zink: support multiple heaps per memory type

some allocations require a different memory heap even when using the
same memory bits, so allow iterating over heaps of the same memory type
to find the one that works

Reviewed-by: Dave Airlie <airlied@redhat.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/19281>
This commit is contained in:
Mike Blumenkrantz 2022-10-24 13:40:58 -04:00 committed by Marge Bot
parent f9515d9376
commit d702a503ad
5 changed files with 42 additions and 23 deletions

View file

@ -381,7 +381,7 @@ sparse_backing_alloc(struct zink_screen *screen, struct zink_bo *bo,
size = MAX2(size, ZINK_SPARSE_BUFFER_PAGE_SIZE);
buf = zink_bo_create(screen, size, ZINK_SPARSE_BUFFER_PAGE_SIZE,
ZINK_HEAP_DEVICE_LOCAL, 0, screen->heap_map[ZINK_HEAP_DEVICE_LOCAL], NULL);
ZINK_HEAP_DEVICE_LOCAL, 0, screen->heap_map[ZINK_HEAP_DEVICE_LOCAL][0], NULL);
if (!buf) {
FREE(best_backing->chunks);
FREE(best_backing);

View file

@ -93,6 +93,17 @@ zink_heap_from_domain_flags(VkMemoryPropertyFlags domains, enum zink_alloc_flag
return ZINK_HEAP_HOST_VISIBLE_COHERENT;
}
static inline unsigned
zink_heap_idx_from_bits(struct zink_screen *screen, enum zink_heap heap, uint32_t bits)
{
for (unsigned i = 0; i < screen->heap_count[heap]; i++) {
if (bits & BITFIELD_BIT(screen->heap_map[heap][i])) {
return screen->heap_map[heap][i];
}
}
return UINT32_MAX;
}
bool
zink_bo_init(struct zink_screen *screen);

View file

@ -943,8 +943,8 @@ resource_object_create(struct zink_screen *screen, const struct pipe_resource *t
mai.pNext = NULL;
mai.allocationSize = reqs.size;
enum zink_heap heap = zink_heap_from_domain_flags(flags, aflags);
mai.memoryTypeIndex = screen->heap_map[heap];
if (unlikely(!(reqs.memoryTypeBits & BITFIELD_BIT(mai.memoryTypeIndex)))) {
mai.memoryTypeIndex = zink_heap_idx_from_bits(screen, heap, reqs.memoryTypeBits);
if (mai.memoryTypeIndex == UINT32_MAX) {
/* not valid based on reqs; demote to more compatible type */
switch (heap) {
case ZINK_HEAP_DEVICE_LOCAL_VISIBLE:
@ -956,9 +956,10 @@ resource_object_create(struct zink_screen *screen, const struct pipe_resource *t
default:
break;
}
mai.memoryTypeIndex = screen->heap_map[heap];
assert(reqs.memoryTypeBits & BITFIELD_BIT(mai.memoryTypeIndex));
mai.memoryTypeIndex = zink_heap_idx_from_bits(screen, heap, reqs.memoryTypeBits);
assert(mai.memoryTypeIndex != UINT32_MAX);
}
assert(reqs.memoryTypeBits & BITFIELD_BIT(mai.memoryTypeIndex));
VkMemoryDedicatedAllocateInfo ded_alloc_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO,

View file

@ -382,9 +382,11 @@ get_smallest_buffer_heap(struct zink_screen *screen)
};
unsigned size = UINT32_MAX;
for (unsigned i = 0; i < ARRAY_SIZE(heaps); i++) {
unsigned heap_idx = screen->info.mem_props.memoryTypes[screen->heap_map[i]].heapIndex;
for (unsigned j = 0; j < screen->heap_count[i]; j++) {
unsigned heap_idx = screen->info.mem_props.memoryTypes[screen->heap_map[i][j]].heapIndex;
size = MIN2(screen->info.mem_props.memoryHeaps[heap_idx].size, size);
}
}
return size;
}
@ -2548,30 +2550,35 @@ zink_internal_create_screen(const struct pipe_screen_config *config)
for (unsigned j = 0; j < screen->info.mem_props.memoryTypeCount; j++) {
VkMemoryPropertyFlags domains = vk_domain_from_heap(i);
if ((screen->info.mem_props.memoryTypes[j].propertyFlags & domains) == domains) {
assert(screen->heap_map[i] == UINT8_MAX);
screen->heap_map[i] = j;
break;
screen->heap_map[i][screen->heap_count[i]++] = j;
}
}
}
/* iterate again to check for missing heaps */
for (enum zink_heap i = 0; i < ZINK_HEAP_MAX; i++) {
/* not found: use compatible heap */
if (screen->heap_map[i] == UINT8_MAX) {
if (screen->heap_map[i][0] == UINT8_MAX) {
/* only cached mem has a failure case for now */
assert(i == ZINK_HEAP_HOST_VISIBLE_CACHED || i == ZINK_HEAP_DEVICE_LOCAL_LAZY ||
i == ZINK_HEAP_DEVICE_LOCAL_VISIBLE);
if (i == ZINK_HEAP_HOST_VISIBLE_CACHED)
screen->heap_map[i] = screen->heap_map[ZINK_HEAP_HOST_VISIBLE_COHERENT];
else
screen->heap_map[i] = screen->heap_map[ZINK_HEAP_DEVICE_LOCAL];
if (i == ZINK_HEAP_HOST_VISIBLE_CACHED) {
memcpy(screen->heap_map[i], screen->heap_map[ZINK_HEAP_HOST_VISIBLE_COHERENT], screen->heap_count[ZINK_HEAP_HOST_VISIBLE_COHERENT]);
screen->heap_count[i] = screen->heap_count[ZINK_HEAP_HOST_VISIBLE_COHERENT];
} else {
memcpy(screen->heap_map[i], screen->heap_map[ZINK_HEAP_DEVICE_LOCAL], screen->heap_count[ZINK_HEAP_DEVICE_LOCAL]);
screen->heap_count[i] = screen->heap_count[ZINK_HEAP_DEVICE_LOCAL];
}
}
screen->heap_flags[i] = screen->info.mem_props.memoryTypes[screen->heap_map[i]].propertyFlags;
}
{
unsigned vis_vram = screen->heap_map[ZINK_HEAP_DEVICE_LOCAL_VISIBLE];
unsigned vram = screen->heap_map[ZINK_HEAP_DEVICE_LOCAL];
uint64_t biggest_vis_vram = 0;
for (unsigned i = 0; i < screen->heap_count[ZINK_HEAP_DEVICE_LOCAL_VISIBLE]; i++)
biggest_vis_vram = MAX2(biggest_vis_vram, screen->info.mem_props.memoryHeaps[screen->info.mem_props.memoryTypes[i].heapIndex].size);
uint64_t biggest_vram = 0;
for (unsigned i = 0; i < screen->heap_count[ZINK_HEAP_DEVICE_LOCAL]; i++)
biggest_vram = MAX2(biggest_vis_vram, screen->info.mem_props.memoryHeaps[screen->info.mem_props.memoryTypes[i].heapIndex].size);
/* determine if vis vram is roughly equal to total vram */
if (screen->info.mem_props.memoryHeaps[screen->info.mem_props.memoryTypes[vis_vram].heapIndex].size >
screen->info.mem_props.memoryHeaps[screen->info.mem_props.memoryTypes[vram].heapIndex].size * 0.9)
if (biggest_vis_vram > biggest_vram * 0.9)
screen->resizable_bar = true;
}

View file

@ -1187,8 +1187,8 @@ struct zink_screen {
unsigned min_alloc_size;
uint32_t next_bo_unique_id;
} pb;
uint8_t heap_map[VK_MAX_MEMORY_TYPES];
VkMemoryPropertyFlags heap_flags[VK_MAX_MEMORY_TYPES];
uint8_t heap_map[ZINK_HEAP_MAX][VK_MAX_MEMORY_TYPES];
uint8_t heap_count[ZINK_HEAP_MAX];
bool resizable_bar;
uint64_t total_video_mem;