radv: Inline bvh build headers

Thos are only included once, so just move the code into the
corresponding .comp files.

Signed-off-by: Konstantin Seurer <konstantin.seurer@gmail.com>
Reviewed-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17963>
This commit is contained in:
Konstantin Seurer 2022-08-09 20:10:51 +02:00 committed by Marge Bot
parent b386df918f
commit dca04b04f7
7 changed files with 412 additions and 541 deletions

View file

@ -33,20 +33,72 @@
#extension GL_EXT_buffer_reference : require
#extension GL_EXT_buffer_reference2 : require
layout(scalar) uniform;
layout(scalar) buffer;
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
#include "internal.h"
#include "build_helpers.h"
layout(push_constant) uniform CONSTS
{
internal_kernel_args args;
};
layout(push_constant) uniform CONSTS {
VOID_REF bvh;
REF(key_id_pair) src_ids;
REF(key_id_pair) dst_ids;
uint32_t dst_offset;
uint32_t fill_count;
} args;
void
main(void)
{
internal_kernel(args, gl_GlobalInvocationID.x);
uint32_t global_id = gl_GlobalInvocationID.x;
bool fill_header = (args.fill_count & 0x80000000u) != 0;
uint32_t src_count = args.fill_count & 0x7FFFFFFFu;
uint32_t src_index = global_id * 4;
uint32_t child_count = min(src_count - src_index, 4);
uint32_t dst_offset = args.dst_offset + global_id * SIZEOF(radv_bvh_box32_node);
REF(radv_bvh_box32_node) dst_node = REF(radv_bvh_box32_node)(OFFSET(args.bvh, dst_offset));
AABB total_bounds;
total_bounds.min = vec3(INFINITY);
total_bounds.max = vec3(-INFINITY);
for (uint32_t i = 0; i < 4; i++) {
AABB bounds;
bounds.min = vec3(NAN);
bounds.max = vec3(NAN);
uint32_t child_id = DEREF(INDEX(key_id_pair, args.src_ids, src_index + i)).id;
if (i < child_count) {
DEREF(dst_node).children[i] = child_id;
bounds = calculate_node_bounds(args.bvh, child_id);
total_bounds.min = min(total_bounds.min, bounds.min);
total_bounds.max = max(total_bounds.max, bounds.max);
}
DEREF(dst_node).coords[i][0][0] = bounds.min.x;
DEREF(dst_node).coords[i][0][1] = bounds.min.y;
DEREF(dst_node).coords[i][0][2] = bounds.min.z;
DEREF(dst_node).coords[i][1][0] = bounds.max.x;
DEREF(dst_node).coords[i][1][1] = bounds.max.y;
DEREF(dst_node).coords[i][1][2] = bounds.max.z;
}
uint32_t node_id = pack_node_id(dst_offset, radv_bvh_node_internal);
DEREF(INDEX(key_id_pair, args.dst_ids, global_id)).id = node_id;
if (fill_header) {
REF(radv_accel_struct_header) header = REF(radv_accel_struct_header)(args.bvh);
DEREF(header).root_node_offset = node_id;
DEREF(header).aabb[0][0] = total_bounds.min.x;
DEREF(header).aabb[0][1] = total_bounds.min.y;
DEREF(header).aabb[0][2] = total_bounds.min.z;
DEREF(header).aabb[1][0] = total_bounds.max.x;
DEREF(header).aabb[1][1] = total_bounds.max.y;
DEREF(header).aabb[1][2] = total_bounds.max.z;
}
}

View file

@ -1,94 +0,0 @@
/*
* Copyright © 2022 Konstantin Seurer
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef BVH_INTERNAL_H
#define BVH_INTERNAL_H
#include "build_helpers.h"
struct internal_kernel_args {
VOID_REF bvh;
REF(key_id_pair) src_ids;
REF(key_id_pair) dst_ids;
uint32_t dst_offset;
uint32_t fill_count;
};
TYPE(internal_kernel_args, 32);
void
internal_kernel(internal_kernel_args args, uint32_t global_id)
{
bool fill_header = (args.fill_count & 0x80000000u) != 0;
uint32_t src_count = args.fill_count & 0x7FFFFFFFu;
uint32_t src_index = global_id * 4;
uint32_t child_count = min(src_count - src_index, 4);
uint32_t dst_offset = args.dst_offset + global_id * SIZEOF(radv_bvh_box32_node);
REF(radv_bvh_box32_node) dst_node = REF(radv_bvh_box32_node)(OFFSET(args.bvh, dst_offset));
AABB total_bounds;
total_bounds.min = vec3(INFINITY);
total_bounds.max = vec3(-INFINITY);
for (uint32_t i = 0; i < 4; i++) {
AABB bounds;
bounds.min = vec3(NAN);
bounds.max = vec3(NAN);
uint32_t child_id = DEREF(INDEX(key_id_pair, args.src_ids, src_index + i)).id;
if (i < child_count) {
DEREF(dst_node).children[i] = child_id;
bounds = calculate_node_bounds(args.bvh, child_id);
total_bounds.min = min(total_bounds.min, bounds.min);
total_bounds.max = max(total_bounds.max, bounds.max);
}
DEREF(dst_node).coords[i][0][0] = bounds.min.x;
DEREF(dst_node).coords[i][0][1] = bounds.min.y;
DEREF(dst_node).coords[i][0][2] = bounds.min.z;
DEREF(dst_node).coords[i][1][0] = bounds.max.x;
DEREF(dst_node).coords[i][1][1] = bounds.max.y;
DEREF(dst_node).coords[i][1][2] = bounds.max.z;
}
uint32_t node_id = pack_node_id(dst_offset, radv_bvh_node_internal);
DEREF(INDEX(key_id_pair, args.dst_ids, global_id)).id = node_id;
if (fill_header) {
REF(radv_accel_struct_header) header = REF(radv_accel_struct_header)(args.bvh);
DEREF(header).root_node_offset = node_id;
DEREF(header).aabb[0][0] = total_bounds.min.x;
DEREF(header).aabb[0][1] = total_bounds.min.y;
DEREF(header).aabb[0][2] = total_bounds.min.z;
DEREF(header).aabb[1][0] = total_bounds.max.x;
DEREF(header).aabb[1][1] = total_bounds.max.y;
DEREF(header).aabb[1][2] = total_bounds.max.z;
}
}
#endif

View file

@ -34,20 +34,318 @@
#extension GL_EXT_buffer_reference : require
#extension GL_EXT_buffer_reference2 : require
layout(scalar) uniform;
layout(scalar) buffer;
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
#include "leaf.h"
#include "build_helpers.h"
layout(push_constant) uniform CONSTS
{
leaf_kernel_args args;
layout(push_constant) uniform CONSTS {
VOID_REF bvh;
REF(AABB) bounds;
REF(key_id_pair) ids;
VOID_REF data;
VOID_REF indices;
VOID_REF transform;
uint32_t dst_offset;
uint32_t first_id;
uint32_t geometry_type;
uint32_t geometry_id;
uint32_t stride;
uint32_t vertex_format;
uint32_t index_format;
} args;
/* Just a wrapper for 3 uints. */
struct triangle_indices {
uint32_t index[3];
};
TYPE(triangle_indices, 12);
triangle_indices
load_indices(VOID_REF indices, uint32_t index_format, uint32_t global_id)
{
triangle_indices result;
uint32_t index_base = global_id * 3;
switch (index_format) {
case VK_INDEX_TYPE_UINT16: {
result.index[0] = DEREF(INDEX(uint16_t, indices, index_base + 0));
result.index[1] = DEREF(INDEX(uint16_t, indices, index_base + 1));
result.index[2] = DEREF(INDEX(uint16_t, indices, index_base + 2));
break;
}
case VK_INDEX_TYPE_UINT32: {
result.index[0] = DEREF(INDEX(uint32_t, indices, index_base + 0));
result.index[1] = DEREF(INDEX(uint32_t, indices, index_base + 1));
result.index[2] = DEREF(INDEX(uint32_t, indices, index_base + 2));
break;
}
case VK_INDEX_TYPE_NONE_KHR: {
result.index[0] = index_base + 0;
result.index[1] = index_base + 1;
result.index[2] = index_base + 2;
break;
}
case VK_INDEX_TYPE_UINT8_EXT: {
result.index[0] = DEREF(INDEX(uint8_t, indices, index_base + 0));
result.index[1] = DEREF(INDEX(uint8_t, indices, index_base + 1));
result.index[2] = DEREF(INDEX(uint8_t, indices, index_base + 2));
break;
}
}
return result;
}
/* Just a wrapper for 3 vec4s. */
struct triangle_vertices {
vec4 vertex[3];
};
TYPE(triangle_vertices, 48);
TYPE(float16_t, 2);
triangle_vertices
load_vertices(VOID_REF vertices, triangle_indices indices, uint32_t vertex_format, uint32_t stride)
{
triangle_vertices result;
for (uint32_t i = 0; i < 3; i++) {
VOID_REF vertex_ptr = OFFSET(vertices, indices.index[i] * stride);
vec4 vertex = vec4(0.0, 0.0, 0.0, 1.0);
switch (vertex_format) {
case VK_FORMAT_R32G32_SFLOAT:
vertex.x = DEREF(INDEX(float, vertex_ptr, 0));
vertex.y = DEREF(INDEX(float, vertex_ptr, 1));
break;
case VK_FORMAT_R32G32B32_SFLOAT:
case VK_FORMAT_R32G32B32A32_SFLOAT:
vertex.x = DEREF(INDEX(float, vertex_ptr, 0));
vertex.y = DEREF(INDEX(float, vertex_ptr, 1));
vertex.z = DEREF(INDEX(float, vertex_ptr, 2));
break;
case VK_FORMAT_R16G16_SFLOAT:
vertex.x = DEREF(INDEX(float16_t, vertex_ptr, 0));
vertex.y = DEREF(INDEX(float16_t, vertex_ptr, 1));
break;
case VK_FORMAT_R16G16B16_SFLOAT:
case VK_FORMAT_R16G16B16A16_SFLOAT:
vertex.x = DEREF(INDEX(float16_t, vertex_ptr, 0));
vertex.y = DEREF(INDEX(float16_t, vertex_ptr, 1));
vertex.z = DEREF(INDEX(float16_t, vertex_ptr, 2));
break;
case VK_FORMAT_R16G16_SNORM:
vertex.x = max(-1.0, DEREF(INDEX(int16_t, vertex_ptr, 0)) / float(0x7FFF));
vertex.y = max(-1.0, DEREF(INDEX(int16_t, vertex_ptr, 1)) / float(0x7FFF));
break;
case VK_FORMAT_R16G16B16A16_SNORM:
vertex.x = max(-1.0, DEREF(INDEX(int16_t, vertex_ptr, 0)) / float(0x7FFF));
vertex.y = max(-1.0, DEREF(INDEX(int16_t, vertex_ptr, 1)) / float(0x7FFF));
vertex.z = max(-1.0, DEREF(INDEX(int16_t, vertex_ptr, 2)) / float(0x7FFF));
break;
case VK_FORMAT_R8G8_SNORM:
vertex.x = max(-1.0, DEREF(INDEX(int8_t, vertex_ptr, 0)) / float(0x7F));
vertex.y = max(-1.0, DEREF(INDEX(int8_t, vertex_ptr, 1)) / float(0x7F));
break;
case VK_FORMAT_R8G8B8A8_SNORM:
vertex.x = max(-1.0, DEREF(INDEX(int8_t, vertex_ptr, 0)) / float(0x7F));
vertex.y = max(-1.0, DEREF(INDEX(int8_t, vertex_ptr, 1)) / float(0x7F));
vertex.z = max(-1.0, DEREF(INDEX(int8_t, vertex_ptr, 2)) / float(0x7F));
break;
case VK_FORMAT_R16G16_UNORM:
vertex.x = DEREF(INDEX(uint16_t, vertex_ptr, 0)) / float(0xFFFF);
vertex.y = DEREF(INDEX(uint16_t, vertex_ptr, 1)) / float(0xFFFF);
break;
case VK_FORMAT_R16G16B16A16_UNORM:
vertex.x = DEREF(INDEX(uint16_t, vertex_ptr, 0)) / float(0xFFFF);
vertex.y = DEREF(INDEX(uint16_t, vertex_ptr, 1)) / float(0xFFFF);
vertex.z = DEREF(INDEX(uint16_t, vertex_ptr, 2)) / float(0xFFFF);
break;
case VK_FORMAT_R8G8_UNORM:
vertex.x = DEREF(INDEX(uint8_t, vertex_ptr, 0)) / float(0xFF);
vertex.y = DEREF(INDEX(uint8_t, vertex_ptr, 1)) / float(0xFF);
break;
case VK_FORMAT_R8G8B8A8_UNORM:
vertex.x = DEREF(INDEX(uint8_t, vertex_ptr, 0)) / float(0xFF);
vertex.y = DEREF(INDEX(uint8_t, vertex_ptr, 1)) / float(0xFF);
vertex.z = DEREF(INDEX(uint8_t, vertex_ptr, 2)) / float(0xFF);
break;
case VK_FORMAT_A2B10G10R10_UNORM_PACK32: {
uint32_t data = DEREF(REF(uint32_t)(vertex_ptr));
vertex.x = float(data & 0x3FF) / 0x3FF;
vertex.y = float((data >> 10) & 0x3FF) / 0x3FF;
vertex.z = float((data >> 20) & 0x3FF) / 0x3FF;
break;
}
}
result.vertex[i] = vertex;
}
return result;
}
/* A GLSL-adapted copy of VkAccelerationStructureInstanceKHR. */
struct AccelerationStructureInstance {
float transform[12];
uint32_t custom_instance_and_mask;
uint32_t sbt_offset_and_flags;
uint64_t accelerationStructureReference;
};
TYPE(AccelerationStructureInstance, 64);
void
build_instance(inout AABB bounds, VOID_REF src_ptr, VOID_REF dst_ptr, uint32_t global_id)
{
REF(radv_bvh_instance_node) node = REF(radv_bvh_instance_node)(dst_ptr);
AccelerationStructureInstance instance = DEREF(REF(AccelerationStructureInstance)(src_ptr));
if (instance.accelerationStructureReference == 0)
return;
mat4 transform = mat4(1.0);
for (uint32_t col = 0; col < 4; col++)
for (uint32_t row = 0; row < 3; row++)
transform[col][row] = instance.transform[col + row * 4];
mat4 inv_transform = inverse(transform);
for (uint32_t col = 0; col < 3; col++)
for (uint32_t row = 0; row < 3; row++)
DEREF(node).wto_matrix[col + row * 4] = inv_transform[col][row];
DEREF(node).wto_matrix[3] = transform[3][0];
DEREF(node).wto_matrix[7] = transform[3][1];
DEREF(node).wto_matrix[11] = transform[3][2];
for (uint32_t col = 0; col < 3; col++)
for (uint32_t row = 0; row < 3; row++)
DEREF(node).otw_matrix[col + row * 3] = transform[col][row];
radv_accel_struct_header instance_header =
DEREF(REF(radv_accel_struct_header)(instance.accelerationStructureReference));
DEREF(node).base_ptr =
instance.accelerationStructureReference | instance_header.root_node_offset;
for (uint32_t comp = 0; comp < 3; ++comp) {
bounds.min[comp] = transform[3][comp];
bounds.max[comp] = transform[3][comp];
for (uint32_t col = 0; col < 3; ++col) {
bounds.min[comp] += min(transform[col][comp] * instance_header.aabb[0][col],
transform[col][comp] * instance_header.aabb[1][col]);
bounds.max[comp] += max(transform[col][comp] * instance_header.aabb[0][col],
transform[col][comp] * instance_header.aabb[1][col]);
}
}
DEREF(node).custom_instance_and_mask = instance.custom_instance_and_mask;
DEREF(node).sbt_offset_and_flags = instance.sbt_offset_and_flags;
DEREF(node).instance_id = global_id;
DEREF(node).aabb[0][0] = bounds.min.x;
DEREF(node).aabb[0][1] = bounds.min.y;
DEREF(node).aabb[0][2] = bounds.min.z;
DEREF(node).aabb[1][0] = bounds.max.x;
DEREF(node).aabb[1][1] = bounds.max.y;
DEREF(node).aabb[1][2] = bounds.max.z;
}
void
main(void)
{
leaf_kernel(args, gl_GlobalInvocationID.x);
uint32_t global_id = gl_GlobalInvocationID.x;
REF(key_id_pair) id_ptr = INDEX(key_id_pair, args.ids, args.first_id + global_id);
uint32_t src_offset = global_id * args.stride;
uint32_t dst_stride;
uint32_t node_type;
if (args.geometry_type == VK_GEOMETRY_TYPE_TRIANGLES_KHR) {
dst_stride = SIZEOF(radv_bvh_triangle_node);
node_type = radv_bvh_node_triangle;
} else if (args.geometry_type == VK_GEOMETRY_TYPE_AABBS_KHR) {
dst_stride = SIZEOF(radv_bvh_aabb_node);
node_type = radv_bvh_node_aabb;
} else {
dst_stride = SIZEOF(radv_bvh_instance_node);
node_type = radv_bvh_node_instance;
}
uint32_t dst_offset = args.dst_offset + global_id * dst_stride;
DEREF(id_ptr).id = pack_node_id(dst_offset, node_type);
VOID_REF dst_ptr = OFFSET(args.bvh, dst_offset);
AABB bounds;
if (args.geometry_type == VK_GEOMETRY_TYPE_TRIANGLES_KHR) {
triangle_indices indices = load_indices(args.indices, args.index_format, global_id);
triangle_vertices vertices =
load_vertices(args.data, indices, args.vertex_format, args.stride);
if (args.transform != NULL) {
mat4 transform = mat4(1.0);
for (uint32_t col = 0; col < 4; col++)
for (uint32_t row = 0; row < 3; row++)
transform[col][row] = DEREF(INDEX(float, args.transform, col + row * 4));
for (uint32_t i = 0; i < 3; i++)
vertices.vertex[i] = transform * vertices.vertex[i];
}
REF(radv_bvh_triangle_node) node = REF(radv_bvh_triangle_node)(dst_ptr);
bounds.min = vec3(INFINITY);
bounds.max = vec3(-INFINITY);
for (uint32_t coord = 0; coord < 3; coord++)
for (uint32_t comp = 0; comp < 3; comp++) {
DEREF(node).coords[coord][comp] = vertices.vertex[coord][comp];
bounds.min[comp] = min(bounds.min[comp], vertices.vertex[coord][comp]);
bounds.max[comp] = max(bounds.max[comp], vertices.vertex[coord][comp]);
}
DEREF(node).triangle_id = global_id;
DEREF(node).geometry_id_and_flags = args.geometry_id;
DEREF(node).id = 9;
} else if (args.geometry_type == VK_GEOMETRY_TYPE_AABBS_KHR) {
VOID_REF src_ptr = OFFSET(args.data, src_offset);
REF(radv_bvh_aabb_node) node = REF(radv_bvh_aabb_node)(dst_ptr);
for (uint32_t vec = 0; vec < 2; vec++)
for (uint32_t comp = 0; comp < 3; comp++) {
float coord = DEREF(INDEX(float, src_ptr, comp + vec * 3));
DEREF(node).aabb[vec][comp] = coord;
if (vec == 0)
bounds.min[comp] = coord;
else
bounds.max[comp] = coord;
}
DEREF(node).primitive_id = global_id;
DEREF(node).geometry_id_and_flags = args.geometry_id;
} else {
VOID_REF src_ptr = OFFSET(args.data, src_offset);
/* arrayOfPointers */
if (args.stride == 8) {
src_ptr = DEREF(REF(VOID_REF)(src_ptr));
}
build_instance(bounds, src_ptr, dst_ptr, global_id);
}
min_float_emulated(INDEX(int32_t, args.bounds, 0), bounds.min.x);
min_float_emulated(INDEX(int32_t, args.bounds, 1), bounds.min.y);
min_float_emulated(INDEX(int32_t, args.bounds, 2), bounds.min.z);
max_float_emulated(INDEX(int32_t, args.bounds, 3), bounds.max.x);
max_float_emulated(INDEX(int32_t, args.bounds, 4), bounds.max.y);
max_float_emulated(INDEX(int32_t, args.bounds, 5), bounds.max.z);
}

View file

@ -1,340 +0,0 @@
/*
* Copyright © 2022 Konstantin Seurer
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef BVH_LEAF_H
#define BVH_LEAF_H
#include "build_helpers.h"
struct leaf_kernel_args {
VOID_REF bvh;
REF(AABB) bounds;
REF(key_id_pair) ids;
VOID_REF data;
VOID_REF indices;
VOID_REF transform;
uint32_t dst_offset;
uint32_t first_id;
uint32_t geometry_type;
uint32_t geometry_id;
uint32_t stride;
uint32_t vertex_format;
uint32_t index_format;
};
TYPE(leaf_kernel_args, 80);
/* Just a wrapper for 3 uints. */
struct triangle_indices {
uint32_t index[3];
};
TYPE(triangle_indices, 12);
triangle_indices
load_indices(VOID_REF indices, uint32_t index_format, uint32_t global_id)
{
triangle_indices result;
uint32_t index_base = global_id * 3;
switch (index_format) {
case VK_INDEX_TYPE_UINT16: {
result.index[0] = DEREF(INDEX(uint16_t, indices, index_base + 0));
result.index[1] = DEREF(INDEX(uint16_t, indices, index_base + 1));
result.index[2] = DEREF(INDEX(uint16_t, indices, index_base + 2));
break;
}
case VK_INDEX_TYPE_UINT32: {
result.index[0] = DEREF(INDEX(uint32_t, indices, index_base + 0));
result.index[1] = DEREF(INDEX(uint32_t, indices, index_base + 1));
result.index[2] = DEREF(INDEX(uint32_t, indices, index_base + 2));
break;
}
case VK_INDEX_TYPE_NONE_KHR: {
result.index[0] = index_base + 0;
result.index[1] = index_base + 1;
result.index[2] = index_base + 2;
break;
}
case VK_INDEX_TYPE_UINT8_EXT: {
result.index[0] = DEREF(INDEX(uint8_t, indices, index_base + 0));
result.index[1] = DEREF(INDEX(uint8_t, indices, index_base + 1));
result.index[2] = DEREF(INDEX(uint8_t, indices, index_base + 2));
break;
}
}
return result;
}
/* Just a wrapper for 3 vec4s. */
struct triangle_vertices {
vec4 vertex[3];
};
TYPE(triangle_vertices, 48);
TYPE(float16_t, 2);
triangle_vertices
load_vertices(VOID_REF vertices, triangle_indices indices, uint32_t vertex_format, uint32_t stride)
{
triangle_vertices result;
for (uint32_t i = 0; i < 3; i++) {
VOID_REF vertex_ptr = OFFSET(vertices, indices.index[i] * stride);
vec4 vertex = vec4(0.0, 0.0, 0.0, 1.0);
switch (vertex_format) {
case VK_FORMAT_R32G32_SFLOAT:
vertex.x = DEREF(INDEX(float, vertex_ptr, 0));
vertex.y = DEREF(INDEX(float, vertex_ptr, 1));
break;
case VK_FORMAT_R32G32B32_SFLOAT:
case VK_FORMAT_R32G32B32A32_SFLOAT:
vertex.x = DEREF(INDEX(float, vertex_ptr, 0));
vertex.y = DEREF(INDEX(float, vertex_ptr, 1));
vertex.z = DEREF(INDEX(float, vertex_ptr, 2));
break;
case VK_FORMAT_R16G16_SFLOAT:
vertex.x = DEREF(INDEX(float16_t, vertex_ptr, 0));
vertex.y = DEREF(INDEX(float16_t, vertex_ptr, 1));
break;
case VK_FORMAT_R16G16B16_SFLOAT:
case VK_FORMAT_R16G16B16A16_SFLOAT:
vertex.x = DEREF(INDEX(float16_t, vertex_ptr, 0));
vertex.y = DEREF(INDEX(float16_t, vertex_ptr, 1));
vertex.z = DEREF(INDEX(float16_t, vertex_ptr, 2));
break;
case VK_FORMAT_R16G16_SNORM:
vertex.x = max(-1.0, DEREF(INDEX(int16_t, vertex_ptr, 0)) / float(0x7FFF));
vertex.y = max(-1.0, DEREF(INDEX(int16_t, vertex_ptr, 1)) / float(0x7FFF));
break;
case VK_FORMAT_R16G16B16A16_SNORM:
vertex.x = max(-1.0, DEREF(INDEX(int16_t, vertex_ptr, 0)) / float(0x7FFF));
vertex.y = max(-1.0, DEREF(INDEX(int16_t, vertex_ptr, 1)) / float(0x7FFF));
vertex.z = max(-1.0, DEREF(INDEX(int16_t, vertex_ptr, 2)) / float(0x7FFF));
break;
case VK_FORMAT_R8G8_SNORM:
vertex.x = max(-1.0, DEREF(INDEX(int8_t, vertex_ptr, 0)) / float(0x7F));
vertex.y = max(-1.0, DEREF(INDEX(int8_t, vertex_ptr, 1)) / float(0x7F));
break;
case VK_FORMAT_R8G8B8A8_SNORM:
vertex.x = max(-1.0, DEREF(INDEX(int8_t, vertex_ptr, 0)) / float(0x7F));
vertex.y = max(-1.0, DEREF(INDEX(int8_t, vertex_ptr, 1)) / float(0x7F));
vertex.z = max(-1.0, DEREF(INDEX(int8_t, vertex_ptr, 2)) / float(0x7F));
break;
case VK_FORMAT_R16G16_UNORM:
vertex.x = DEREF(INDEX(uint16_t, vertex_ptr, 0)) / float(0xFFFF);
vertex.y = DEREF(INDEX(uint16_t, vertex_ptr, 1)) / float(0xFFFF);
break;
case VK_FORMAT_R16G16B16A16_UNORM:
vertex.x = DEREF(INDEX(uint16_t, vertex_ptr, 0)) / float(0xFFFF);
vertex.y = DEREF(INDEX(uint16_t, vertex_ptr, 1)) / float(0xFFFF);
vertex.z = DEREF(INDEX(uint16_t, vertex_ptr, 2)) / float(0xFFFF);
break;
case VK_FORMAT_R8G8_UNORM:
vertex.x = DEREF(INDEX(uint8_t, vertex_ptr, 0)) / float(0xFF);
vertex.y = DEREF(INDEX(uint8_t, vertex_ptr, 1)) / float(0xFF);
break;
case VK_FORMAT_R8G8B8A8_UNORM:
vertex.x = DEREF(INDEX(uint8_t, vertex_ptr, 0)) / float(0xFF);
vertex.y = DEREF(INDEX(uint8_t, vertex_ptr, 1)) / float(0xFF);
vertex.z = DEREF(INDEX(uint8_t, vertex_ptr, 2)) / float(0xFF);
break;
case VK_FORMAT_A2B10G10R10_UNORM_PACK32: {
uint32_t data = DEREF(REF(uint32_t)(vertex_ptr));
vertex.x = float(data & 0x3FF) / 0x3FF;
vertex.y = float((data >> 10) & 0x3FF) / 0x3FF;
vertex.z = float((data >> 20) & 0x3FF) / 0x3FF;
break;
}
}
result.vertex[i] = vertex;
}
return result;
}
/* A GLSL-adapted copy of VkAccelerationStructureInstanceKHR. */
struct AccelerationStructureInstance {
float transform[12];
uint32_t custom_instance_and_mask;
uint32_t sbt_offset_and_flags;
uint64_t accelerationStructureReference;
};
TYPE(AccelerationStructureInstance, 64);
void
build_instance(inout AABB bounds, VOID_REF src_ptr, VOID_REF dst_ptr, uint32_t global_id)
{
REF(radv_bvh_instance_node) node = REF(radv_bvh_instance_node)(dst_ptr);
AccelerationStructureInstance instance = DEREF(REF(AccelerationStructureInstance)(src_ptr));
if (instance.accelerationStructureReference == 0)
return;
mat4 transform = mat4(1.0);
for (uint32_t col = 0; col < 4; col++)
for (uint32_t row = 0; row < 3; row++)
transform[col][row] = instance.transform[col + row * 4];
mat4 inv_transform = inverse(transform);
for (uint32_t col = 0; col < 3; col++)
for (uint32_t row = 0; row < 3; row++)
DEREF(node).wto_matrix[col + row * 4] = inv_transform[col][row];
DEREF(node).wto_matrix[3] = transform[3][0];
DEREF(node).wto_matrix[7] = transform[3][1];
DEREF(node).wto_matrix[11] = transform[3][2];
for (uint32_t col = 0; col < 3; col++)
for (uint32_t row = 0; row < 3; row++)
DEREF(node).otw_matrix[col + row * 3] = transform[col][row];
radv_accel_struct_header instance_header =
DEREF(REF(radv_accel_struct_header)(instance.accelerationStructureReference));
DEREF(node).base_ptr =
instance.accelerationStructureReference | instance_header.root_node_offset;
for (uint32_t comp = 0; comp < 3; ++comp) {
bounds.min[comp] = transform[3][comp];
bounds.max[comp] = transform[3][comp];
for (uint32_t col = 0; col < 3; ++col) {
bounds.min[comp] += min(transform[col][comp] * instance_header.aabb[0][col],
transform[col][comp] * instance_header.aabb[1][col]);
bounds.max[comp] += max(transform[col][comp] * instance_header.aabb[0][col],
transform[col][comp] * instance_header.aabb[1][col]);
}
}
DEREF(node).custom_instance_and_mask = instance.custom_instance_and_mask;
DEREF(node).sbt_offset_and_flags = instance.sbt_offset_and_flags;
DEREF(node).instance_id = global_id;
DEREF(node).aabb[0][0] = bounds.min.x;
DEREF(node).aabb[0][1] = bounds.min.y;
DEREF(node).aabb[0][2] = bounds.min.z;
DEREF(node).aabb[1][0] = bounds.max.x;
DEREF(node).aabb[1][1] = bounds.max.y;
DEREF(node).aabb[1][2] = bounds.max.z;
}
void
leaf_kernel(leaf_kernel_args args, uint32_t global_id)
{
REF(key_id_pair) id_ptr = INDEX(key_id_pair, args.ids, args.first_id + global_id);
uint32_t src_offset = global_id * args.stride;
uint32_t dst_stride;
uint32_t node_type;
if (args.geometry_type == VK_GEOMETRY_TYPE_TRIANGLES_KHR) {
dst_stride = SIZEOF(radv_bvh_triangle_node);
node_type = radv_bvh_node_triangle;
} else if (args.geometry_type == VK_GEOMETRY_TYPE_AABBS_KHR) {
dst_stride = SIZEOF(radv_bvh_aabb_node);
node_type = radv_bvh_node_aabb;
} else {
dst_stride = SIZEOF(radv_bvh_instance_node);
node_type = radv_bvh_node_instance;
}
uint32_t dst_offset = args.dst_offset + global_id * dst_stride;
DEREF(id_ptr).id = pack_node_id(dst_offset, node_type);
VOID_REF dst_ptr = OFFSET(args.bvh, dst_offset);
AABB bounds;
if (args.geometry_type == VK_GEOMETRY_TYPE_TRIANGLES_KHR) {
triangle_indices indices = load_indices(args.indices, args.index_format, global_id);
triangle_vertices vertices =
load_vertices(args.data, indices, args.vertex_format, args.stride);
if (args.transform != NULL) {
mat4 transform = mat4(1.0);
for (uint32_t col = 0; col < 4; col++)
for (uint32_t row = 0; row < 3; row++)
transform[col][row] = DEREF(INDEX(float, args.transform, col + row * 4));
for (uint32_t i = 0; i < 3; i++)
vertices.vertex[i] = transform * vertices.vertex[i];
}
REF(radv_bvh_triangle_node) node = REF(radv_bvh_triangle_node)(dst_ptr);
bounds.min = vec3(INFINITY);
bounds.max = vec3(-INFINITY);
for (uint32_t coord = 0; coord < 3; coord++)
for (uint32_t comp = 0; comp < 3; comp++) {
DEREF(node).coords[coord][comp] = vertices.vertex[coord][comp];
bounds.min[comp] = min(bounds.min[comp], vertices.vertex[coord][comp]);
bounds.max[comp] = max(bounds.max[comp], vertices.vertex[coord][comp]);
}
DEREF(node).triangle_id = global_id;
DEREF(node).geometry_id_and_flags = args.geometry_id;
DEREF(node).id = 9;
} else if (args.geometry_type == VK_GEOMETRY_TYPE_AABBS_KHR) {
VOID_REF src_ptr = OFFSET(args.data, src_offset);
REF(radv_bvh_aabb_node) node = REF(radv_bvh_aabb_node)(dst_ptr);
for (uint32_t vec = 0; vec < 2; vec++)
for (uint32_t comp = 0; comp < 3; comp++) {
float coord = DEREF(INDEX(float, src_ptr, comp + vec * 3));
DEREF(node).aabb[vec][comp] = coord;
if (vec == 0)
bounds.min[comp] = coord;
else
bounds.max[comp] = coord;
}
DEREF(node).primitive_id = global_id;
DEREF(node).geometry_id_and_flags = args.geometry_id;
} else {
VOID_REF src_ptr = OFFSET(args.data, src_offset);
/* arrayOfPointers */
if (args.stride == 8) {
src_ptr = DEREF(REF(VOID_REF)(src_ptr));
}
build_instance(bounds, src_ptr, dst_ptr, global_id);
}
min_float_emulated(INDEX(int32_t, args.bounds, 0), bounds.min.x);
min_float_emulated(INDEX(int32_t, args.bounds, 1), bounds.min.y);
min_float_emulated(INDEX(int32_t, args.bounds, 2), bounds.min.z);
max_float_emulated(INDEX(int32_t, args.bounds, 3), bounds.max.x);
max_float_emulated(INDEX(int32_t, args.bounds, 4), bounds.max.y);
max_float_emulated(INDEX(int32_t, args.bounds, 5), bounds.max.z);
}
#endif

View file

@ -29,9 +29,6 @@ bvh_include_dir = meson.source_root() + '/src/amd/vulkan/bvh'
bvh_includes = files(
'build_helpers.h',
'bvh.h',
'internal.h',
'leaf.h',
'morton.h'
)
bvh_spv = []

View file

@ -33,20 +33,57 @@
#extension GL_EXT_buffer_reference : require
#extension GL_EXT_buffer_reference2 : require
layout(scalar) uniform;
layout(scalar) buffer;
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
#include "morton.h"
#include "build_helpers.h"
layout(push_constant) uniform CONSTS
layout(push_constant) uniform CONSTS {
VOID_REF bvh;
REF(AABB) bounds;
REF(key_id_pair) ids;
} args;
uint32_t
morton_component(uint32_t x)
{
morton_kernel_args args;
};
x = (x * 0x00000101u) & 0x0F00F00Fu;
x = (x * 0x00000011u) & 0xC30C30C3u;
x = (x * 0x00000005u) & 0x49249249u;
return x;
}
uint32_t
morton_code(uint32_t x, uint32_t y, uint32_t z)
{
return (morton_component(x) << 2) | (morton_component(y) << 1) | morton_component(z);
}
uint32_t
lbvh_key(float x01, float y01, float z01)
{
return morton_code(uint32_t(x01 * 255.0), uint32_t(y01 * 255.0), uint32_t(z01 * 255.0)) << 8;
}
void
main(void)
{
morton_kernel(args, gl_GlobalInvocationID.x);
uint32_t global_id = gl_GlobalInvocationID.x;
REF(key_id_pair) key_id = INDEX(key_id_pair, args.ids, global_id);
uint32_t id = DEREF(key_id).id;
AABB bounds = calculate_node_bounds(args.bvh, id);
vec3 center = (bounds.min + bounds.max) * 0.5;
AABB bvh_bounds;
bvh_bounds.min.x = load_minmax_float_emulated(VOID_REF(args.bounds));
bvh_bounds.min.y = load_minmax_float_emulated(OFFSET(args.bounds, 4));
bvh_bounds.min.z = load_minmax_float_emulated(OFFSET(args.bounds, 8));
bvh_bounds.max.x = load_minmax_float_emulated(OFFSET(args.bounds, 12));
bvh_bounds.max.y = load_minmax_float_emulated(OFFSET(args.bounds, 16));
bvh_bounds.max.z = load_minmax_float_emulated(OFFSET(args.bounds, 20));
vec3 normalized_center = (center - bvh_bounds.min) / (bvh_bounds.max - bvh_bounds.min);
DEREF(key_id).key = lbvh_key(normalized_center.x, normalized_center.y, normalized_center.z);
}

View file

@ -1,79 +0,0 @@
/*
* Copyright © 2022 Konstantin Seurer
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef BVH_MORTON_H
#define BVH_MORTON_H
#include "build_helpers.h"
uint32_t
morton_component(uint32_t x)
{
x = (x * 0x00000101u) & 0x0F00F00Fu;
x = (x * 0x00000011u) & 0xC30C30C3u;
x = (x * 0x00000005u) & 0x49249249u;
return x;
}
uint32_t
morton_code(uint32_t x, uint32_t y, uint32_t z)
{
return (morton_component(x) << 2) | (morton_component(y) << 1) | morton_component(z);
}
uint32_t
lbvh_key(float x01, float y01, float z01)
{
return morton_code(uint32_t(x01 * 255.0), uint32_t(y01 * 255.0), uint32_t(z01 * 255.0)) << 8;
}
struct morton_kernel_args {
VOID_REF bvh;
REF(AABB) bounds;
REF(key_id_pair) ids;
};
TYPE(morton_kernel_args, 24);
void
morton_kernel(morton_kernel_args args, uint32_t global_id)
{
REF(key_id_pair) key_id = INDEX(key_id_pair, args.ids, global_id);
uint32_t id = DEREF(key_id).id;
AABB bounds = calculate_node_bounds(args.bvh, id);
vec3 center = (bounds.min + bounds.max) * 0.5;
AABB bvh_bounds;
bvh_bounds.min.x = load_minmax_float_emulated(VOID_REF(args.bounds));
bvh_bounds.min.y = load_minmax_float_emulated(OFFSET(args.bounds, 4));
bvh_bounds.min.z = load_minmax_float_emulated(OFFSET(args.bounds, 8));
bvh_bounds.max.x = load_minmax_float_emulated(OFFSET(args.bounds, 12));
bvh_bounds.max.y = load_minmax_float_emulated(OFFSET(args.bounds, 16));
bvh_bounds.max.z = load_minmax_float_emulated(OFFSET(args.bounds, 20));
vec3 normalized_center = (center - bvh_bounds.min) / (bvh_bounds.max - bvh_bounds.min);
DEREF(key_id).key = lbvh_key(normalized_center.x, normalized_center.y, normalized_center.z);
}
#endif