account, yet.
@ -1886,8 +1829,10 @@ exec_txd(struct tgsi_exec_machine *mach,
assert(0);
}
FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
STORE(&r[chan_index], 0, chan_index);
for (chan = 0; chan < NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
}
}
}
@ -2021,6 +1966,26 @@ exec_declaration(struct tgsi_exec_machine *mach,
}
}
typedef void (* micro_op)(union tgsi_exec_channel *dst);
static void
exec_vector(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
micro_op op,
enum tgsi_exec_datatype dst_datatype)
{
unsigned int chan;
for (chan = 0; chan < NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
union tgsi_exec_channel dst;
op(&dst);
store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
}
}
}
typedef void (* micro_unary_op)(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src);
@ -2073,6 +2038,27 @@ typedef void (* micro_binary_op)(union tgsi_exec_channel *dst,
const union tgsi_exec_channel *src0,
const union tgsi_exec_channel *src1);
static void
exec_scalar_binary(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
micro_binary_op op,
enum tgsi_exec_datatype dst_datatype,
enum tgsi_exec_datatype src_datatype)
{
unsigned int chan;
union tgsi_exec_channel src[2];
union tgsi_exec_channel dst;
fetch_source(mach, &src[0], &inst->Src[0], CHAN_X, src_datatype);
fetch_source(mach, &src[1], &inst->Src[1], CHAN_Y, src_datatype);
op(&dst, &src[0], &src[1]);
for (chan = 0; chan < NUM_CHANNELS; chan++) {
if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
}
}
}
static void
exec_vector_binary(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst,
@ -2319,6 +2305,289 @@ exec_nrm3(struct tgsi_exec_machine *mach,
}
}
static void
exec_scs(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) {
union tgsi_exec_channel arg;
union tgsi_exec_channel result;
fetch_source(mach, &arg, &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
micro_cos(&result, &arg);
store_dest(mach, &result, &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
micro_sin(&result, &arg);
store_dest(mach, &result, &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
}
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
store_dest(mach, &ZeroVec, &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
}
}
static void
exec_x2d(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[4];
union tgsi_exec_channel d[2];
fetch_source(mach, &r[0], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
fetch_source(mach, &r[1], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XZ) {
fetch_source(mach, &r[2], &inst->Src[2], CHAN_X, TGSI_EXEC_DATA_FLOAT);
micro_mul(&r[2], &r[2], &r[0]);
fetch_source(mach, &r[3], &inst->Src[2], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
micro_mul(&r[3], &r[3], &r[1]);
micro_add(&r[2], &r[2], &r[3]);
fetch_source(mach, &r[3], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
micro_add(&d[0], &r[2], &r[3]);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YW) {
fetch_source(mach, &r[2], &inst->Src[2], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
micro_mul(&r[2], &r[2], &r[0]);
fetch_source(mach, &r[3], &inst->Src[2], CHAN_W, TGSI_EXEC_DATA_FLOAT);
micro_mul(&r[3], &r[3], &r[1]);
micro_add(&r[2], &r[2], &r[3]);
fetch_source(mach, &r[3], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
micro_add(&d[1], &r[2], &r[3]);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
store_dest(mach, &d[0], &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
store_dest(mach, &d[1], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
store_dest(mach, &d[0], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
store_dest(mach, &d[1], &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
}
}
static void
exec_rfl(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[9];
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) {
/* r0 = dp3(src0, src0) */
fetch_source(mach, &r[2], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
micro_mul(&r[0], &r[2], &r[2]);
fetch_source(mach, &r[4], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
micro_mul(&r[8], &r[4], &r[4]);
micro_add(&r[0], &r[0], &r[8]);
fetch_source(mach, &r[6], &inst->Src[0], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
micro_mul(&r[8], &r[6], &r[6]);
micro_add(&r[0], &r[0], &r[8]);
/* r1 = dp3(src0, src1) */
fetch_source(mach, &r[3], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
micro_mul(&r[1], &r[2], &r[3]);
fetch_source(mach, &r[5], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
micro_mul(&r[8], &r[4], &r[5]);
micro_add(&r[1], &r[1], &r[8]);
fetch_source(mach, &r[7], &inst->Src[1], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
micro_mul(&r[8], &r[6], &r[7]);
micro_add(&r[1], &r[1], &r[8]);
/* r1 = 2 * r1 / r0 */
micro_add(&r[1], &r[1], &r[1]);
micro_div(&r[1], &r[1], &r[0]);
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
micro_mul(&r[2], &r[2], &r[1]);
micro_sub(&r[2], &r[2], &r[3]);
store_dest(mach, &r[2], &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
micro_mul(&r[4], &r[4], &r[1]);
micro_sub(&r[4], &r[4], &r[5]);
store_dest(mach, &r[4], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
micro_mul(&r[6], &r[6], &r[1]);
micro_sub(&r[6], &r[6], &r[7]);
store_dest(mach, &r[6], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
}
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
}
}
static void
exec_xpd(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[6];
union tgsi_exec_channel d[3];
fetch_source(mach, &r[0], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
fetch_source(mach, &r[1], &inst->Src[1], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
micro_mul(&r[2], &r[0], &r[1]);
fetch_source(mach, &r[3], &inst->Src[0], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
fetch_source(mach, &r[4], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
micro_mul(&r[5], &r[3], &r[4] );
micro_sub(&d[CHAN_X], &r[2], &r[5]);
fetch_source(mach, &r[2], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
micro_mul(&r[3], &r[3], &r[2]);
fetch_source(mach, &r[5], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
micro_mul(&r[1], &r[1], &r[5]);
micro_sub(&d[CHAN_Y], &r[3], &r[1]);
micro_mul(&r[5], &r[5], &r[4]);
micro_mul(&r[0], &r[0], &r[2]);
micro_sub(&d[CHAN_Z], &r[5], &r[0]);
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
store_dest(mach, &d[CHAN_X], &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
store_dest(mach, &d[CHAN_Y], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
store_dest(mach, &d[CHAN_Z], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
}
}
static void
exec_dst(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[2];
union tgsi_exec_channel d[4];
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
fetch_source(mach, &r[0], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
fetch_source(mach, &r[1], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
micro_mul(&d[CHAN_Y], &r[0], &r[1]);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
fetch_source(mach, &d[CHAN_Z], &inst->Src[0], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
fetch_source(mach, &d[CHAN_W], &inst->Src[1], CHAN_W, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
store_dest(mach, &d[CHAN_Y], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
store_dest(mach, &d[CHAN_Z], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
store_dest(mach, &d[CHAN_W], &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
}
}
static void
exec_log(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[3];
fetch_source(mach, &r[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
micro_abs(&r[2], &r[0]); /* r2 = abs(r0) */
micro_lg2(&r[1], &r[2]); /* r1 = lg2(r2) */
micro_flr(&r[0], &r[1]); /* r0 = floor(r1) */
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
store_dest(mach, &r[0], &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
micro_exp2(&r[0], &r[0]); /* r0 = 2 ^ r0 */
micro_div(&r[0], &r[2], &r[0]); /* r0 = r2 / r0 */
store_dest(mach, &r[0], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
store_dest(mach, &r[1], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
}
}
static void
exec_exp(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[3];
fetch_source(mach, &r[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
micro_flr(&r[1], &r[0]); /* r1 = floor(r0) */
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
micro_exp2(&r[2], &r[1]); /* r2 = 2 ^ r1 */
store_dest(mach, &r[2], &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
micro_sub(&r[2], &r[0], &r[1]); /* r2 = r0 - r1 */
store_dest(mach, &r[2], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
micro_exp2(&r[2], &r[0]); /* r2 = 2 ^ r0 */
store_dest(mach, &r[2], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
}
}
static void
exec_lit(struct tgsi_exec_machine *mach,
const struct tgsi_full_instruction *inst)
{
union tgsi_exec_channel r[3];
union tgsi_exec_channel d[3];
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YZ) {
fetch_source(mach, &r[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
micro_max(&d[CHAN_Y], &r[0], &ZeroVec);
store_dest(mach, &d[CHAN_Y], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
fetch_source(mach, &r[1], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
micro_max(&r[1], &r[1], &ZeroVec);
fetch_source(mach, &r[2], &inst->Src[0], CHAN_W, TGSI_EXEC_DATA_FLOAT);
micro_min(&r[2], &r[2], &P128Vec);
micro_max(&r[2], &r[2], &M128Vec);
micro_pow(&r[1], &r[1], &r[2]);
micro_lt(&d[CHAN_Z], &ZeroVec, &r[0], &r[1], &ZeroVec);
store_dest(mach, &d[CHAN_Z], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
}
}
if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
}
}
static void
exec_break(struct tgsi_exec_machine *mach)
{
@ -2702,9 +2971,7 @@ exec_instruction(
const struct tgsi_full_instruction *inst,
int *pc )
{
uint chan_index;
union tgsi_exec_channel r[10];
union tgsi_exec_channel d[8];
(*pc)++;
@ -2718,36 +2985,7 @@ exec_instruction(
break;
case TGSI_OPCODE_LIT:
if (IS_CHANNEL_ENABLED( *inst, CHAN_Y ) || IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
FETCH( &r[0], 0, CHAN_X );
if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) {
micro_max(&d[CHAN_Y], &r[0], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C]);
}
if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
FETCH( &r[1], 0, CHAN_Y );
micro_max( &r[1], &r[1], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C] );
FETCH( &r[2], 0, CHAN_W );
micro_min( &r[2], &r[2], &mach->Temps[TEMP_128_I].xyzw[TEMP_128_C] );
micro_max( &r[2], &r[2], &mach->Temps[TEMP_M128_I].xyzw[TEMP_M128_C] );
micro_pow( &r[1], &r[1], &r[2] );
micro_lt(&d[CHAN_Z], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C], &r[0], &r[1], &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C]);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_Y)) {
STORE(&d[CHAN_Y], 0, CHAN_Y);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
STORE(&d[CHAN_Z], 0, CHAN_Z);
}
}
if (IS_CHANNEL_ENABLED( *inst, CHAN_X )) {
STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_X );
}
if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
}
exec_lit(mach, inst);
break;
case TGSI_OPCODE_RCP:
@ -2759,44 +2997,11 @@ exec_instruction(
break;
case TGSI_OPCODE_EXP:
FETCH( &r[0], 0, CHAN_X );
micro_flr( &r[1], &r[0] ); /* r1 = floor(r0) */
if (IS_CHANNEL_ENABLED( *inst, CHAN_X )) {
micro_exp2( &r[2], &r[1] ); /* r2 = 2 ^ r1 */
STORE( &r[2], 0, CHAN_X ); /* store r2 */
}
if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) {
micro_sub( &r[2], &r[0], &r[1] ); /* r2 = r0 - r1 */
STORE( &r[2], 0, CHAN_Y ); /* store r2 */
}
if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
micro_exp2( &r[2], &r[0] ); /* r2 = 2 ^ r0 */
STORE( &r[2], 0, CHAN_Z ); /* store r2 */
}
if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
}
exec_exp(mach, inst);
break;
case TGSI_OPCODE_LOG:
FETCH( &r[0], 0, CHAN_X );
micro_abs( &r[2], &r[0] ); /* r2 = abs(r0) */
micro_lg2( &r[1], &r[2] ); /* r1 = lg2(r2) */
micro_flr( &r[0], &r[1] ); /* r0 = floor(r1) */
if (IS_CHANNEL_ENABLED( *inst, CHAN_X )) {
STORE( &r[0], 0, CHAN_X );
}
if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) {
micro_exp2( &r[0], &r[0] ); /* r0 = 2 ^ r0 */
micro_div( &r[0], &r[2], &r[0] ); /* r0 = r2 / r0 */
STORE( &r[0], 0, CHAN_Y );
}
if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
STORE( &r[1], 0, CHAN_Z );
}
if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
}
exec_log(mach, inst);
break;
case TGSI_OPCODE_MUL:
@ -2816,30 +3021,7 @@ exec_instruction(
break;
case TGSI_OPCODE_DST:
if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) {
FETCH( &r[0], 0, CHAN_Y );
FETCH( &r[1], 1, CHAN_Y);
micro_mul(&d[CHAN_Y], &r[0], &r[1]);
}
if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
FETCH(&d[CHAN_Z], 0, CHAN_Z);
}
if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
FETCH(&d[CHAN_W], 1, CHAN_W);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_X)) {
STORE(&mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_X);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_Y)) {
STORE(&d[CHAN_Y], 0, CHAN_Y);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
STORE(&d[CHAN_Z], 0, CHAN_Z);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_W)) {
STORE(&d[CHAN_W], 0, CHAN_W);
}
exec_dst(mach, inst);
break;
case TGSI_OPCODE_MIN:
@ -2903,53 +3085,11 @@ exec_instruction(
break;
case TGSI_OPCODE_POW:
FETCH(&r[0], 0, CHAN_X);
FETCH(&r[1], 1, CHAN_X);
micro_pow( &r[0], &r[0], &r[1] );
FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
STORE( &r[0], 0, chan_index );
}
exec_scalar_binary(mach, inst, micro_pow, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_XPD:
FETCH(&r[0], 0, CHAN_Y);
FETCH(&r[1], 1, CHAN_Z);
micro_mul( &r[2], &r[0], &r[1] );
FETCH(&r[3], 0, CHAN_Z);
FETCH(&r[4], 1, CHAN_Y);
micro_mul( &r[5], &r[3], &r[4] );
micro_sub(&d[CHAN_X], &r[2], &r[5]);
FETCH(&r[2], 1, CHAN_X);
micro_mul( &r[3], &r[3], &r[2] );
FETCH(&r[5], 0, CHAN_X);
micro_mul( &r[1], &r[1], &r[5] );
micro_sub(&d[CHAN_Y], &r[3], &r[1]);
micro_mul( &r[5], &r[5], &r[4] );
micro_mul( &r[0], &r[0], &r[2] );
micro_sub(&d[CHAN_Z], &r[5], &r[0]);
if (IS_CHANNEL_ENABLED(*inst, CHAN_X)) {
STORE(&d[CHAN_X], 0, CHAN_X);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_Y)) {
STORE(&d[CHAN_Y], 0, CHAN_Y);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
STORE(&d[CHAN_Z], 0, CHAN_Z);
}
if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
}
exec_xpd(mach, inst);
break;
case TGSI_OPCODE_ABS:
@ -2957,12 +3097,7 @@ exec_instruction(
break;
case TGSI_OPCODE_RCC:
FETCH(&r[0], 0, CHAN_X);
micro_div(&r[0], &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], &r[0]);
micro_float_clamp(&r[0], &r[0]);
FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
STORE(&r[0], 0, chan_index);
}
exec_scalar_unary(mach, inst, micro_rcc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_DPH:
@ -3006,52 +3141,7 @@ exec_instruction(
break;
case TGSI_OPCODE_RFL:
if (IS_CHANNEL_ENABLED(*inst, CHAN_X) ||
IS_CHANNEL_ENABLED(*inst, CHAN_Y) ||
IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
/* r0 = dp3(src0, src0) */
FETCH(&r[2], 0, CHAN_X);
micro_mul(&r[0], &r[2], &r[2]);
FETCH(&r[4], 0, CHAN_Y);
micro_mul(&r[8], &r[4], &r[4]);
micro_add(&r[0], &r[0], &r[8]);
FETCH(&r[6], 0, CHAN_Z);
micro_mul(&r[8], &r[6], &r[6]);
micro_add(&r[0], &r[0], &r[8]);
/* r1 = dp3(src0, src1) */
FETCH(&r[3], 1, CHAN_X);
micro_mul(&r[1], &r[2], &r[3]);
FETCH(&r[5], 1, CHAN_Y);
micro_mul(&r[8], &r[4], &r[5]);
micro_add(&r[1], &r[1], &r[8]);
FETCH(&r[7], 1, CHAN_Z);
micro_mul(&r[8], &r[6], &r[7]);
micro_add(&r[1], &r[1], &r[8]);
/* r1 = 2 * r1 / r0 */
micro_add(&r[1], &r[1], &r[1]);
micro_div(&r[1], &r[1], &r[0]);
if (IS_CHANNEL_ENABLED(*inst, CHAN_X)) {
micro_mul(&r[2], &r[2], &r[1]);
micro_sub(&r[2], &r[2], &r[3]);
STORE(&r[2], 0, CHAN_X);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_Y)) {
micro_mul(&r[4], &r[4], &r[1]);
micro_sub(&r[4], &r[4], &r[5]);
STORE(&r[4], 0, CHAN_Y);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
micro_mul(&r[6], &r[6], &r[1]);
micro_sub(&r[6], &r[6], &r[7]);
STORE(&r[6], 0, CHAN_Z);
}
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_W)) {
STORE(&mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W);
}
exec_rfl(mach, inst);
break;
case TGSI_OPCODE_SEQ:
@ -3059,9 +3149,7 @@ exec_instruction(
break;
case TGSI_OPCODE_SFL:
FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
STORE(&mach->Temps[TEMP_0_I].xyzw[TEMP_0_C], 0, chan_index);
}
exec_vector(mach, inst, micro_sfl, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_SGT:
@ -3081,9 +3169,7 @@ exec_instruction(
break;
case TGSI_OPCODE_STR:
FOR_EACH_ENABLED_CHANNEL(*inst, chan_index) {
STORE(&mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, chan_index);
}
exec_vector(mach, inst, micro_str, TGSI_EXEC_DATA_FLOAT);
break;
case TGSI_OPCODE_TEX:
@ -3140,42 +3226,7 @@ exec_instruction(
break;
case TGSI_OPCODE_X2D:
FETCH(&r[0], 1, CHAN_X);
FETCH(&r[1], 1, CHAN_Y);
if (IS_CHANNEL_ENABLED(*inst, CHAN_X) ||
IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
FETCH(&r[2], 2, CHAN_X);
micro_mul(&r[2], &r[2], &r[0]);
FETCH(&r[3], 2, CHAN_Y);
micro_mul(&r[3], &r[3], &r[1]);
micro_add(&r[2], &r[2], &r[3]);
FETCH(&r[3], 0, CHAN_X);
micro_add(&d[CHAN_X], &r[2], &r[3]);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_Y) ||
IS_CHANNEL_ENABLED(*inst, CHAN_W)) {
FETCH(&r[2], 2, CHAN_Z);
micro_mul(&r[2], &r[2], &r[0]);
FETCH(&r[3], 2, CHAN_W);
micro_mul(&r[3], &r[3], &r[1]);
micro_add(&r[2], &r[2], &r[3]);
FETCH(&r[3], 0, CHAN_Y);
micro_add(&d[CHAN_Y], &r[2], &r[3]);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_X)) {
STORE(&d[CHAN_X], 0, CHAN_X);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_Y)) {
STORE(&d[CHAN_Y], 0, CHAN_Y);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_Z)) {
STORE(&d[CHAN_X], 0, CHAN_Z);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_W)) {
STORE(&d[CHAN_Y], 0, CHAN_W);
}
exec_x2d(mach, inst);
break;
case TGSI_OPCODE_ARA:
@ -3283,23 +3334,7 @@ exec_instruction(
break;
case TGSI_OPCODE_SCS:
if( IS_CHANNEL_ENABLED( *inst, CHAN_X ) || IS_CHANNEL_ENABLED( *inst, CHAN_Y ) ) {
FETCH( &r[0], 0, CHAN_X );
if (IS_CHANNEL_ENABLED(*inst, CHAN_X)) {
micro_cos(&r[1], &r[0]);
STORE(&r[1], 0, CHAN_X);
}
if (IS_CHANNEL_ENABLED(*inst, CHAN_Y)) {
micro_sin(&r[1], &r[0]);
STORE(&r[1], 0, CHAN_Y);
}
}
if( IS_CHANNEL_ENABLED( *inst, CHAN_Z ) ) {
STORE( &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C], 0, CHAN_Z );
}
if( IS_CHANNEL_ENABLED( *inst, CHAN_W ) ) {
STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
}
exec_scs(mach, inst);
break;
case TGSI_OPCODE_NRM: