swr/rast: New GS state/context API

One piglit regression, which was a false pass:
  spec@glsl-1.50@execution@geometry@dynamic_input_array_index

Reviewed-by: Bruce Cherniak <bruce.cherniak@intel.com>
This commit is contained in:
Tim Rowley 2017-09-11 17:29:12 -05:00
parent 41565ddf7a
commit cd6e91d3a2
3 changed files with 259 additions and 218 deletions

View file

@ -710,46 +710,68 @@ void ProcessStreamIdBuffer(uint32_t stream, uint8_t* pStreamIdBase, uint32_t num
THREAD SWR_GS_CONTEXT tlsGsContext;
template<typename SIMDVERTEX, uint32_t SIMD_WIDTH>
struct GsBufferInfo
// Buffers that are allocated if GS is enabled
struct GsBuffers
{
GsBufferInfo(const SWR_GS_STATE &gsState)
{
const uint32_t vertexCount = gsState.maxNumVerts;
const uint32_t vertexStride = sizeof(SIMDVERTEX);
const uint32_t numSimdBatches = (vertexCount + SIMD_WIDTH - 1) / SIMD_WIDTH;
vertexPrimitiveStride = vertexStride * numSimdBatches;
vertexInstanceStride = vertexPrimitiveStride * SIMD_WIDTH;
if (gsState.isSingleStream)
{
cutPrimitiveStride = (vertexCount + 7) / 8;
cutInstanceStride = cutPrimitiveStride * SIMD_WIDTH;
streamCutPrimitiveStride = 0;
streamCutInstanceStride = 0;
}
else
{
cutPrimitiveStride = AlignUp(vertexCount * 2 / 8, 4);
cutInstanceStride = cutPrimitiveStride * SIMD_WIDTH;
streamCutPrimitiveStride = (vertexCount + 7) / 8;
streamCutInstanceStride = streamCutPrimitiveStride * SIMD_WIDTH;
}
}
uint32_t vertexPrimitiveStride;
uint32_t vertexInstanceStride;
uint32_t cutPrimitiveStride;
uint32_t cutInstanceStride;
uint32_t streamCutPrimitiveStride;
uint32_t streamCutInstanceStride;
uint8_t* pGsIn;
uint8_t* pGsOut[KNOB_SIMD_WIDTH];
uint8_t* pGsTransposed;
void* pStreamCutBuffer;
};
//////////////////////////////////////////////////////////////////////////
/// @brief Transposes GS output from SOA to AOS to feed the primitive assembler
/// @param pDst - Destination buffer in AOS form for the current SIMD width, fed into the primitive assembler
/// @param pSrc - Buffer of vertices in SOA form written by the geometry shader
/// @param numVerts - Number of vertices outputted by the GS
/// @param numAttribs - Number of attributes per vertex
template<typename SIMD_T, uint32_t SimdWidth>
void TransposeSOAtoAOS(uint8_t* pDst, uint8_t* pSrc, uint32_t numVerts, uint32_t numAttribs)
{
uint32_t srcVertexStride = numAttribs * sizeof(float) * 4;
uint32_t dstVertexStride = numAttribs * sizeof(typename SIMD_T::Float) * 4;
OSALIGNSIMD16(uint32_t) gatherOffsets[SimdWidth];
for (uint32_t i = 0; i < SimdWidth; ++i)
{
gatherOffsets[i] = srcVertexStride * i;
}
auto vGatherOffsets = SIMD_T::load_si((typename SIMD_T::Integer*)&gatherOffsets[0]);
uint32_t numSimd = AlignUp(numVerts, SimdWidth) / SimdWidth;
uint32_t remainingVerts = numVerts;
for (uint32_t s = 0; s < numSimd; ++s)
{
uint8_t* pSrcBase = pSrc + s * srcVertexStride * SimdWidth;
uint8_t* pDstBase = pDst + s * dstVertexStride;
// Compute mask to prevent src overflow
uint32_t mask = std::min(remainingVerts, SimdWidth);
mask = GenMask(mask);
auto vMask = SIMD_T::vmask_ps(mask);
auto viMask = SIMD_T::castps_si(vMask);
for (uint32_t a = 0; a < numAttribs; ++a)
{
auto attribGatherX = SIMD_T::template mask_i32gather_ps<typename SIMD_T::ScaleFactor(1)>(SIMD_T::setzero_ps(), (const float*)pSrcBase, vGatherOffsets, vMask);
auto attribGatherY = SIMD_T::template mask_i32gather_ps<typename SIMD_T::ScaleFactor(1)>(SIMD_T::setzero_ps(), (const float*)(pSrcBase + sizeof(float)), vGatherOffsets, vMask);
auto attribGatherZ = SIMD_T::template mask_i32gather_ps<typename SIMD_T::ScaleFactor(1)>(SIMD_T::setzero_ps(), (const float*)(pSrcBase + sizeof(float) * 2), vGatherOffsets, vMask);
auto attribGatherW = SIMD_T::template mask_i32gather_ps<typename SIMD_T::ScaleFactor(1)>(SIMD_T::setzero_ps(), (const float*)(pSrcBase + sizeof(float) * 3), vGatherOffsets, vMask);
SIMD_T::maskstore_ps((float*)pDstBase, viMask, attribGatherX);
SIMD_T::maskstore_ps((float*)(pDstBase + sizeof(typename SIMD_T::Float)), viMask, attribGatherY);
SIMD_T::maskstore_ps((float*)(pDstBase + sizeof(typename SIMD_T::Float) * 2), viMask, attribGatherZ);
SIMD_T::maskstore_ps((float*)(pDstBase + sizeof(typename SIMD_T::Float) * 3), viMask, attribGatherW);
pSrcBase += sizeof(float) * 4;
pDstBase += sizeof(typename SIMD_T::Float) * 4;
}
remainingVerts -= SimdWidth;
}
}
//////////////////////////////////////////////////////////////////////////
/// @brief Implements GS stage.
/// @param pDC - pointer to draw context.
@ -763,9 +785,7 @@ static void GeometryShaderStage(
DRAW_CONTEXT *pDC,
uint32_t workerId,
PA_STATE& pa,
void* pGsOut,
void* pCutBuffer,
void* pStreamCutBuffer,
GsBuffers* pGsBuffers,
uint32_t* pSoPrimData,
#if USE_SIMD16_FRONTEND
uint32_t numPrims_simd8,
@ -779,25 +799,29 @@ static void GeometryShaderStage(
const API_STATE& state = GetApiState(pDC);
const SWR_GS_STATE* pState = &state.gsState;
SWR_ASSERT(pGsOut != nullptr, "GS output buffer should be initialized");
SWR_ASSERT(pCutBuffer != nullptr, "GS output cut buffer should be initialized");
static uint8_t sNullBuffer[1024] = { 0 };
tlsGsContext.pStream = (uint8_t*)pGsOut;
tlsGsContext.pCutOrStreamIdBuffer = (uint8_t*)pCutBuffer;
for (uint32_t i = 0; i < KNOB_SIMD_WIDTH; ++i)
{
tlsGsContext.pStreams[i] = pGsBuffers->pGsOut[i];
}
tlsGsContext.pVerts = (simdvector*)pGsBuffers->pGsIn;
tlsGsContext.PrimitiveID = primID;
uint32_t numVertsPerPrim = NumVertsPerPrim(pa.binTopology, true);
simdvector attrib[MAX_NUM_VERTS_PER_PRIM];
// assemble all attributes for the input primitive
tlsGsContext.inputVertStride = pState->inputVertStride;
for (uint32_t slot = 0; slot < pState->numInputAttribs; ++slot)
{
uint32_t srcAttribSlot = pState->srcVertexAttribOffset + slot;
uint32_t attribSlot = pState->vertexAttribOffset + slot;
pa.Assemble(attribSlot, attrib);
pa.Assemble(srcAttribSlot, attrib);
for (uint32_t i = 0; i < numVertsPerPrim; ++i)
{
tlsGsContext.vert[i].attrib[VERTEX_ATTRIB_START_SLOT + slot] = attrib[i];
tlsGsContext.pVerts[attribSlot + pState->inputVertStride * i] = attrib[i];
}
}
@ -805,15 +829,9 @@ static void GeometryShaderStage(
pa.Assemble(VERTEX_POSITION_SLOT, attrib);
for (uint32_t i = 0; i < numVertsPerPrim; ++i)
{
tlsGsContext.vert[i].attrib[VERTEX_POSITION_SLOT] = attrib[i];
tlsGsContext.pVerts[VERTEX_POSITION_SLOT + pState->inputVertStride * i] = attrib[i];
}
#if USE_SIMD16_FRONTEND
const GsBufferInfo<simd16vertex, KNOB_SIMD16_WIDTH> bufferInfo(state.gsState);
#else
const GsBufferInfo<simdvertex, KNOB_SIMD_WIDTH> bufferInfo(state.gsState);
#endif
// record valid prims from the frontend to avoid over binning the newly generated
// prims from the GS
#if USE_SIMD16_FRONTEND
@ -830,8 +848,10 @@ static void GeometryShaderStage(
// execute the geometry shader
state.pfnGsFunc(GetPrivateState(pDC), &tlsGsContext);
tlsGsContext.pStream += bufferInfo.vertexInstanceStride;
tlsGsContext.pCutOrStreamIdBuffer += bufferInfo.cutInstanceStride;
for (uint32_t i = 0; i < KNOB_SIMD_WIDTH; ++i)
{
tlsGsContext.pStreams[i] += pState->allocationSize;
}
}
// set up new binner and state for the GS output topology
@ -865,32 +885,48 @@ static void GeometryShaderStage(
// foreach input prim:
// - setup a new PA based on the emitted verts for that prim
// - loop over the new verts, calling PA to assemble each prim
uint32_t* pVertexCount = (uint32_t*)&tlsGsContext.vertexCount;
uint32_t* pPrimitiveId = (uint32_t*)&primID;
uint32_t totalPrimsGenerated = 0;
for (uint32_t inputPrim = 0; inputPrim < numInputPrims; ++inputPrim)
{
uint8_t* pInstanceBase = (uint8_t*)pGsOut + inputPrim * bufferInfo.vertexPrimitiveStride;
uint8_t* pCutBufferBase = (uint8_t*)pCutBuffer + inputPrim * bufferInfo.cutPrimitiveStride;
uint8_t* pInstanceBase = (uint8_t*)pGsBuffers->pGsOut[inputPrim];
// Vertex count is either emitted by shader or static
uint32_t vertexCount = 0;
if (pState->staticVertexCount)
{
vertexCount = pState->staticVertexCount;
}
else
{
// If emitted in shader, it should be the stored in the first dword of the output buffer
vertexCount = *(uint32_t*)pInstanceBase;
}
for (uint32_t instance = 0; instance < pState->instanceCount; ++instance)
{
uint32_t numEmittedVerts = pVertexCount[inputPrim];
uint32_t numEmittedVerts = vertexCount;
if (numEmittedVerts == 0)
{
continue;
}
uint8_t* pBase = pInstanceBase + instance * bufferInfo.vertexInstanceStride;
uint8_t* pCutBase = pCutBufferBase + instance * bufferInfo.cutInstanceStride;
uint8_t* pBase = pInstanceBase + instance * pState->allocationSize;
uint8_t* pCutBase = pState->controlDataSize == 0 ? &sNullBuffer[0] : pBase + pState->controlDataOffset;
uint8_t* pVertexBaseAOS = pBase + pState->outputVertexOffset;
#if USE_SIMD16_FRONTEND
TransposeSOAtoAOS<SIMD512, KNOB_SIMD16_WIDTH>((uint8_t*)pGsBuffers->pGsTransposed, pVertexBaseAOS, vertexCount, pState->outputVertexSize);
#else
TransposeSOAtoAOS<SIMD256, KNOB_SIMD_WIDTH>((uint8_t*)pGsBuffers->pGsTransposed, pVertexBaseAOS, vertexCount, pState->outputVertexSize);
#endif
uint32_t numAttribs = state.feNumAttributes;
for (uint32_t stream = 0; stream < MAX_SO_STREAMS; ++stream)
{
bool processCutVerts = false;
uint8_t* pCutBuffer = pCutBase;
// assign default stream ID, only relevant when GS is outputting a single stream
@ -910,16 +946,16 @@ static void GeometryShaderStage(
}
// multi-stream output, need to translate StreamID buffer to a cut buffer
ProcessStreamIdBuffer(stream, pCutBase, numEmittedVerts, (uint8_t*)pStreamCutBuffer);
pCutBuffer = (uint8_t*)pStreamCutBuffer;
ProcessStreamIdBuffer(stream, pCutBase, numEmittedVerts, (uint8_t*)pGsBuffers->pStreamCutBuffer);
pCutBuffer = (uint8_t*)pGsBuffers->pStreamCutBuffer;
processCutVerts = false;
}
#if USE_SIMD16_FRONTEND
PA_STATE_CUT gsPa(pDC, pBase, numEmittedVerts, SWR_VTX_NUM_SLOTS, reinterpret_cast<simd16mask *>(pCutBuffer), numEmittedVerts, numAttribs, pState->outputTopology, processCutVerts);
PA_STATE_CUT gsPa(pDC, (uint8_t*)pGsBuffers->pGsTransposed, numEmittedVerts, pState->outputVertexSize, reinterpret_cast<simd16mask *>(pCutBuffer), numEmittedVerts, numAttribs, pState->outputTopology, processCutVerts);
#else
PA_STATE_CUT gsPa(pDC, pBase, numEmittedVerts, SWR_VTX_NUM_SLOTS, pCutBuffer, numEmittedVerts, numAttribs, pState->outputTopology, processCutVerts);
PA_STATE_CUT gsPa(pDC, (uint8_t*)pGsBuffers->pGsTransposed, numEmittedVerts, pState->outputVertexSize, pCutBuffer, numEmittedVerts, numAttribs, pState->outputTopology, processCutVerts);
#endif
while (gsPa.GetNextStreamOutput())
@ -979,42 +1015,40 @@ static void GeometryShaderStage(
/// @param state - API state
/// @param ppGsOut - pointer to GS output buffer allocation
/// @param ppCutBuffer - pointer to GS output cut buffer allocation
template<typename SIMDVERTEX, uint32_t SIMD_WIDTH>
static INLINE void AllocateGsBuffers(DRAW_CONTEXT* pDC, const API_STATE& state, void** ppGsOut, void** ppCutBuffer,
void **ppStreamCutBuffer)
template<typename SIMD_T, uint32_t SIMD_WIDTH>
static INLINE void AllocateGsBuffers(DRAW_CONTEXT* pDC, const API_STATE& state, uint32_t vertsPerPrim, GsBuffers* pGsBuffers)
{
auto pArena = pDC->pArena;
SWR_ASSERT(pArena != nullptr);
SWR_ASSERT(state.gsState.gsEnable);
// allocate arena space to hold GS output verts
// @todo pack attribs
// @todo support multiple streams
const SWR_GS_STATE& gsState = state.gsState;
const GsBufferInfo<SIMDVERTEX, SIMD_WIDTH> bufferInfo(state.gsState);
// Allocate storage for vertex inputs
uint32_t vertexInBufferSize = gsState.inputVertStride * sizeof(simdvector) * vertsPerPrim;
pGsBuffers->pGsIn = (uint8_t*)pArena->AllocAligned(vertexInBufferSize, 32);
const uint32_t vertexBufferSize = state.gsState.instanceCount * bufferInfo.vertexInstanceStride;
// Allocate arena space to hold GS output verts
const uint32_t vertexBufferSize = gsState.instanceCount * gsState.allocationSize;
*ppGsOut = pArena->AllocAligned(vertexBufferSize, SIMD_WIDTH * sizeof(float));
for (uint32_t i = 0; i < KNOB_SIMD_WIDTH; ++i)
{
pGsBuffers->pGsOut[i] = (uint8_t*)pArena->AllocAligned(vertexBufferSize, 32);
}
// allocate arena space to hold cut or streamid buffer, which is essentially a bitfield sized to the
// maximum vertex output as defined by the GS state, per SIMD lane, per GS instance
// Allocate storage for transposed GS output
uint32_t numSimdBatches = AlignUp(gsState.maxNumVerts, SIMD_WIDTH) / SIMD_WIDTH;
uint32_t transposedBufferSize = numSimdBatches * gsState.outputVertexSize * sizeof(typename SIMD_T::Vec4);
pGsBuffers->pGsTransposed = (uint8_t*)pArena->AllocAligned(transposedBufferSize, 32);
// allocate space for temporary per-stream cut buffer if multi-stream is enabled
// Allocate storage to hold temporary stream->cut buffer, if necessary
if (state.gsState.isSingleStream)
{
const uint32_t cutBufferSize = state.gsState.instanceCount * bufferInfo.cutInstanceStride;
*ppCutBuffer = pArena->AllocAligned(cutBufferSize, SIMD_WIDTH * sizeof(float));
*ppStreamCutBuffer = nullptr;
pGsBuffers->pStreamCutBuffer = nullptr;
}
else
{
const uint32_t cutBufferSize = state.gsState.instanceCount * bufferInfo.cutInstanceStride;
const uint32_t streamCutBufferSize = state.gsState.instanceCount * bufferInfo.streamCutInstanceStride;
*ppCutBuffer = pArena->AllocAligned(cutBufferSize, SIMD_WIDTH * sizeof(float));
*ppStreamCutBuffer = pArena->AllocAligned(streamCutBufferSize, SIMD_WIDTH * sizeof(float));
pGsBuffers->pStreamCutBuffer = (uint8_t*)pArena->AllocAligned(AlignUp(gsState.maxNumVerts * 2, 32), 32);
}
}
@ -1062,9 +1096,7 @@ static void TessellationStages(
DRAW_CONTEXT *pDC,
uint32_t workerId,
PA_STATE& pa,
void* pGsOut,
void* pCutBuffer,
void* pCutStreamBuffer,
GsBuffers* pGsBuffers,
uint32_t* pSoPrimData,
#if USE_SIMD16_FRONTEND
uint32_t numPrims_simd8,
@ -1264,17 +1296,16 @@ static void TessellationStages(
{
#if USE_SIMD16_FRONTEND
tessPa.useAlternateOffset = false;
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, tessPa, pGsOut, pCutBuffer, pCutStreamBuffer, pSoPrimData, numPrims_lo, primID_lo);
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, tessPa, pGsBuffers, pSoPrimData, numPrims_lo, primID_lo);
if (numPrims_hi)
{
tessPa.useAlternateOffset = true;
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, tessPa, pGsOut, pCutBuffer, pCutStreamBuffer, pSoPrimData, numPrims_hi, primID_hi);
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, tessPa, pGsBuffers, pSoPrimData, numPrims_hi, primID_hi);
}
#else
GeometryShaderStage<HasStreamOutT, HasRastT>(
pDC, workerId, tessPa, pGsOut, pCutBuffer, pCutStreamBuffer, pSoPrimData,
_simd_set1_epi32(dsContext.PrimitiveID));
pDC, workerId, tessPa, pGsBuffers, pSoPrimData, _simd_set1_epi32(dsContext.PrimitiveID));
#endif
}
else
@ -1408,15 +1439,13 @@ void ProcessDraw(
uint32_t numPrims = GetNumPrims(state.topology, work.numVerts);
#endif
void* pGsOut = nullptr;
void* pCutBuffer = nullptr;
void* pStreamCutBuffer = nullptr;
GsBuffers gsBuffers;
if (HasGeometryShaderT::value)
{
#if USE_SIMD16_FRONTEND
AllocateGsBuffers<simd16vertex, KNOB_SIMD16_WIDTH>(pDC, state, &pGsOut, &pCutBuffer, &pStreamCutBuffer);
AllocateGsBuffers<SIMD512, KNOB_SIMD16_WIDTH>(pDC, state, NumVertsPerPrim(state.topology, true), &gsBuffers);
#else
AllocateGsBuffers<simdvertex, KNOB_SIMD_WIDTH>(pDC, state, &pGsOut, &pCutBuffer, &pStreamCutBuffer);
AllocateGsBuffers<SIMD256, KNOB_SIMD_WIDTH>(pDC, state, NumVertsPerPrim(state.topology, true), &gsBuffers);
#endif
}
@ -1672,23 +1701,23 @@ void ProcessDraw(
if (HasTessellationT::value)
{
pa.useAlternateOffset = false;
TessellationStages<HasGeometryShaderT, HasStreamOutT, HasRastT>(pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, numPrims_lo, primID_lo);
TessellationStages<HasGeometryShaderT, HasStreamOutT, HasRastT>(pDC, workerId, pa, &gsBuffers, pSoPrimData, numPrims_lo, primID_lo);
if (numPrims_hi)
{
pa.useAlternateOffset = true;
TessellationStages<HasGeometryShaderT, HasStreamOutT, HasRastT>(pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, numPrims_hi, primID_hi);
TessellationStages<HasGeometryShaderT, HasStreamOutT, HasRastT>(pDC, workerId, pa, &gsBuffers, pSoPrimData, numPrims_hi, primID_hi);
}
}
else if (HasGeometryShaderT::value)
{
pa.useAlternateOffset = false;
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, numPrims_lo, primID_lo);
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, pa, &gsBuffers, pSoPrimData, numPrims_lo, primID_lo);
if (numPrims_hi)
{
pa.useAlternateOffset = true;
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, numPrims_hi, primID_hi);
GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, pa, &gsBuffers, pSoPrimData, numPrims_hi, primID_hi);
}
}
else
@ -1847,12 +1876,12 @@ void ProcessDraw(
if (HasTessellationT::value)
{
TessellationStages<HasGeometryShaderT, HasStreamOutT, HasRastT>(
pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, pa.GetPrimID(work.startPrimID));
pDC, workerId, pa, &gsBuffers, pSoPrimData, pa.GetPrimID(work.startPrimID));
}
else if (HasGeometryShaderT::value)
{
GeometryShaderStage<HasStreamOutT, HasRastT>(
pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, pa.GetPrimID(work.startPrimID));
pDC, workerId, pa, &gsBuffers, pSoPrimData, pa.GetPrimID(work.startPrimID));
}
else
{

View file

@ -301,13 +301,12 @@ struct SWR_DS_CONTEXT
/////////////////////////////////////////////////////////////////////////
struct SWR_GS_CONTEXT
{
simdvertex vert[MAX_NUM_VERTS_PER_PRIM]; // IN: input primitive data for SIMD prims
simdscalari PrimitiveID; // IN: input primitive ID generated from the draw call
uint32_t InstanceID; // IN: input instance ID
simdscalari mask; // IN: Active mask for shader
uint8_t* pStream; // OUT: output stream (contains vertices for all output streams)
uint8_t* pCutOrStreamIdBuffer; // OUT: cut or stream id buffer
simdscalari vertexCount; // OUT: num vertices emitted per SIMD lane
simdvector* pVerts; // IN: input primitive data for SIMD prims
uint32_t inputVertStride; // IN: input vertex stride, in attributes
simdscalari PrimitiveID; // IN: input primitive ID generated from the draw call
uint32_t InstanceID; // IN: input instance ID
simdscalari mask; // IN: Active mask for shader
uint8_t* pStreams[KNOB_SIMD_WIDTH]; // OUT: output stream (contains vertices for all output streams)
};
struct PixelPositions
@ -714,30 +713,56 @@ struct SWR_GS_STATE
{
bool gsEnable;
// number of input attributes per vertex. used by the frontend to
// Number of input attributes per vertex. Used by the frontend to
// optimize assembling primitives for GS
uint32_t numInputAttribs;
// output topology - can be point, tristrip, or linestrip
// Stride of incoming verts in attributes
uint32_t inputVertStride;
// Output topology - can be point, tristrip, or linestrip
PRIMITIVE_TOPOLOGY outputTopology; // @llvm_enum
// maximum number of verts that can be emitted by a single instance of the GS
// Maximum number of verts that can be emitted by a single instance of the GS
uint32_t maxNumVerts;
// instance count
// Instance count
uint32_t instanceCount;
// if true, geometry shader emits a single stream, with separate cut buffer.
// if false, geometry shader emits vertices for multiple streams to the stream buffer, with a separate StreamID buffer
// If true, geometry shader emits a single stream, with separate cut buffer.
// If false, geometry shader emits vertices for multiple streams to the stream buffer, with a separate StreamID buffer
// to map vertices to streams
bool isSingleStream;
// when single stream is enabled, singleStreamID dictates which stream is being output.
// When single stream is enabled, singleStreamID dictates which stream is being output.
// field ignored if isSingleStream is false
uint32_t singleStreamID;
// Offset to the start of the attributes of the input vertices, in simdvector units
// Total amount of memory to allocate for one instance of the shader output in bytes
uint32_t allocationSize;
// Offset to the start of the attributes of the input vertices, in simdvector units, as read by the GS
uint32_t vertexAttribOffset;
// Offset to the attributes as stored by the preceding shader stage.
uint32_t srcVertexAttribOffset;
// Size of the control data section which contains cut or streamID data, in simdscalar units. Should be sized to handle
// the maximum number of verts output by the GS. Can be 0 if there are no cuts or streamID bits.
uint32_t controlDataSize;
// Offset to the control data section, in bytes
uint32_t controlDataOffset;
// Total size of an output vertex, in simdvector units
uint32_t outputVertexSize;
// Offset to the start of the vertex section, in bytes
uint32_t outputVertexOffset;
// Set this to non-zero to indicate that the shader outputs a static number of verts. If zero, shader is
// expected to store the final vertex count in the first dword of the gs output stream.
uint32_t staticVertexCount;
};

View file

@ -347,18 +347,20 @@ BuilderSWR::swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_ifac
Value *attrib =
LOAD(GEP(iface->pVtxAttribMap, {C(0), unwrap(attrib_index)}));
Value *pInput =
LOAD(GEP(iface->pGsCtx,
{C(0),
C(SWR_GS_CONTEXT_vert),
unwrap(vertex_index),
C(0),
attrib,
unwrap(swizzle_index)}));
Value *pVertex = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pVerts});
Value *pInputVertStride = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_inputVertStride});
Value *pVector = ADD(MUL(unwrap(vertex_index), pInputVertStride), attrib);
Value *pInput = LOAD(GEP(pVertex, {pVector, unwrap(swizzle_index)}));
return wrap(pInput);
}
// GS output stream layout
#define VERTEX_COUNT_SIZE 32
#define CONTROL_HEADER_SIZE (8*32)
void
BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
struct lp_build_tgsi_context * bld_base,
@ -366,41 +368,19 @@ BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base
LLVMValueRef emitted_vertices_vec)
{
swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
SWR_GS_STATE *pGS = iface->pGsState;
IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
#if USE_SIMD16_FRONTEND
const uint32_t simdVertexStride = sizeof(simdvertex) * 2;
const uint32_t numSimdBatches = (pGS->maxNumVerts + (mVWidth * 2) - 1) / (mVWidth * 2);
#else
const uint32_t simdVertexStride = sizeof(simdvertex);
const uint32_t numSimdBatches = (pGS->maxNumVerts + mVWidth - 1) / mVWidth;
#endif
const uint32_t inputPrimStride = numSimdBatches * simdVertexStride;
const uint32_t headerSize = VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE;
const uint32_t attribSize = 4 * sizeof(float);
const uint32_t vertSize = attribSize * SWR_VTX_NUM_SLOTS;
Value *pVertexOffset = MUL(unwrap(emitted_vertices_vec), VIMMED1(vertSize));
Value *pStream = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_pStream });
Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
Value *vMask = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_mask});
Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, mVWidth));
Value *vOffsets = C({
inputPrimStride * 0,
inputPrimStride * 1,
inputPrimStride * 2,
inputPrimStride * 3,
inputPrimStride * 4,
inputPrimStride * 5,
inputPrimStride * 6,
inputPrimStride * 7 } );
#if USE_SIMD16_FRONTEND
const uint32_t simdShift = log2(mVWidth * 2);
Value *vSimdSlot = AND(unwrap(emitted_vertices_vec), (mVWidth * 2) - 1);
#else
const uint32_t simdShift = log2(mVWidth);
Value *vSimdSlot = AND(unwrap(emitted_vertices_vec), mVWidth - 1);
#endif
Value *vVertexSlot = ASHR(unwrap(emitted_vertices_vec), simdShift);
Value *pStack = STACKSAVE();
Value *pTmpPtr = ALLOCA(mFP32Ty, C(4)); // used for dummy write for lane masking
for (uint32_t attrib = 0; attrib < iface->num_outputs; ++attrib) {
uint32_t attribSlot = attrib;
@ -420,46 +400,36 @@ BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base
}
}
#if USE_SIMD16_FRONTEND
Value *vOffsetsAttrib =
ADD(vOffsets, MUL(vVertexSlot, VIMMED1((uint32_t)sizeof(simdvertex) * 2)));
vOffsetsAttrib =
ADD(vOffsetsAttrib, VIMMED1((uint32_t)(attribSlot*sizeof(simdvector) * 2)));
#else
Value *vOffsetsAttrib =
ADD(vOffsets, MUL(vVertexSlot, VIMMED1((uint32_t)sizeof(simdvertex))));
vOffsetsAttrib =
ADD(vOffsetsAttrib, VIMMED1((uint32_t)(attribSlot*sizeof(simdvector))));
#endif
vOffsetsAttrib =
ADD(vOffsetsAttrib, MUL(vSimdSlot, VIMMED1((uint32_t)sizeof(float))));
Value *pOutputOffset = ADD(pVertexOffset, VIMMED1(headerSize + attribSize * attribSlot)); // + sgvChannel ?
for (uint32_t channel = 0; channel < 4; ++channel) {
Value *vPtrs = GEP(pStream, vOffsetsAttrib);
Value *vData;
for (uint32_t lane = 0; lane < mVWidth; ++lane) {
Value *pLaneOffset = VEXTRACT(pOutputOffset, C(lane));
Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
Value *pStreamOffset = GEP(pStream, pLaneOffset);
pStreamOffset = BITCAST(pStreamOffset, mFP32PtrTy);
if (attribSlot == VERTEX_SGV_SLOT)
vData = LOAD(unwrap(outputs[attrib][0]));
else
vData = LOAD(unwrap(outputs[attrib][channel]));
Value *pLaneMask = VEXTRACT(vMask1, C(lane));
pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr);
if (attribSlot != VERTEX_SGV_SLOT ||
sgvChannel == channel) {
vPtrs = BITCAST(vPtrs,
VectorType::get(PointerType::get(mFP32Ty, 0), 8));
for (uint32_t channel = 0; channel < 4; ++channel) {
Value *vData;
MASKED_SCATTER(vData, vPtrs, 32, vMask1);
if (attribSlot == VERTEX_SGV_SLOT)
vData = LOAD(unwrap(outputs[attrib][0]));
else
vData = LOAD(unwrap(outputs[attrib][channel]));
if (attribSlot != VERTEX_SGV_SLOT ||
sgvChannel == channel) {
vData = VEXTRACT(vData, C(lane));
STORE(vData, pStreamOffset);
}
pStreamOffset = GEP(pStreamOffset, C(1));
}
#if USE_SIMD16_FRONTEND
vOffsetsAttrib =
ADD(vOffsetsAttrib, VIMMED1((uint32_t)sizeof(simdscalar) * 2));
#else
vOffsetsAttrib =
ADD(vOffsetsAttrib, VIMMED1((uint32_t)sizeof(simdscalar)));
#endif
}
}
STACKRESTORE(pStack);
}
void
@ -469,12 +439,9 @@ BuilderSWR::swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_ba
LLVMValueRef emitted_prims_vec)
{
swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
SWR_GS_STATE *pGS = iface->pGsState;
IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
Value *pCutBuffer =
LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pCutOrStreamIdBuffer});
Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
@ -496,31 +463,29 @@ BuilderSWR::swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_ba
mask = AND(mask, cmpMask);
vMask1 = TRUNC(mask, VectorType::get(mInt1Ty, 8));
const uint32_t cutPrimStride =
(pGS->maxNumVerts + JM()->mVWidth - 1) / JM()->mVWidth;
Value *vOffsets = C({
(uint32_t)(cutPrimStride * 0),
(uint32_t)(cutPrimStride * 1),
(uint32_t)(cutPrimStride * 2),
(uint32_t)(cutPrimStride * 3),
(uint32_t)(cutPrimStride * 4),
(uint32_t)(cutPrimStride * 5),
(uint32_t)(cutPrimStride * 6),
(uint32_t)(cutPrimStride * 7) } );
vCount = SUB(vCount, VIMMED1(1));
Value *vOffset = ADD(UDIV(vCount, VIMMED1(8)), vOffsets);
Value *vOffset = ADD(UDIV(vCount, VIMMED1(8)), VIMMED1(VERTEX_COUNT_SIZE));
Value *vValue = SHL(VIMMED1(1), UREM(vCount, VIMMED1(8)));
vValue = TRUNC(vValue, VectorType::get(mInt8Ty, 8));
Value *vPtrs = GEP(pCutBuffer, vOffset);
vPtrs =
BITCAST(vPtrs, VectorType::get(PointerType::get(mInt8Ty, 0), JM()->mVWidth));
Value *pStack = STACKSAVE();
Value *pTmpPtr = ALLOCA(mInt8Ty, C(4)); // used for dummy read/write for lane masking
Value *vGather = MASKED_GATHER(vPtrs, 32, vMask1);
vValue = OR(vGather, vValue);
MASKED_SCATTER(vValue, vPtrs, 32, vMask1);
for (uint32_t lane = 0; lane < mVWidth; ++lane) {
Value *vLaneOffset = VEXTRACT(vOffset, C(lane));
Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
Value *pStreamOffset = GEP(pStream, vLaneOffset);
Value *pLaneMask = VEXTRACT(vMask1, C(lane));
pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr);
Value *vVal = LOAD(pStreamOffset);
vVal = OR(vVal, VEXTRACT(vValue, C(lane)));
STORE(vVal, pStreamOffset);
}
STACKRESTORE(pStack);
}
void
@ -533,7 +498,14 @@ BuilderSWR::swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
STORE(unwrap(total_emitted_vertices_vec), iface->pGsCtx, {0, SWR_GS_CONTEXT_vertexCount});
// Store emit count to each output stream in the first DWORD
for (uint32_t lane = 0; lane < mVWidth; ++lane)
{
Value* pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
pStream = BITCAST(pStream, mInt32PtrTy);
Value* pLaneCount = VEXTRACT(unwrap(total_emitted_vertices_vec), C(lane));
STORE(pLaneCount, pStream);
}
}
PFN_GS_FUNC
@ -542,6 +514,8 @@ BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key)
SWR_GS_STATE *pGS = &ctx->gs->gsState;
struct tgsi_shader_info *info = &ctx->gs->info.base;
memset(pGS, 0, sizeof(*pGS));
pGS->gsEnable = true;
pGS->numInputAttribs = info->num_inputs;
@ -555,6 +529,18 @@ BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key)
pGS->singleStreamID = 0;
pGS->vertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize
pGS->srcVertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize
pGS->inputVertStride = pGS->numInputAttribs + pGS->vertexAttribOffset;
pGS->outputVertexSize = SWR_VTX_NUM_SLOTS;
pGS->controlDataSize = 8; // GS ouputs max of 8 32B units
pGS->controlDataOffset = VERTEX_COUNT_SIZE;
pGS->outputVertexOffset = pGS->controlDataOffset + CONTROL_HEADER_SIZE;
pGS->allocationSize =
VERTEX_COUNT_SIZE + // vertex count
CONTROL_HEADER_SIZE + // control header
(SWR_VTX_NUM_SLOTS * 16) * // sizeof vertex
pGS->maxNumVerts; // num verts
struct swr_geometry_shader *gs = ctx->gs;
@ -635,10 +621,11 @@ BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key)
lp_type_float_vec(32, 32 * 8), wrap(mask_val));
// zero out cut buffer so we can load/modify/store bits
MEMSET(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_pCutOrStreamIdBuffer}),
C((char)0),
pGS->instanceCount * ((pGS->maxNumVerts + 7) / 8) * JM()->mVWidth,
sizeof(float) * KNOB_SIMD_WIDTH);
for (uint32_t lane = 0; lane < mVWidth; ++lane)
{
Value* pStream = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
MEMSET(pStream, C((char)0), VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE, sizeof(float) * KNOB_SIMD_WIDTH);
}
struct swr_gs_llvm_iface gs_iface;
gs_iface.base.fetch_input = ::swr_gs_llvm_fetch_input;