undo previous check-in (unfinished code)

This commit is contained in:
Brian Paul 2001-07-13 20:12:44 +00:00
parent 601ce1d624
commit ee6cf4c6b0

View file

@ -1,4 +1,4 @@
/* $Id: s_aatritemp.h,v 1.19 2001/07/13 20:07:37 brianp Exp $ */ /* $Id: s_aatritemp.h,v 1.20 2001/07/13 20:12:44 brianp Exp $ */
/* /*
* Mesa 3-D graphics library * Mesa 3-D graphics library
@ -48,11 +48,10 @@
const GLfloat *p1 = v1->win; const GLfloat *p1 = v1->win;
const GLfloat *p2 = v2->win; const GLfloat *p2 = v2->win;
const SWvertex *vMin, *vMid, *vMax; const SWvertex *vMin, *vMid, *vMax;
GLfloat xMin, yMin, xMid, yMid, xMax, yMax; GLint iyMin, iyMax;
GLfloat majDx, majDy, botDx, botDy, topDx, topDy; GLfloat yMin, yMax;
GLfloat area; GLboolean ltor;
GLboolean majorOnLeft; GLfloat majDx, majDy; /* major (i.e. long) edge dx and dy */
GLfloat bf = SWRAST_CONTEXT(ctx)->_backface_sign;
#ifdef DO_Z #ifdef DO_Z
GLfloat zPlane[4]; GLfloat zPlane[4];
@ -72,7 +71,6 @@
GLfloat iPlane[4]; GLfloat iPlane[4];
GLuint index[MAX_WIDTH]; GLuint index[MAX_WIDTH];
GLint icoverageSpan[MAX_WIDTH]; GLint icoverageSpan[MAX_WIDTH];
GLfloat coverageSpan[MAX_WIDTH];
#else #else
GLfloat coverageSpan[MAX_WIDTH]; GLfloat coverageSpan[MAX_WIDTH];
#endif #endif
@ -98,6 +96,7 @@
DEFMARRAY(GLfloat, u, MAX_TEXTURE_UNITS, MAX_WIDTH); DEFMARRAY(GLfloat, u, MAX_TEXTURE_UNITS, MAX_WIDTH);
DEFMARRAY(GLfloat, lambda, MAX_TEXTURE_UNITS, MAX_WIDTH); DEFMARRAY(GLfloat, lambda, MAX_TEXTURE_UNITS, MAX_WIDTH);
#endif #endif
GLfloat bf = SWRAST_CONTEXT(ctx)->_backface_sign;
#ifdef DO_RGBA #ifdef DO_RGBA
CHECKARRAY(rgba, return); /* mac 32k limitation */ CHECKARRAY(rgba, return); /* mac 32k limitation */
@ -141,38 +140,27 @@
} }
} }
xMin = vMin->win[0]; yMin = vMin->win[1]; majDx = vMax->win[0] - vMin->win[0];
xMid = vMid->win[0]; yMid = vMid->win[1]; majDy = vMax->win[1] - vMin->win[1];
xMax = vMax->win[0]; yMax = vMax->win[1];
/* the major edge is between the top and bottom vertices */ {
majDx = xMax - xMin; const GLfloat botDx = vMid->win[0] - vMin->win[0];
majDy = yMax - yMin; const GLfloat botDy = vMid->win[1] - vMin->win[1];
/* the bottom edge is between the bottom and mid vertices */ const GLfloat area = majDx * botDy - botDx * majDy;
botDx = xMid - xMin; ltor = (GLboolean) (area < 0.0F);
botDy = yMid - yMin; /* Do backface culling */
/* the top edge is between the top and mid vertices */ if (area * bf < 0 || area * area < .0025)
topDx = xMax - xMid; return;
topDy = yMax - yMid; }
/* compute clockwise / counter-clockwise orientation and do BF culling */
area = majDx * botDy - botDx * majDy;
/* Do backface culling */
if (area * bf < 0 || area * area < .0025)
return;
majorOnLeft = (GLboolean) (area < 0.0F);
#ifndef DO_OCCLUSION_TEST #ifndef DO_OCCLUSION_TEST
ctx->OcclusionResult = GL_TRUE; ctx->OcclusionResult = GL_TRUE;
#endif #endif
assert(majDy > 0.0F);
/* Plane equation setup: /* Plane equation setup:
* We evaluate plane equations at window (x,y) coordinates in order * We evaluate plane equations at window (x,y) coordinates in order
* to compute color, Z, fog, texcoords, etc. This isn't terribly * to compute color, Z, fog, texcoords, etc. This isn't terribly
* efficient but it's easy and reliable. It also copes with computing * efficient but it's easy and reliable.
* interpolated data just outside the triangle's edges.
*/ */
#ifdef DO_Z #ifdef DO_Z
compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane); compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
@ -280,300 +268,284 @@
* edges, stopping when we find that coverage = 0. If the long edge * edges, stopping when we find that coverage = 0. If the long edge
* is on the left we scan left-to-right. Else, we scan right-to-left. * is on the left we scan left-to-right. Else, we scan right-to-left.
*/ */
{ yMin = vMin->win[1];
const GLint iyMin = (GLint) yMin; yMax = vMax->win[1];
const GLint iyMax = (GLint) yMax + 1; iyMin = (GLint) yMin;
/* upper edge and lower edge derivatives */ iyMax = (GLint) yMax + 1;
const GLfloat topDxDy = (topDy != 0.0F) ? topDx / topDy : 0.0F;
const GLfloat botDxDy = (botDy != 0.0F) ? botDx / botDy : 0.0F; if (ltor) {
const GLfloat *pA, *pB, *pC; /* scan left to right */
const GLfloat majDxDy = majDx / majDy; const GLfloat *pMin = vMin->win;
const GLfloat absMajDxDy = FABSF(majDxDy); const GLfloat *pMid = vMid->win;
const GLfloat absTopDxDy = FABSF(topDxDy); const GLfloat *pMax = vMax->win;
const GLfloat absBotDxDy = FABSF(botDxDy); const GLfloat dxdy = majDx / majDy;
#if 0 const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
GLfloat xMaj = xMin - (yMin - (GLfloat) iyMin) * majDxDy; GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
GLfloat xBot = xMaj;
GLfloat xTop = xMid - (yMid - (GLint) yMid) * topDxDy;
#else
GLfloat xMaj;
GLfloat xBot;
GLfloat xTop;
#endif
GLint iy; GLint iy;
GLint k; for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
GLint ix, startX = (GLint) (x - xAdj);
/* pA, pB, pC are the vertices in counter-clockwise order */ GLuint count, n;
if (majorOnLeft) {
pA = vMin->win;
pB = vMid->win;
pC = vMax->win;
xMaj = xMin - absMajDxDy - 1.0;
xBot = xMin + absBotDxDy + 1.0;
xTop = xMid + absTopDxDy + 1.0;
}
else {
pA = vMin->win;
pB = vMax->win;
pC = vMid->win;
xMaj = xMin + absMajDxDy + 1.0;
xBot = xMin - absBotDxDy - 1.0;
xTop = xMid - absTopDxDy - 1.0;
}
/* Scan from bottom to top */
for (iy = iyMin; iy < iyMax; iy++, xMaj += majDxDy) {
GLint ix, i, j, len;
GLint iRight, iLeft;
GLfloat coverage = 0.0F; GLfloat coverage = 0.0F;
/* skip over fragments with zero coverage */
if (majorOnLeft) { while (startX < MAX_WIDTH) {
iLeft = (GLint) (xMaj + 0.0); coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
/* compute right */ if (coverage > 0.0F)
if (iy <= yMid) { break;
/* we're in the lower part */ startX++;
iRight = (GLint) (xBot + 0.0);
xBot += botDxDy;
}
else {
/* we're in the upper part */
iRight = (GLint) (xTop + 0.0);
xTop += topDxDy;
}
}
else {
iRight = (GLint) (xMaj + 0.0);
/* compute left */
if (iy <= yMid) {
/* we're in the lower part */
iLeft = (GLint) (xBot - 0.0);
xBot += botDxDy;
}
else {
/* we're in the upper part */
iLeft = (GLint) (xTop - 0.0);
xTop += topDxDy;
}
} }
#ifdef DEBUG /* enter interior of triangle */
for (i = 0; i < MAX_WIDTH; i++) { ix = startX;
coverageSpan[i] = -1.0; count = 0;
} while (coverage > 0.0F) {
/* (cx,cy) = center of fragment */
const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
#ifdef DO_INDEX
icoverageSpan[count] = compute_coveragei(pMin, pMid, pMax, ix, iy);
#else
coverageSpan[count] = coverage;
#endif #endif
if (iLeft < 0)
iLeft = 0;
if (iRight >= ctx->DrawBuffer->_Xmax)
iRight = ctx->DrawBuffer->_Xmax - 1;
/*printf("%d: iLeft = %d iRight = %d\n", iy, iLeft, iRight);*/
/* The pixels at y in [iLeft, iRight] (inclusive) are candidates */
/* scan left to right until we hit 100% coverage or the right edge */
i = iLeft;
while (i < iRight) {
coverage = compute_coveragef(pA, pB, pC, i, iy);
if (coverage == 0.0F) {
if (i == iLeft)
iLeft++; /* skip zero coverage pixels */
else {
iRight = i;
i--;
break; /* went past right edge */
}
}
else {
coverageSpan[i - iLeft] = coverage;
if (coverage == 1.0F)
break;
}
i++;
}
assert(coverageSpan[i-iLeft] > 0.0 || iLeft == iRight);
assert(i == iRight || coverage == 1.0 || coverage == 0.0);
/* scan right to left until we hit 100% coverage or the left edge */
j = iRight;
assert(j - iLeft >= 0);
while (1) {
coverage = compute_coveragef(pA, pB, pC, j, iy);
if (coverage == 0.0F) {
if (j == iRight && j > i)
iRight--; /* skip zero coverage pixels */
else
break;
}
else {
if (j <= i)
break;
assert(j - iLeft >= 0);
coverageSpan[j - iLeft] = coverage;
if (coverage == 1.0F)
break;
}
/*printf("%d: coverage[%d]' = %g\n", iy, j-iLeft, coverage);*/
j--;
}
assert(coverageSpan[j-iLeft] > 0.0 || iRight <= iLeft);
printf("iLeft=%d i=%d j=%d iRight=%d\n", iLeft, i, j, iRight);
assert(iLeft >= 0);
assert(iLeft < ctx->DrawBuffer->_Xmax);
assert(iRight >= 0);
assert(iRight < ctx->DrawBuffer->_Xmax);
assert(iRight >= iLeft);
/* any pixels left in between must have 100% coverage */
k = i + 1;
while (k < j) {
coverageSpan[k - iLeft] = 1.0F;
k++;
}
len = iRight - iLeft;
/*printf("len = %d\n", len);*/
assert(len >= 0);
assert(len < MAX_WIDTH);
if (len == 0)
continue;
#ifdef DEBUG
for (k = 0; k < len; k++) {
assert(coverageSpan[k] > 0.0);
}
#endif
/*
* Compute color, texcoords, etc for the span
*/
{
const GLfloat cx = iLeft + 0.5F, cy = iy + 0.5F;
#ifdef DO_Z #ifdef DO_Z
GLfloat zFrag = solve_plane(cx, cy, zPlane); z[count] = (GLdepth) solve_plane(cx, cy, zPlane);
const GLfloat zStep = -zPlane[0] / zPlane[2];
#endif #endif
#ifdef DO_FOG #ifdef DO_FOG
GLfloat fogFrag = solve_plane(cx, cy, fogPlane); fog[count] = solve_plane(cx, cy, fogPlane);
const GLfloat fogStep = -fogPlane[0] / fogPlane[2];
#endif #endif
#ifdef DO_RGBA #ifdef DO_RGBA
/* to do */ rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
#endif #endif
#ifdef DO_INDEX #ifdef DO_INDEX
/* to do */ index[count] = (GLint) solve_plane(cx, cy, iPlane);
#endif #endif
#ifdef DO_SPEC #ifdef DO_SPEC
/* to do */ spec[count][RCOMP] = solve_plane_chan(cx, cy, srPlane);
spec[count][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
spec[count][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
#endif #endif
#ifdef DO_TEX #ifdef DO_TEX
GLfloat sFrag = solve_plane(cx, cy, sPlane); {
GLfloat tFrag = solve_plane(cx, cy, tPlane); const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
GLfloat uFrag = solve_plane(cx, cy, uPlane); s[count] = solve_plane(cx, cy, sPlane) * invQ;
GLfloat vFrag = solve_plane(cx, cy, vPlane); t[count] = solve_plane(cx, cy, tPlane) * invQ;
const GLfloat sStep = -sPlane[0] / sPlane[2]; u[count] = solve_plane(cx, cy, uPlane) * invQ;
const GLfloat tStep = -tPlane[0] / tPlane[2]; lambda[count] = compute_lambda(sPlane, tPlane, invQ,
const GLfloat uStep = -uPlane[0] / uPlane[2]; texWidth, texHeight);
const GLfloat vStep = -vPlane[0] / vPlane[2]; }
#elif defined(DO_MULTITEX) #elif defined(DO_MULTITEX)
/* to do */ {
#endif GLuint unit;
for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
for (ix = iLeft; ix < iRight; ix++) { if (ctx->Texture.Unit[unit]._ReallyEnabled) {
const GLint k = ix - iLeft; GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
const GLfloat cx = ix + 0.5F, cy = iy + 0.5F; s[unit][count] = solve_plane(cx, cy, sPlane[unit]) * invQ;
t[unit][count] = solve_plane(cx, cy, tPlane[unit]) * invQ;
#ifdef DO_Z u[unit][count] = solve_plane(cx, cy, uPlane[unit]) * invQ;
z[k] = zFrag; zFrag += zStep; lambda[unit][count] = compute_lambda(sPlane[unit],
#endif
#ifdef DO_FOG
fog[k] = fogFrag; fogFrag += fogStep;
#endif
#ifdef DO_RGBA
rgba[k][RCOMP] = solve_plane_chan(cx, cy, rPlane);
rgba[k][GCOMP] = solve_plane_chan(cx, cy, gPlane);
rgba[k][BCOMP] = solve_plane_chan(cx, cy, bPlane);
rgba[k][ACOMP] = solve_plane_chan(cx, cy, aPlane);
#endif
#ifdef DO_INDEX
index[k] = (GLint) solve_plane(cx, cy, iPlane);
#endif
#ifdef DO_SPEC
spec[k][RCOMP] = solve_plane_chan(cx, cy, srPlane);
spec[k][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
spec[k][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
#endif
#ifdef DO_TEX
s[k] = sFrag / vFrag;
t[k] = tFrag / vFrag;
u[k] = uFrag / vFrag;
lambda[k] = compute_lambda(sPlane, tPlane, 1.0F / vFrag,
texWidth, texHeight);
sFrag += sStep;
tFrag += tStep;
uFrag += uStep;
vFrag += vStep;
#elif defined(DO_MULTITEX)
{
GLuint unit;
for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
if (ctx->Texture.Unit[unit]._ReallyEnabled) {
GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
s[unit][k] = solve_plane(cx, cy, sPlane[unit]) * invQ;
t[unit][k] = solve_plane(cx, cy, tPlane[unit]) * invQ;
u[unit][k] = solve_plane(cx, cy, uPlane[unit]) * invQ;
lambda[unit][k] = compute_lambda(sPlane[unit],
tPlane[unit], invQ, texWidth[unit], texHeight[unit]); tPlane[unit], invQ, texWidth[unit], texHeight[unit]);
}
} }
} }
}
#endif #endif
} /* for ix */ ix++;
count++;
coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
} }
/* if (ix <= startX)
* Write/process the span of fragments. continue;
*/
n = (GLuint) ix - (GLuint) startX;
#ifdef DO_MULTITEX #ifdef DO_MULTITEX
_mesa_write_multitexture_span(ctx, len, iLeft, iy, z, fog, # ifdef DO_SPEC
_mesa_write_multitexture_span(ctx, n, startX, iy, z, fog,
(const GLfloat (*)[MAX_WIDTH]) s, (const GLfloat (*)[MAX_WIDTH]) s,
(const GLfloat (*)[MAX_WIDTH]) t, (const GLfloat (*)[MAX_WIDTH]) t,
(const GLfloat (*)[MAX_WIDTH]) u, (const GLfloat (*)[MAX_WIDTH]) u,
(GLfloat (*)[MAX_WIDTH]) lambda, (GLfloat (*)[MAX_WIDTH]) lambda,
rgba, rgba, (const GLchan (*)[4]) spec,
# ifdef DO_SPEC
(const GLchan (*)[4]) spec,
# else
NULL,
# endif
coverageSpan, GL_POLYGON); coverageSpan, GL_POLYGON);
#elif defined(DO_TEX)
_mesa_write_texture_span(ctx, len, iLeft, iy, z, fog,
s, t, u, lambda, rgba,
# ifdef DO_SPEC
(const GLchan (*)[4]) spec,
# else # else
NULL, _mesa_write_multitexture_span(ctx, n, startX, iy, z, fog,
(const GLfloat (*)[MAX_WIDTH]) s,
(const GLfloat (*)[MAX_WIDTH]) t,
(const GLfloat (*)[MAX_WIDTH]) u,
lambda, rgba, NULL, coverageSpan,
GL_POLYGON);
# endif # endif
#elif defined(DO_TEX)
# ifdef DO_SPEC
_mesa_write_texture_span(ctx, n, startX, iy, z, fog,
s, t, u, lambda, rgba,
(const GLchan (*)[4]) spec,
coverageSpan, GL_POLYGON); coverageSpan, GL_POLYGON);
# else
_mesa_write_texture_span(ctx, n, startX, iy, z, fog,
s, t, u, lambda,
rgba, NULL, coverageSpan, GL_POLYGON);
# endif
#elif defined(DO_RGBA) #elif defined(DO_RGBA)
_mesa_write_rgba_span(ctx, len, iLeft, iy, z, fog, rgba, _mesa_write_rgba_span(ctx, n, startX, iy, z, fog, rgba,
coverageSpan, GL_POLYGON); coverageSpan, GL_POLYGON);
#elif defined(DO_INDEX) #elif defined(DO_INDEX)
_mesa_write_index_span(ctx, len, iLeft, iy, z, fog, index, _mesa_write_index_span(ctx, n, startX, iy, z, fog, index,
icoverageSpan, GL_POLYGON); icoverageSpan, GL_POLYGON);
#endif #endif
}
} /* for iy */
} }
else {
/* scan right to left */
const GLfloat *pMin = vMin->win;
const GLfloat *pMid = vMid->win;
const GLfloat *pMax = vMax->win;
const GLfloat dxdy = majDx / majDy;
const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
GLint iy;
for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
GLint ix, left, startX = (GLint) (x + xAdj);
GLuint count, n;
GLfloat coverage = 0.0F;
/* make sure we're not past the window edge */
if (startX >= ctx->DrawBuffer->_Xmax) {
startX = ctx->DrawBuffer->_Xmax - 1;
}
/* skip fragments with zero coverage */
while (startX >= 0) {
coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
if (coverage > 0.0F)
break;
startX--;
}
/* enter interior of triangle */
ix = startX;
count = 0;
while (coverage > 0.0F) {
/* (cx,cy) = center of fragment */
const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
#ifdef DO_INDEX
icoverageSpan[ix] = compute_coveragei(pMin, pMid, pMax, ix, iy);
#else
coverageSpan[ix] = coverage;
#endif
#ifdef DO_Z
z[ix] = (GLdepth) solve_plane(cx, cy, zPlane);
#endif
#ifdef DO_FOG
fog[ix] = solve_plane(cx, cy, fogPlane);
#endif
#ifdef DO_RGBA
rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
#endif
#ifdef DO_INDEX
index[ix] = (GLint) solve_plane(cx, cy, iPlane);
#endif
#ifdef DO_SPEC
spec[ix][RCOMP] = solve_plane_chan(cx, cy, srPlane);
spec[ix][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
spec[ix][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
#endif
#ifdef DO_TEX
{
const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
s[ix] = solve_plane(cx, cy, sPlane) * invQ;
t[ix] = solve_plane(cx, cy, tPlane) * invQ;
u[ix] = solve_plane(cx, cy, uPlane) * invQ;
lambda[ix] = compute_lambda(sPlane, tPlane, invQ,
texWidth, texHeight);
}
#elif defined(DO_MULTITEX)
{
GLuint unit;
for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
if (ctx->Texture.Unit[unit]._ReallyEnabled) {
GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
s[unit][ix] = solve_plane(cx, cy, sPlane[unit]) * invQ;
t[unit][ix] = solve_plane(cx, cy, tPlane[unit]) * invQ;
u[unit][ix] = solve_plane(cx, cy, uPlane[unit]) * invQ;
lambda[unit][ix] = compute_lambda(sPlane[unit],
tPlane[unit], invQ, texWidth[unit], texHeight[unit]);
}
}
}
#endif
ix--;
count++;
coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
}
if (startX <= ix)
continue;
n = (GLuint) startX - (GLuint) ix;
left = ix + 1;
#ifdef DO_MULTITEX
{
GLuint unit;
for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
if (ctx->Texture.Unit[unit]._ReallyEnabled) {
GLint j;
for (j = 0; j < (GLint) n; j++) {
s[unit][j] = s[unit][j + left];
t[unit][j] = t[unit][j + left];
u[unit][j] = u[unit][j + left];
lambda[unit][j] = lambda[unit][j + left];
}
}
}
}
# ifdef DO_SPEC
_mesa_write_multitexture_span(ctx, n, left, iy, z + left, fog + left,
(const GLfloat (*)[MAX_WIDTH]) s,
(const GLfloat (*)[MAX_WIDTH]) t,
(const GLfloat (*)[MAX_WIDTH]) u,
lambda, rgba + left,
(const GLchan (*)[4]) (spec + left),
coverageSpan + left,
GL_POLYGON);
# else
_mesa_write_multitexture_span(ctx, n, left, iy, z + left, fog + left,
(const GLfloat (*)[MAX_WIDTH]) s,
(const GLfloat (*)[MAX_WIDTH]) t,
(const GLfloat (*)[MAX_WIDTH]) u,
lambda,
rgba + left, NULL, coverageSpan + left,
GL_POLYGON);
# endif
#elif defined(DO_TEX)
# ifdef DO_SPEC
_mesa_write_texture_span(ctx, n, left, iy, z + left, fog + left,
s + left, t + left, u + left,
lambda + left, rgba + left,
(const GLchan (*)[4]) (spec + left),
coverageSpan + left,
GL_POLYGON);
# else
_mesa_write_texture_span(ctx, n, left, iy, z + left, fog + left,
s + left, t + left,
u + left, lambda + left,
rgba + left, NULL,
coverageSpan + left, GL_POLYGON);
# endif
#elif defined(DO_RGBA)
_mesa_write_rgba_span(ctx, n, left, iy, z + left, fog + left,
rgba + left, coverageSpan + left, GL_POLYGON);
#elif defined(DO_INDEX)
_mesa_write_index_span(ctx, n, left, iy, z + left, fog + left,
index + left, icoverageSpan + left, GL_POLYGON);
#endif
}
}
#ifdef DO_RGBA #ifdef DO_RGBA
UNDEFARRAY(rgba); /* mac 32k limitation */ UNDEFARRAY(rgba); /* mac 32k limitation */