mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2026-01-10 14:40:13 +01:00
swr/rast: New GS state/context API
One piglit regression, which was a false pass: spec@glsl-1.50@execution@geometry@dynamic_input_array_index Reviewed-by: Bruce Cherniak <bruce.cherniak@intel.com>
This commit is contained in:
parent
41565ddf7a
commit
cd6e91d3a2
3 changed files with 259 additions and 218 deletions
|
|
@ -710,46 +710,68 @@ void ProcessStreamIdBuffer(uint32_t stream, uint8_t* pStreamIdBase, uint32_t num
|
|||
|
||||
THREAD SWR_GS_CONTEXT tlsGsContext;
|
||||
|
||||
template<typename SIMDVERTEX, uint32_t SIMD_WIDTH>
|
||||
struct GsBufferInfo
|
||||
// Buffers that are allocated if GS is enabled
|
||||
struct GsBuffers
|
||||
{
|
||||
GsBufferInfo(const SWR_GS_STATE &gsState)
|
||||
{
|
||||
const uint32_t vertexCount = gsState.maxNumVerts;
|
||||
const uint32_t vertexStride = sizeof(SIMDVERTEX);
|
||||
const uint32_t numSimdBatches = (vertexCount + SIMD_WIDTH - 1) / SIMD_WIDTH;
|
||||
|
||||
vertexPrimitiveStride = vertexStride * numSimdBatches;
|
||||
vertexInstanceStride = vertexPrimitiveStride * SIMD_WIDTH;
|
||||
|
||||
if (gsState.isSingleStream)
|
||||
{
|
||||
cutPrimitiveStride = (vertexCount + 7) / 8;
|
||||
cutInstanceStride = cutPrimitiveStride * SIMD_WIDTH;
|
||||
|
||||
streamCutPrimitiveStride = 0;
|
||||
streamCutInstanceStride = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
cutPrimitiveStride = AlignUp(vertexCount * 2 / 8, 4);
|
||||
cutInstanceStride = cutPrimitiveStride * SIMD_WIDTH;
|
||||
|
||||
streamCutPrimitiveStride = (vertexCount + 7) / 8;
|
||||
streamCutInstanceStride = streamCutPrimitiveStride * SIMD_WIDTH;
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t vertexPrimitiveStride;
|
||||
uint32_t vertexInstanceStride;
|
||||
|
||||
uint32_t cutPrimitiveStride;
|
||||
uint32_t cutInstanceStride;
|
||||
|
||||
uint32_t streamCutPrimitiveStride;
|
||||
uint32_t streamCutInstanceStride;
|
||||
uint8_t* pGsIn;
|
||||
uint8_t* pGsOut[KNOB_SIMD_WIDTH];
|
||||
uint8_t* pGsTransposed;
|
||||
void* pStreamCutBuffer;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
/// @brief Transposes GS output from SOA to AOS to feed the primitive assembler
|
||||
/// @param pDst - Destination buffer in AOS form for the current SIMD width, fed into the primitive assembler
|
||||
/// @param pSrc - Buffer of vertices in SOA form written by the geometry shader
|
||||
/// @param numVerts - Number of vertices outputted by the GS
|
||||
/// @param numAttribs - Number of attributes per vertex
|
||||
template<typename SIMD_T, uint32_t SimdWidth>
|
||||
void TransposeSOAtoAOS(uint8_t* pDst, uint8_t* pSrc, uint32_t numVerts, uint32_t numAttribs)
|
||||
{
|
||||
uint32_t srcVertexStride = numAttribs * sizeof(float) * 4;
|
||||
uint32_t dstVertexStride = numAttribs * sizeof(typename SIMD_T::Float) * 4;
|
||||
|
||||
OSALIGNSIMD16(uint32_t) gatherOffsets[SimdWidth];
|
||||
|
||||
for (uint32_t i = 0; i < SimdWidth; ++i)
|
||||
{
|
||||
gatherOffsets[i] = srcVertexStride * i;
|
||||
}
|
||||
auto vGatherOffsets = SIMD_T::load_si((typename SIMD_T::Integer*)&gatherOffsets[0]);
|
||||
|
||||
uint32_t numSimd = AlignUp(numVerts, SimdWidth) / SimdWidth;
|
||||
uint32_t remainingVerts = numVerts;
|
||||
|
||||
for (uint32_t s = 0; s < numSimd; ++s)
|
||||
{
|
||||
uint8_t* pSrcBase = pSrc + s * srcVertexStride * SimdWidth;
|
||||
uint8_t* pDstBase = pDst + s * dstVertexStride;
|
||||
|
||||
// Compute mask to prevent src overflow
|
||||
uint32_t mask = std::min(remainingVerts, SimdWidth);
|
||||
mask = GenMask(mask);
|
||||
auto vMask = SIMD_T::vmask_ps(mask);
|
||||
auto viMask = SIMD_T::castps_si(vMask);
|
||||
|
||||
for (uint32_t a = 0; a < numAttribs; ++a)
|
||||
{
|
||||
auto attribGatherX = SIMD_T::template mask_i32gather_ps<typename SIMD_T::ScaleFactor(1)>(SIMD_T::setzero_ps(), (const float*)pSrcBase, vGatherOffsets, vMask);
|
||||
auto attribGatherY = SIMD_T::template mask_i32gather_ps<typename SIMD_T::ScaleFactor(1)>(SIMD_T::setzero_ps(), (const float*)(pSrcBase + sizeof(float)), vGatherOffsets, vMask);
|
||||
auto attribGatherZ = SIMD_T::template mask_i32gather_ps<typename SIMD_T::ScaleFactor(1)>(SIMD_T::setzero_ps(), (const float*)(pSrcBase + sizeof(float) * 2), vGatherOffsets, vMask);
|
||||
auto attribGatherW = SIMD_T::template mask_i32gather_ps<typename SIMD_T::ScaleFactor(1)>(SIMD_T::setzero_ps(), (const float*)(pSrcBase + sizeof(float) * 3), vGatherOffsets, vMask);
|
||||
|
||||
SIMD_T::maskstore_ps((float*)pDstBase, viMask, attribGatherX);
|
||||
SIMD_T::maskstore_ps((float*)(pDstBase + sizeof(typename SIMD_T::Float)), viMask, attribGatherY);
|
||||
SIMD_T::maskstore_ps((float*)(pDstBase + sizeof(typename SIMD_T::Float) * 2), viMask, attribGatherZ);
|
||||
SIMD_T::maskstore_ps((float*)(pDstBase + sizeof(typename SIMD_T::Float) * 3), viMask, attribGatherW);
|
||||
|
||||
pSrcBase += sizeof(float) * 4;
|
||||
pDstBase += sizeof(typename SIMD_T::Float) * 4;
|
||||
}
|
||||
remainingVerts -= SimdWidth;
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
/// @brief Implements GS stage.
|
||||
/// @param pDC - pointer to draw context.
|
||||
|
|
@ -763,9 +785,7 @@ static void GeometryShaderStage(
|
|||
DRAW_CONTEXT *pDC,
|
||||
uint32_t workerId,
|
||||
PA_STATE& pa,
|
||||
void* pGsOut,
|
||||
void* pCutBuffer,
|
||||
void* pStreamCutBuffer,
|
||||
GsBuffers* pGsBuffers,
|
||||
uint32_t* pSoPrimData,
|
||||
#if USE_SIMD16_FRONTEND
|
||||
uint32_t numPrims_simd8,
|
||||
|
|
@ -779,25 +799,29 @@ static void GeometryShaderStage(
|
|||
const API_STATE& state = GetApiState(pDC);
|
||||
const SWR_GS_STATE* pState = &state.gsState;
|
||||
|
||||
SWR_ASSERT(pGsOut != nullptr, "GS output buffer should be initialized");
|
||||
SWR_ASSERT(pCutBuffer != nullptr, "GS output cut buffer should be initialized");
|
||||
static uint8_t sNullBuffer[1024] = { 0 };
|
||||
|
||||
tlsGsContext.pStream = (uint8_t*)pGsOut;
|
||||
tlsGsContext.pCutOrStreamIdBuffer = (uint8_t*)pCutBuffer;
|
||||
for (uint32_t i = 0; i < KNOB_SIMD_WIDTH; ++i)
|
||||
{
|
||||
tlsGsContext.pStreams[i] = pGsBuffers->pGsOut[i];
|
||||
}
|
||||
tlsGsContext.pVerts = (simdvector*)pGsBuffers->pGsIn;
|
||||
tlsGsContext.PrimitiveID = primID;
|
||||
|
||||
uint32_t numVertsPerPrim = NumVertsPerPrim(pa.binTopology, true);
|
||||
simdvector attrib[MAX_NUM_VERTS_PER_PRIM];
|
||||
|
||||
// assemble all attributes for the input primitive
|
||||
tlsGsContext.inputVertStride = pState->inputVertStride;
|
||||
for (uint32_t slot = 0; slot < pState->numInputAttribs; ++slot)
|
||||
{
|
||||
uint32_t srcAttribSlot = pState->srcVertexAttribOffset + slot;
|
||||
uint32_t attribSlot = pState->vertexAttribOffset + slot;
|
||||
pa.Assemble(attribSlot, attrib);
|
||||
pa.Assemble(srcAttribSlot, attrib);
|
||||
|
||||
for (uint32_t i = 0; i < numVertsPerPrim; ++i)
|
||||
{
|
||||
tlsGsContext.vert[i].attrib[VERTEX_ATTRIB_START_SLOT + slot] = attrib[i];
|
||||
tlsGsContext.pVerts[attribSlot + pState->inputVertStride * i] = attrib[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -805,15 +829,9 @@ static void GeometryShaderStage(
|
|||
pa.Assemble(VERTEX_POSITION_SLOT, attrib);
|
||||
for (uint32_t i = 0; i < numVertsPerPrim; ++i)
|
||||
{
|
||||
tlsGsContext.vert[i].attrib[VERTEX_POSITION_SLOT] = attrib[i];
|
||||
tlsGsContext.pVerts[VERTEX_POSITION_SLOT + pState->inputVertStride * i] = attrib[i];
|
||||
}
|
||||
|
||||
#if USE_SIMD16_FRONTEND
|
||||
const GsBufferInfo<simd16vertex, KNOB_SIMD16_WIDTH> bufferInfo(state.gsState);
|
||||
#else
|
||||
const GsBufferInfo<simdvertex, KNOB_SIMD_WIDTH> bufferInfo(state.gsState);
|
||||
#endif
|
||||
|
||||
// record valid prims from the frontend to avoid over binning the newly generated
|
||||
// prims from the GS
|
||||
#if USE_SIMD16_FRONTEND
|
||||
|
|
@ -830,8 +848,10 @@ static void GeometryShaderStage(
|
|||
// execute the geometry shader
|
||||
state.pfnGsFunc(GetPrivateState(pDC), &tlsGsContext);
|
||||
|
||||
tlsGsContext.pStream += bufferInfo.vertexInstanceStride;
|
||||
tlsGsContext.pCutOrStreamIdBuffer += bufferInfo.cutInstanceStride;
|
||||
for (uint32_t i = 0; i < KNOB_SIMD_WIDTH; ++i)
|
||||
{
|
||||
tlsGsContext.pStreams[i] += pState->allocationSize;
|
||||
}
|
||||
}
|
||||
|
||||
// set up new binner and state for the GS output topology
|
||||
|
|
@ -865,32 +885,48 @@ static void GeometryShaderStage(
|
|||
// foreach input prim:
|
||||
// - setup a new PA based on the emitted verts for that prim
|
||||
// - loop over the new verts, calling PA to assemble each prim
|
||||
uint32_t* pVertexCount = (uint32_t*)&tlsGsContext.vertexCount;
|
||||
uint32_t* pPrimitiveId = (uint32_t*)&primID;
|
||||
|
||||
uint32_t totalPrimsGenerated = 0;
|
||||
for (uint32_t inputPrim = 0; inputPrim < numInputPrims; ++inputPrim)
|
||||
{
|
||||
uint8_t* pInstanceBase = (uint8_t*)pGsOut + inputPrim * bufferInfo.vertexPrimitiveStride;
|
||||
uint8_t* pCutBufferBase = (uint8_t*)pCutBuffer + inputPrim * bufferInfo.cutPrimitiveStride;
|
||||
uint8_t* pInstanceBase = (uint8_t*)pGsBuffers->pGsOut[inputPrim];
|
||||
|
||||
// Vertex count is either emitted by shader or static
|
||||
uint32_t vertexCount = 0;
|
||||
if (pState->staticVertexCount)
|
||||
{
|
||||
vertexCount = pState->staticVertexCount;
|
||||
}
|
||||
else
|
||||
{
|
||||
// If emitted in shader, it should be the stored in the first dword of the output buffer
|
||||
vertexCount = *(uint32_t*)pInstanceBase;
|
||||
}
|
||||
|
||||
for (uint32_t instance = 0; instance < pState->instanceCount; ++instance)
|
||||
{
|
||||
uint32_t numEmittedVerts = pVertexCount[inputPrim];
|
||||
uint32_t numEmittedVerts = vertexCount;
|
||||
if (numEmittedVerts == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
uint8_t* pBase = pInstanceBase + instance * bufferInfo.vertexInstanceStride;
|
||||
uint8_t* pCutBase = pCutBufferBase + instance * bufferInfo.cutInstanceStride;
|
||||
uint8_t* pBase = pInstanceBase + instance * pState->allocationSize;
|
||||
uint8_t* pCutBase = pState->controlDataSize == 0 ? &sNullBuffer[0] : pBase + pState->controlDataOffset;
|
||||
uint8_t* pVertexBaseAOS = pBase + pState->outputVertexOffset;
|
||||
|
||||
#if USE_SIMD16_FRONTEND
|
||||
TransposeSOAtoAOS<SIMD512, KNOB_SIMD16_WIDTH>((uint8_t*)pGsBuffers->pGsTransposed, pVertexBaseAOS, vertexCount, pState->outputVertexSize);
|
||||
#else
|
||||
TransposeSOAtoAOS<SIMD256, KNOB_SIMD_WIDTH>((uint8_t*)pGsBuffers->pGsTransposed, pVertexBaseAOS, vertexCount, pState->outputVertexSize);
|
||||
#endif
|
||||
|
||||
uint32_t numAttribs = state.feNumAttributes;
|
||||
|
||||
for (uint32_t stream = 0; stream < MAX_SO_STREAMS; ++stream)
|
||||
{
|
||||
bool processCutVerts = false;
|
||||
|
||||
uint8_t* pCutBuffer = pCutBase;
|
||||
|
||||
// assign default stream ID, only relevant when GS is outputting a single stream
|
||||
|
|
@ -910,16 +946,16 @@ static void GeometryShaderStage(
|
|||
}
|
||||
|
||||
// multi-stream output, need to translate StreamID buffer to a cut buffer
|
||||
ProcessStreamIdBuffer(stream, pCutBase, numEmittedVerts, (uint8_t*)pStreamCutBuffer);
|
||||
pCutBuffer = (uint8_t*)pStreamCutBuffer;
|
||||
ProcessStreamIdBuffer(stream, pCutBase, numEmittedVerts, (uint8_t*)pGsBuffers->pStreamCutBuffer);
|
||||
pCutBuffer = (uint8_t*)pGsBuffers->pStreamCutBuffer;
|
||||
processCutVerts = false;
|
||||
}
|
||||
|
||||
#if USE_SIMD16_FRONTEND
|
||||
PA_STATE_CUT gsPa(pDC, pBase, numEmittedVerts, SWR_VTX_NUM_SLOTS, reinterpret_cast<simd16mask *>(pCutBuffer), numEmittedVerts, numAttribs, pState->outputTopology, processCutVerts);
|
||||
PA_STATE_CUT gsPa(pDC, (uint8_t*)pGsBuffers->pGsTransposed, numEmittedVerts, pState->outputVertexSize, reinterpret_cast<simd16mask *>(pCutBuffer), numEmittedVerts, numAttribs, pState->outputTopology, processCutVerts);
|
||||
|
||||
#else
|
||||
PA_STATE_CUT gsPa(pDC, pBase, numEmittedVerts, SWR_VTX_NUM_SLOTS, pCutBuffer, numEmittedVerts, numAttribs, pState->outputTopology, processCutVerts);
|
||||
PA_STATE_CUT gsPa(pDC, (uint8_t*)pGsBuffers->pGsTransposed, numEmittedVerts, pState->outputVertexSize, pCutBuffer, numEmittedVerts, numAttribs, pState->outputTopology, processCutVerts);
|
||||
|
||||
#endif
|
||||
while (gsPa.GetNextStreamOutput())
|
||||
|
|
@ -979,42 +1015,40 @@ static void GeometryShaderStage(
|
|||
/// @param state - API state
|
||||
/// @param ppGsOut - pointer to GS output buffer allocation
|
||||
/// @param ppCutBuffer - pointer to GS output cut buffer allocation
|
||||
template<typename SIMDVERTEX, uint32_t SIMD_WIDTH>
|
||||
static INLINE void AllocateGsBuffers(DRAW_CONTEXT* pDC, const API_STATE& state, void** ppGsOut, void** ppCutBuffer,
|
||||
void **ppStreamCutBuffer)
|
||||
template<typename SIMD_T, uint32_t SIMD_WIDTH>
|
||||
static INLINE void AllocateGsBuffers(DRAW_CONTEXT* pDC, const API_STATE& state, uint32_t vertsPerPrim, GsBuffers* pGsBuffers)
|
||||
{
|
||||
auto pArena = pDC->pArena;
|
||||
SWR_ASSERT(pArena != nullptr);
|
||||
SWR_ASSERT(state.gsState.gsEnable);
|
||||
|
||||
// allocate arena space to hold GS output verts
|
||||
// @todo pack attribs
|
||||
// @todo support multiple streams
|
||||
const SWR_GS_STATE& gsState = state.gsState;
|
||||
|
||||
const GsBufferInfo<SIMDVERTEX, SIMD_WIDTH> bufferInfo(state.gsState);
|
||||
// Allocate storage for vertex inputs
|
||||
uint32_t vertexInBufferSize = gsState.inputVertStride * sizeof(simdvector) * vertsPerPrim;
|
||||
pGsBuffers->pGsIn = (uint8_t*)pArena->AllocAligned(vertexInBufferSize, 32);
|
||||
|
||||
const uint32_t vertexBufferSize = state.gsState.instanceCount * bufferInfo.vertexInstanceStride;
|
||||
// Allocate arena space to hold GS output verts
|
||||
const uint32_t vertexBufferSize = gsState.instanceCount * gsState.allocationSize;
|
||||
|
||||
*ppGsOut = pArena->AllocAligned(vertexBufferSize, SIMD_WIDTH * sizeof(float));
|
||||
for (uint32_t i = 0; i < KNOB_SIMD_WIDTH; ++i)
|
||||
{
|
||||
pGsBuffers->pGsOut[i] = (uint8_t*)pArena->AllocAligned(vertexBufferSize, 32);
|
||||
}
|
||||
|
||||
// allocate arena space to hold cut or streamid buffer, which is essentially a bitfield sized to the
|
||||
// maximum vertex output as defined by the GS state, per SIMD lane, per GS instance
|
||||
// Allocate storage for transposed GS output
|
||||
uint32_t numSimdBatches = AlignUp(gsState.maxNumVerts, SIMD_WIDTH) / SIMD_WIDTH;
|
||||
uint32_t transposedBufferSize = numSimdBatches * gsState.outputVertexSize * sizeof(typename SIMD_T::Vec4);
|
||||
pGsBuffers->pGsTransposed = (uint8_t*)pArena->AllocAligned(transposedBufferSize, 32);
|
||||
|
||||
// allocate space for temporary per-stream cut buffer if multi-stream is enabled
|
||||
// Allocate storage to hold temporary stream->cut buffer, if necessary
|
||||
if (state.gsState.isSingleStream)
|
||||
{
|
||||
const uint32_t cutBufferSize = state.gsState.instanceCount * bufferInfo.cutInstanceStride;
|
||||
|
||||
*ppCutBuffer = pArena->AllocAligned(cutBufferSize, SIMD_WIDTH * sizeof(float));
|
||||
*ppStreamCutBuffer = nullptr;
|
||||
pGsBuffers->pStreamCutBuffer = nullptr;
|
||||
}
|
||||
else
|
||||
{
|
||||
const uint32_t cutBufferSize = state.gsState.instanceCount * bufferInfo.cutInstanceStride;
|
||||
const uint32_t streamCutBufferSize = state.gsState.instanceCount * bufferInfo.streamCutInstanceStride;
|
||||
|
||||
*ppCutBuffer = pArena->AllocAligned(cutBufferSize, SIMD_WIDTH * sizeof(float));
|
||||
*ppStreamCutBuffer = pArena->AllocAligned(streamCutBufferSize, SIMD_WIDTH * sizeof(float));
|
||||
pGsBuffers->pStreamCutBuffer = (uint8_t*)pArena->AllocAligned(AlignUp(gsState.maxNumVerts * 2, 32), 32);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -1062,9 +1096,7 @@ static void TessellationStages(
|
|||
DRAW_CONTEXT *pDC,
|
||||
uint32_t workerId,
|
||||
PA_STATE& pa,
|
||||
void* pGsOut,
|
||||
void* pCutBuffer,
|
||||
void* pCutStreamBuffer,
|
||||
GsBuffers* pGsBuffers,
|
||||
uint32_t* pSoPrimData,
|
||||
#if USE_SIMD16_FRONTEND
|
||||
uint32_t numPrims_simd8,
|
||||
|
|
@ -1264,17 +1296,16 @@ static void TessellationStages(
|
|||
{
|
||||
#if USE_SIMD16_FRONTEND
|
||||
tessPa.useAlternateOffset = false;
|
||||
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, tessPa, pGsOut, pCutBuffer, pCutStreamBuffer, pSoPrimData, numPrims_lo, primID_lo);
|
||||
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, tessPa, pGsBuffers, pSoPrimData, numPrims_lo, primID_lo);
|
||||
|
||||
if (numPrims_hi)
|
||||
{
|
||||
tessPa.useAlternateOffset = true;
|
||||
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, tessPa, pGsOut, pCutBuffer, pCutStreamBuffer, pSoPrimData, numPrims_hi, primID_hi);
|
||||
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, tessPa, pGsBuffers, pSoPrimData, numPrims_hi, primID_hi);
|
||||
}
|
||||
#else
|
||||
GeometryShaderStage<HasStreamOutT, HasRastT>(
|
||||
pDC, workerId, tessPa, pGsOut, pCutBuffer, pCutStreamBuffer, pSoPrimData,
|
||||
_simd_set1_epi32(dsContext.PrimitiveID));
|
||||
pDC, workerId, tessPa, pGsBuffers, pSoPrimData, _simd_set1_epi32(dsContext.PrimitiveID));
|
||||
#endif
|
||||
}
|
||||
else
|
||||
|
|
@ -1408,15 +1439,13 @@ void ProcessDraw(
|
|||
uint32_t numPrims = GetNumPrims(state.topology, work.numVerts);
|
||||
#endif
|
||||
|
||||
void* pGsOut = nullptr;
|
||||
void* pCutBuffer = nullptr;
|
||||
void* pStreamCutBuffer = nullptr;
|
||||
GsBuffers gsBuffers;
|
||||
if (HasGeometryShaderT::value)
|
||||
{
|
||||
#if USE_SIMD16_FRONTEND
|
||||
AllocateGsBuffers<simd16vertex, KNOB_SIMD16_WIDTH>(pDC, state, &pGsOut, &pCutBuffer, &pStreamCutBuffer);
|
||||
AllocateGsBuffers<SIMD512, KNOB_SIMD16_WIDTH>(pDC, state, NumVertsPerPrim(state.topology, true), &gsBuffers);
|
||||
#else
|
||||
AllocateGsBuffers<simdvertex, KNOB_SIMD_WIDTH>(pDC, state, &pGsOut, &pCutBuffer, &pStreamCutBuffer);
|
||||
AllocateGsBuffers<SIMD256, KNOB_SIMD_WIDTH>(pDC, state, NumVertsPerPrim(state.topology, true), &gsBuffers);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
|
@ -1672,23 +1701,23 @@ void ProcessDraw(
|
|||
if (HasTessellationT::value)
|
||||
{
|
||||
pa.useAlternateOffset = false;
|
||||
TessellationStages<HasGeometryShaderT, HasStreamOutT, HasRastT>(pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, numPrims_lo, primID_lo);
|
||||
TessellationStages<HasGeometryShaderT, HasStreamOutT, HasRastT>(pDC, workerId, pa, &gsBuffers, pSoPrimData, numPrims_lo, primID_lo);
|
||||
|
||||
if (numPrims_hi)
|
||||
{
|
||||
pa.useAlternateOffset = true;
|
||||
TessellationStages<HasGeometryShaderT, HasStreamOutT, HasRastT>(pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, numPrims_hi, primID_hi);
|
||||
TessellationStages<HasGeometryShaderT, HasStreamOutT, HasRastT>(pDC, workerId, pa, &gsBuffers, pSoPrimData, numPrims_hi, primID_hi);
|
||||
}
|
||||
}
|
||||
else if (HasGeometryShaderT::value)
|
||||
{
|
||||
pa.useAlternateOffset = false;
|
||||
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, numPrims_lo, primID_lo);
|
||||
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, pa, &gsBuffers, pSoPrimData, numPrims_lo, primID_lo);
|
||||
|
||||
if (numPrims_hi)
|
||||
{
|
||||
pa.useAlternateOffset = true;
|
||||
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, numPrims_hi, primID_hi);
|
||||
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, pa, &gsBuffers, pSoPrimData, numPrims_hi, primID_hi);
|
||||
}
|
||||
}
|
||||
else
|
||||
|
|
@ -1847,12 +1876,12 @@ void ProcessDraw(
|
|||
if (HasTessellationT::value)
|
||||
{
|
||||
TessellationStages<HasGeometryShaderT, HasStreamOutT, HasRastT>(
|
||||
pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, pa.GetPrimID(work.startPrimID));
|
||||
pDC, workerId, pa, &gsBuffers, pSoPrimData, pa.GetPrimID(work.startPrimID));
|
||||
}
|
||||
else if (HasGeometryShaderT::value)
|
||||
{
|
||||
GeometryShaderStage<HasStreamOutT, HasRastT>(
|
||||
pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, pa.GetPrimID(work.startPrimID));
|
||||
pDC, workerId, pa, &gsBuffers, pSoPrimData, pa.GetPrimID(work.startPrimID));
|
||||
}
|
||||
else
|
||||
{
|
||||
|
|
|
|||
|
|
@ -301,13 +301,12 @@ struct SWR_DS_CONTEXT
|
|||
/////////////////////////////////////////////////////////////////////////
|
||||
struct SWR_GS_CONTEXT
|
||||
{
|
||||
simdvertex vert[MAX_NUM_VERTS_PER_PRIM]; // IN: input primitive data for SIMD prims
|
||||
simdscalari PrimitiveID; // IN: input primitive ID generated from the draw call
|
||||
uint32_t InstanceID; // IN: input instance ID
|
||||
simdscalari mask; // IN: Active mask for shader
|
||||
uint8_t* pStream; // OUT: output stream (contains vertices for all output streams)
|
||||
uint8_t* pCutOrStreamIdBuffer; // OUT: cut or stream id buffer
|
||||
simdscalari vertexCount; // OUT: num vertices emitted per SIMD lane
|
||||
simdvector* pVerts; // IN: input primitive data for SIMD prims
|
||||
uint32_t inputVertStride; // IN: input vertex stride, in attributes
|
||||
simdscalari PrimitiveID; // IN: input primitive ID generated from the draw call
|
||||
uint32_t InstanceID; // IN: input instance ID
|
||||
simdscalari mask; // IN: Active mask for shader
|
||||
uint8_t* pStreams[KNOB_SIMD_WIDTH]; // OUT: output stream (contains vertices for all output streams)
|
||||
};
|
||||
|
||||
struct PixelPositions
|
||||
|
|
@ -714,30 +713,56 @@ struct SWR_GS_STATE
|
|||
{
|
||||
bool gsEnable;
|
||||
|
||||
// number of input attributes per vertex. used by the frontend to
|
||||
// Number of input attributes per vertex. Used by the frontend to
|
||||
// optimize assembling primitives for GS
|
||||
uint32_t numInputAttribs;
|
||||
|
||||
// output topology - can be point, tristrip, or linestrip
|
||||
// Stride of incoming verts in attributes
|
||||
uint32_t inputVertStride;
|
||||
|
||||
// Output topology - can be point, tristrip, or linestrip
|
||||
PRIMITIVE_TOPOLOGY outputTopology; // @llvm_enum
|
||||
|
||||
// maximum number of verts that can be emitted by a single instance of the GS
|
||||
// Maximum number of verts that can be emitted by a single instance of the GS
|
||||
uint32_t maxNumVerts;
|
||||
|
||||
// instance count
|
||||
// Instance count
|
||||
uint32_t instanceCount;
|
||||
|
||||
// if true, geometry shader emits a single stream, with separate cut buffer.
|
||||
// if false, geometry shader emits vertices for multiple streams to the stream buffer, with a separate StreamID buffer
|
||||
// If true, geometry shader emits a single stream, with separate cut buffer.
|
||||
// If false, geometry shader emits vertices for multiple streams to the stream buffer, with a separate StreamID buffer
|
||||
// to map vertices to streams
|
||||
bool isSingleStream;
|
||||
|
||||
// when single stream is enabled, singleStreamID dictates which stream is being output.
|
||||
// When single stream is enabled, singleStreamID dictates which stream is being output.
|
||||
// field ignored if isSingleStream is false
|
||||
uint32_t singleStreamID;
|
||||
|
||||
// Offset to the start of the attributes of the input vertices, in simdvector units
|
||||
// Total amount of memory to allocate for one instance of the shader output in bytes
|
||||
uint32_t allocationSize;
|
||||
|
||||
// Offset to the start of the attributes of the input vertices, in simdvector units, as read by the GS
|
||||
uint32_t vertexAttribOffset;
|
||||
|
||||
// Offset to the attributes as stored by the preceding shader stage.
|
||||
uint32_t srcVertexAttribOffset;
|
||||
|
||||
// Size of the control data section which contains cut or streamID data, in simdscalar units. Should be sized to handle
|
||||
// the maximum number of verts output by the GS. Can be 0 if there are no cuts or streamID bits.
|
||||
uint32_t controlDataSize;
|
||||
|
||||
// Offset to the control data section, in bytes
|
||||
uint32_t controlDataOffset;
|
||||
|
||||
// Total size of an output vertex, in simdvector units
|
||||
uint32_t outputVertexSize;
|
||||
|
||||
// Offset to the start of the vertex section, in bytes
|
||||
uint32_t outputVertexOffset;
|
||||
|
||||
// Set this to non-zero to indicate that the shader outputs a static number of verts. If zero, shader is
|
||||
// expected to store the final vertex count in the first dword of the gs output stream.
|
||||
uint32_t staticVertexCount;
|
||||
};
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -347,18 +347,20 @@ BuilderSWR::swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_ifac
|
|||
Value *attrib =
|
||||
LOAD(GEP(iface->pVtxAttribMap, {C(0), unwrap(attrib_index)}));
|
||||
|
||||
Value *pInput =
|
||||
LOAD(GEP(iface->pGsCtx,
|
||||
{C(0),
|
||||
C(SWR_GS_CONTEXT_vert),
|
||||
unwrap(vertex_index),
|
||||
C(0),
|
||||
attrib,
|
||||
unwrap(swizzle_index)}));
|
||||
Value *pVertex = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pVerts});
|
||||
Value *pInputVertStride = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_inputVertStride});
|
||||
|
||||
Value *pVector = ADD(MUL(unwrap(vertex_index), pInputVertStride), attrib);
|
||||
|
||||
Value *pInput = LOAD(GEP(pVertex, {pVector, unwrap(swizzle_index)}));
|
||||
|
||||
return wrap(pInput);
|
||||
}
|
||||
|
||||
// GS output stream layout
|
||||
#define VERTEX_COUNT_SIZE 32
|
||||
#define CONTROL_HEADER_SIZE (8*32)
|
||||
|
||||
void
|
||||
BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
|
||||
struct lp_build_tgsi_context * bld_base,
|
||||
|
|
@ -366,41 +368,19 @@ BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base
|
|||
LLVMValueRef emitted_vertices_vec)
|
||||
{
|
||||
swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
|
||||
SWR_GS_STATE *pGS = iface->pGsState;
|
||||
|
||||
IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
|
||||
|
||||
#if USE_SIMD16_FRONTEND
|
||||
const uint32_t simdVertexStride = sizeof(simdvertex) * 2;
|
||||
const uint32_t numSimdBatches = (pGS->maxNumVerts + (mVWidth * 2) - 1) / (mVWidth * 2);
|
||||
#else
|
||||
const uint32_t simdVertexStride = sizeof(simdvertex);
|
||||
const uint32_t numSimdBatches = (pGS->maxNumVerts + mVWidth - 1) / mVWidth;
|
||||
#endif
|
||||
const uint32_t inputPrimStride = numSimdBatches * simdVertexStride;
|
||||
const uint32_t headerSize = VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE;
|
||||
const uint32_t attribSize = 4 * sizeof(float);
|
||||
const uint32_t vertSize = attribSize * SWR_VTX_NUM_SLOTS;
|
||||
Value *pVertexOffset = MUL(unwrap(emitted_vertices_vec), VIMMED1(vertSize));
|
||||
|
||||
Value *pStream = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_pStream });
|
||||
Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
|
||||
Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
|
||||
Value *vMask = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_mask});
|
||||
Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, mVWidth));
|
||||
|
||||
Value *vOffsets = C({
|
||||
inputPrimStride * 0,
|
||||
inputPrimStride * 1,
|
||||
inputPrimStride * 2,
|
||||
inputPrimStride * 3,
|
||||
inputPrimStride * 4,
|
||||
inputPrimStride * 5,
|
||||
inputPrimStride * 6,
|
||||
inputPrimStride * 7 } );
|
||||
|
||||
#if USE_SIMD16_FRONTEND
|
||||
const uint32_t simdShift = log2(mVWidth * 2);
|
||||
Value *vSimdSlot = AND(unwrap(emitted_vertices_vec), (mVWidth * 2) - 1);
|
||||
#else
|
||||
const uint32_t simdShift = log2(mVWidth);
|
||||
Value *vSimdSlot = AND(unwrap(emitted_vertices_vec), mVWidth - 1);
|
||||
#endif
|
||||
Value *vVertexSlot = ASHR(unwrap(emitted_vertices_vec), simdShift);
|
||||
Value *pStack = STACKSAVE();
|
||||
Value *pTmpPtr = ALLOCA(mFP32Ty, C(4)); // used for dummy write for lane masking
|
||||
|
||||
for (uint32_t attrib = 0; attrib < iface->num_outputs; ++attrib) {
|
||||
uint32_t attribSlot = attrib;
|
||||
|
|
@ -420,46 +400,36 @@ BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base
|
|||
}
|
||||
}
|
||||
|
||||
#if USE_SIMD16_FRONTEND
|
||||
Value *vOffsetsAttrib =
|
||||
ADD(vOffsets, MUL(vVertexSlot, VIMMED1((uint32_t)sizeof(simdvertex) * 2)));
|
||||
vOffsetsAttrib =
|
||||
ADD(vOffsetsAttrib, VIMMED1((uint32_t)(attribSlot*sizeof(simdvector) * 2)));
|
||||
#else
|
||||
Value *vOffsetsAttrib =
|
||||
ADD(vOffsets, MUL(vVertexSlot, VIMMED1((uint32_t)sizeof(simdvertex))));
|
||||
vOffsetsAttrib =
|
||||
ADD(vOffsetsAttrib, VIMMED1((uint32_t)(attribSlot*sizeof(simdvector))));
|
||||
#endif
|
||||
vOffsetsAttrib =
|
||||
ADD(vOffsetsAttrib, MUL(vSimdSlot, VIMMED1((uint32_t)sizeof(float))));
|
||||
Value *pOutputOffset = ADD(pVertexOffset, VIMMED1(headerSize + attribSize * attribSlot)); // + sgvChannel ?
|
||||
|
||||
for (uint32_t channel = 0; channel < 4; ++channel) {
|
||||
Value *vPtrs = GEP(pStream, vOffsetsAttrib);
|
||||
Value *vData;
|
||||
for (uint32_t lane = 0; lane < mVWidth; ++lane) {
|
||||
Value *pLaneOffset = VEXTRACT(pOutputOffset, C(lane));
|
||||
Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
|
||||
Value *pStreamOffset = GEP(pStream, pLaneOffset);
|
||||
pStreamOffset = BITCAST(pStreamOffset, mFP32PtrTy);
|
||||
|
||||
if (attribSlot == VERTEX_SGV_SLOT)
|
||||
vData = LOAD(unwrap(outputs[attrib][0]));
|
||||
else
|
||||
vData = LOAD(unwrap(outputs[attrib][channel]));
|
||||
Value *pLaneMask = VEXTRACT(vMask1, C(lane));
|
||||
pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr);
|
||||
|
||||
if (attribSlot != VERTEX_SGV_SLOT ||
|
||||
sgvChannel == channel) {
|
||||
vPtrs = BITCAST(vPtrs,
|
||||
VectorType::get(PointerType::get(mFP32Ty, 0), 8));
|
||||
for (uint32_t channel = 0; channel < 4; ++channel) {
|
||||
Value *vData;
|
||||
|
||||
MASKED_SCATTER(vData, vPtrs, 32, vMask1);
|
||||
if (attribSlot == VERTEX_SGV_SLOT)
|
||||
vData = LOAD(unwrap(outputs[attrib][0]));
|
||||
else
|
||||
vData = LOAD(unwrap(outputs[attrib][channel]));
|
||||
|
||||
if (attribSlot != VERTEX_SGV_SLOT ||
|
||||
sgvChannel == channel) {
|
||||
vData = VEXTRACT(vData, C(lane));
|
||||
STORE(vData, pStreamOffset);
|
||||
}
|
||||
pStreamOffset = GEP(pStreamOffset, C(1));
|
||||
}
|
||||
|
||||
#if USE_SIMD16_FRONTEND
|
||||
vOffsetsAttrib =
|
||||
ADD(vOffsetsAttrib, VIMMED1((uint32_t)sizeof(simdscalar) * 2));
|
||||
#else
|
||||
vOffsetsAttrib =
|
||||
ADD(vOffsetsAttrib, VIMMED1((uint32_t)sizeof(simdscalar)));
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
STACKRESTORE(pStack);
|
||||
}
|
||||
|
||||
void
|
||||
|
|
@ -469,12 +439,9 @@ BuilderSWR::swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_ba
|
|||
LLVMValueRef emitted_prims_vec)
|
||||
{
|
||||
swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
|
||||
SWR_GS_STATE *pGS = iface->pGsState;
|
||||
|
||||
IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
|
||||
|
||||
Value *pCutBuffer =
|
||||
LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pCutOrStreamIdBuffer});
|
||||
Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
|
||||
Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
|
||||
|
||||
|
|
@ -496,31 +463,29 @@ BuilderSWR::swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_ba
|
|||
mask = AND(mask, cmpMask);
|
||||
vMask1 = TRUNC(mask, VectorType::get(mInt1Ty, 8));
|
||||
|
||||
const uint32_t cutPrimStride =
|
||||
(pGS->maxNumVerts + JM()->mVWidth - 1) / JM()->mVWidth;
|
||||
Value *vOffsets = C({
|
||||
(uint32_t)(cutPrimStride * 0),
|
||||
(uint32_t)(cutPrimStride * 1),
|
||||
(uint32_t)(cutPrimStride * 2),
|
||||
(uint32_t)(cutPrimStride * 3),
|
||||
(uint32_t)(cutPrimStride * 4),
|
||||
(uint32_t)(cutPrimStride * 5),
|
||||
(uint32_t)(cutPrimStride * 6),
|
||||
(uint32_t)(cutPrimStride * 7) } );
|
||||
|
||||
vCount = SUB(vCount, VIMMED1(1));
|
||||
Value *vOffset = ADD(UDIV(vCount, VIMMED1(8)), vOffsets);
|
||||
Value *vOffset = ADD(UDIV(vCount, VIMMED1(8)), VIMMED1(VERTEX_COUNT_SIZE));
|
||||
Value *vValue = SHL(VIMMED1(1), UREM(vCount, VIMMED1(8)));
|
||||
|
||||
vValue = TRUNC(vValue, VectorType::get(mInt8Ty, 8));
|
||||
|
||||
Value *vPtrs = GEP(pCutBuffer, vOffset);
|
||||
vPtrs =
|
||||
BITCAST(vPtrs, VectorType::get(PointerType::get(mInt8Ty, 0), JM()->mVWidth));
|
||||
Value *pStack = STACKSAVE();
|
||||
Value *pTmpPtr = ALLOCA(mInt8Ty, C(4)); // used for dummy read/write for lane masking
|
||||
|
||||
Value *vGather = MASKED_GATHER(vPtrs, 32, vMask1);
|
||||
vValue = OR(vGather, vValue);
|
||||
MASKED_SCATTER(vValue, vPtrs, 32, vMask1);
|
||||
for (uint32_t lane = 0; lane < mVWidth; ++lane) {
|
||||
Value *vLaneOffset = VEXTRACT(vOffset, C(lane));
|
||||
Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
|
||||
Value *pStreamOffset = GEP(pStream, vLaneOffset);
|
||||
|
||||
Value *pLaneMask = VEXTRACT(vMask1, C(lane));
|
||||
pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr);
|
||||
|
||||
Value *vVal = LOAD(pStreamOffset);
|
||||
vVal = OR(vVal, VEXTRACT(vValue, C(lane)));
|
||||
STORE(vVal, pStreamOffset);
|
||||
}
|
||||
|
||||
STACKRESTORE(pStack);
|
||||
}
|
||||
|
||||
void
|
||||
|
|
@ -533,7 +498,14 @@ BuilderSWR::swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
|
|||
|
||||
IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
|
||||
|
||||
STORE(unwrap(total_emitted_vertices_vec), iface->pGsCtx, {0, SWR_GS_CONTEXT_vertexCount});
|
||||
// Store emit count to each output stream in the first DWORD
|
||||
for (uint32_t lane = 0; lane < mVWidth; ++lane)
|
||||
{
|
||||
Value* pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
|
||||
pStream = BITCAST(pStream, mInt32PtrTy);
|
||||
Value* pLaneCount = VEXTRACT(unwrap(total_emitted_vertices_vec), C(lane));
|
||||
STORE(pLaneCount, pStream);
|
||||
}
|
||||
}
|
||||
|
||||
PFN_GS_FUNC
|
||||
|
|
@ -542,6 +514,8 @@ BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key)
|
|||
SWR_GS_STATE *pGS = &ctx->gs->gsState;
|
||||
struct tgsi_shader_info *info = &ctx->gs->info.base;
|
||||
|
||||
memset(pGS, 0, sizeof(*pGS));
|
||||
|
||||
pGS->gsEnable = true;
|
||||
|
||||
pGS->numInputAttribs = info->num_inputs;
|
||||
|
|
@ -555,6 +529,18 @@ BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key)
|
|||
pGS->singleStreamID = 0;
|
||||
|
||||
pGS->vertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize
|
||||
pGS->srcVertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize
|
||||
pGS->inputVertStride = pGS->numInputAttribs + pGS->vertexAttribOffset;
|
||||
pGS->outputVertexSize = SWR_VTX_NUM_SLOTS;
|
||||
pGS->controlDataSize = 8; // GS ouputs max of 8 32B units
|
||||
pGS->controlDataOffset = VERTEX_COUNT_SIZE;
|
||||
pGS->outputVertexOffset = pGS->controlDataOffset + CONTROL_HEADER_SIZE;
|
||||
|
||||
pGS->allocationSize =
|
||||
VERTEX_COUNT_SIZE + // vertex count
|
||||
CONTROL_HEADER_SIZE + // control header
|
||||
(SWR_VTX_NUM_SLOTS * 16) * // sizeof vertex
|
||||
pGS->maxNumVerts; // num verts
|
||||
|
||||
struct swr_geometry_shader *gs = ctx->gs;
|
||||
|
||||
|
|
@ -635,10 +621,11 @@ BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key)
|
|||
lp_type_float_vec(32, 32 * 8), wrap(mask_val));
|
||||
|
||||
// zero out cut buffer so we can load/modify/store bits
|
||||
MEMSET(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_pCutOrStreamIdBuffer}),
|
||||
C((char)0),
|
||||
pGS->instanceCount * ((pGS->maxNumVerts + 7) / 8) * JM()->mVWidth,
|
||||
sizeof(float) * KNOB_SIMD_WIDTH);
|
||||
for (uint32_t lane = 0; lane < mVWidth; ++lane)
|
||||
{
|
||||
Value* pStream = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
|
||||
MEMSET(pStream, C((char)0), VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE, sizeof(float) * KNOB_SIMD_WIDTH);
|
||||
}
|
||||
|
||||
struct swr_gs_llvm_iface gs_iface;
|
||||
gs_iface.base.fetch_input = ::swr_gs_llvm_fetch_input;
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue