Simple implementation of glBitmap rendering.

Create a texture matching the bitmap image and use a fragment program
to modulate current raster color by the boolean-valued texture.  Need to
eventually use fragment culling (see comments in code).
This commit is contained in:
Brian 2007-09-25 16:52:38 -06:00
parent 02ea8b8141
commit ccff14de0d

View file

@ -55,36 +55,79 @@
* the fragment color.
*/
static struct st_fragment_program *
make_fragment_shader(struct st_context *st)
make_fragment_shader(struct st_context *st, GLboolean bitmapMode)
{
GLcontext *ctx = st->ctx;
struct st_fragment_program *stfp;
struct gl_program *p;
GLuint ic = 0;
p = ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
if (!p)
return NULL;
p->NumInstructions = 2;
p->Instructions = _mesa_alloc_instructions(2);
if (bitmapMode)
p->NumInstructions = 3;
else
p->NumInstructions = 2;
p->Instructions = _mesa_alloc_instructions(p->NumInstructions);
if (!p->Instructions) {
ctx->Driver.DeleteProgram(ctx, p);
return NULL;
}
_mesa_init_instructions(p->Instructions, 2);
/* TEX result.color, fragment.texcoord[0], texture[0], 2D; */
p->Instructions[0].Opcode = OPCODE_TEX;
p->Instructions[0].DstReg.File = PROGRAM_OUTPUT;
p->Instructions[0].DstReg.Index = FRAG_RESULT_COLR;
p->Instructions[0].SrcReg[0].File = PROGRAM_INPUT;
p->Instructions[0].SrcReg[0].Index = FRAG_ATTRIB_TEX0;
p->Instructions[0].TexSrcUnit = 0;
p->Instructions[0].TexSrcTarget = TEXTURE_2D_INDEX;
_mesa_init_instructions(p->Instructions, p->NumInstructions);
if (bitmapMode) {
/*
* XXX This is temporary
* We actually need to cull the fragment if the texture value is zero.
* But TGSI doesn't support conditionals yet.
* Also, we need to compose this fragment shader with the current
* user-provided fragment shader so the fragment program is applied
* to the fragments which aren't culled.
*/
/* TEX temp0, fragment.texcoord[0], texture[0], 2D; */
p->Instructions[ic].Opcode = OPCODE_TEX;
p->Instructions[ic].DstReg.File = PROGRAM_TEMPORARY;
p->Instructions[ic].DstReg.Index = 0;
p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT;
p->Instructions[ic].SrcReg[0].Index = FRAG_ATTRIB_TEX0;
p->Instructions[ic].TexSrcUnit = 0;
p->Instructions[ic].TexSrcTarget = TEXTURE_2D_INDEX;
ic++;
/* MUL result.color, temp0.xxxx, fragment.color */
p->Instructions[ic].Opcode = OPCODE_MUL;
p->Instructions[ic].DstReg.File = PROGRAM_OUTPUT;
p->Instructions[ic].DstReg.Index = FRAG_RESULT_COLR;
p->Instructions[ic].SrcReg[0].File = PROGRAM_TEMPORARY;
p->Instructions[ic].SrcReg[0].Index = 0;
p->Instructions[ic].SrcReg[0].Swizzle = SWIZZLE_WWWW;
p->Instructions[ic].SrcReg[1].File = PROGRAM_INPUT;
p->Instructions[ic].SrcReg[1].Index = FRAG_ATTRIB_COL0;
ic++;
}
else {
/* DrawPixels mode */
/* TEX result.color, fragment.texcoord[0], texture[0], 2D; */
p->Instructions[0].Opcode = OPCODE_TEX;
p->Instructions[0].DstReg.File = PROGRAM_OUTPUT;
p->Instructions[0].DstReg.Index = FRAG_RESULT_COLR;
p->Instructions[0].SrcReg[0].File = PROGRAM_INPUT;
p->Instructions[0].SrcReg[0].Index = FRAG_ATTRIB_TEX0;
p->Instructions[0].TexSrcUnit = 0;
p->Instructions[0].TexSrcTarget = TEXTURE_2D_INDEX;
ic++;
}
/* END; */
p->Instructions[1].Opcode = OPCODE_END;
p->Instructions[ic++].Opcode = OPCODE_END;
assert(ic == p->NumInstructions);
p->InputsRead = FRAG_BIT_TEX0;
p->OutputsWritten = (1 << FRAG_RESULT_COLR);
if (bitmapMode) {
p->InputsRead |= FRAG_BIT_COL0;
}
stfp = (struct st_fragment_program *) p;
st_translate_fragment_program(st, stfp, NULL,
@ -96,45 +139,67 @@ make_fragment_shader(struct st_context *st)
/**
* Create a simple vertex shader that just passes through the
* vertex position and color.
* vertex position and texcoord (and color).
*/
static struct st_vertex_program *
make_vertex_shader(struct st_context *st)
make_vertex_shader(struct st_context *st, GLboolean passColor)
{
/* Map VERT_RESULT_HPOS to 0, VERT_RESULT_TEX0 to 1 */
GLcontext *ctx = st->ctx;
struct st_vertex_program *stvp;
struct gl_program *p;
GLuint ic = 0;
p = ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
if (!p)
return NULL;
p->NumInstructions = 3;
p->Instructions = _mesa_alloc_instructions(3);
if (passColor)
p->NumInstructions = 4;
else
p->NumInstructions = 3;
p->Instructions = _mesa_alloc_instructions(p->NumInstructions);
if (!p->Instructions) {
ctx->Driver.DeleteProgram(ctx, p);
return NULL;
}
_mesa_init_instructions(p->Instructions, 3);
_mesa_init_instructions(p->Instructions, p->NumInstructions);
/* MOV result.pos, vertex.pos; */
p->Instructions[0].Opcode = OPCODE_MOV;
p->Instructions[0].DstReg.File = PROGRAM_OUTPUT;
p->Instructions[0].DstReg.Index = VERT_RESULT_HPOS;
p->Instructions[0].SrcReg[0].File = PROGRAM_INPUT;
p->Instructions[0].SrcReg[0].Index = VERT_ATTRIB_POS;
/* MOV result.color, vertex.color; */
/* MOV result.texcoord0, vertex.texcoord0; */
p->Instructions[1].Opcode = OPCODE_MOV;
p->Instructions[1].DstReg.File = PROGRAM_OUTPUT;
p->Instructions[1].DstReg.Index = VERT_RESULT_TEX0;
p->Instructions[1].SrcReg[0].File = PROGRAM_INPUT;
p->Instructions[1].SrcReg[0].Index = VERT_ATTRIB_TEX0;
ic = 2;
if (passColor) {
/* MOV result.color0, vertex.color0; */
p->Instructions[ic].Opcode = OPCODE_MOV;
p->Instructions[ic].DstReg.File = PROGRAM_OUTPUT;
p->Instructions[ic].DstReg.Index = VERT_RESULT_COL0;
p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT;
p->Instructions[ic].SrcReg[0].Index = VERT_ATTRIB_COLOR0;
ic++;
}
/* END; */
p->Instructions[2].Opcode = OPCODE_END;
p->Instructions[ic].Opcode = OPCODE_END;
ic++;
assert(ic == p->NumInstructions);
p->InputsRead = VERT_BIT_POS | VERT_BIT_TEX0;
p->OutputsWritten = ((1 << VERT_RESULT_TEX0) |
(1 << VERT_RESULT_HPOS));
if (passColor) {
p->InputsRead |= VERT_BIT_COLOR0;
p->OutputsWritten |= (1 << VERT_RESULT_COL0);
}
stvp = (struct st_vertex_program *) p;
st_translate_vertex_program(st, stvp, NULL,
@ -255,10 +320,10 @@ draw_quad(GLcontext *ctx, GLfloat x0, GLfloat y0, GLfloat z,
GLuint i;
/* upper-left */
verts[0][0][0] = x0;
verts[0][0][1] = y0;
verts[0][1][0] = 0.0;
verts[0][1][1] = 0.0;
verts[0][0][0] = x0; /* attr[0].x */
verts[0][0][1] = y0; /* attr[0].x */
verts[0][1][0] = 0.0; /* attr[1].s */
verts[0][1][1] = 0.0; /* attr[1].t */
/* upper-right */
verts[1][0][0] = x1;
@ -290,10 +355,66 @@ draw_quad(GLcontext *ctx, GLfloat x0, GLfloat y0, GLfloat z,
}
static void
draw_quad_colored(GLcontext *ctx, GLfloat x0, GLfloat y0, GLfloat z,
GLfloat x1, GLfloat y1, const GLfloat *color)
{
static const GLuint attribs[3] = {
0, /* pos */
1, /* color */
8 /* tex0 */
};
GLfloat verts[4][3][4]; /* four verts, three attribs, XYZW */
GLuint i;
/* upper-left */
verts[0][0][0] = x0; /* attr[0].x */
verts[0][0][1] = y0; /* attr[0].x */
verts[0][2][0] = 0.0; /* attr[2].s */
verts[0][2][1] = 0.0; /* attr[2].t */
/* upper-right */
verts[1][0][0] = x1;
verts[1][0][1] = y0;
verts[1][2][0] = 1.0;
verts[1][2][1] = 0.0;
/* lower-right */
verts[2][0][0] = x1;
verts[2][0][1] = y1;
verts[2][2][0] = 1.0;
verts[2][2][1] = 1.0;
/* lower-left */
verts[3][0][0] = x0;
verts[3][0][1] = y1;
verts[3][2][0] = 0.0;
verts[3][2][1] = 1.0;
/* same for all verts: */
for (i = 0; i < 4; i++) {
verts[i][0][2] = z; /*Z*/
verts[i][0][3] = 1.0; /*W*/
verts[i][1][0] = color[0];
verts[i][1][1] = color[1];
verts[i][1][2] = color[2];
verts[i][1][3] = color[3];
verts[i][2][2] = 0.0; /*R*/
verts[i][2][3] = 1.0; /*Q*/
}
st_draw_vertices(ctx, PIPE_PRIM_QUADS, 4, (float *) verts, 3, attribs);
}
static void
draw_textured_quad(GLcontext *ctx, GLint x, GLint y, GLfloat z,
GLsizei width, GLsizei height,
struct pipe_mipmap_tree *mt)
struct pipe_mipmap_tree *mt,
struct st_vertex_program *stvp,
struct st_fragment_program *stfp,
const GLfloat *color)
{
const GLuint unit = 0;
struct pipe_context *pipe = ctx->st->pipe;
@ -320,22 +441,10 @@ draw_textured_quad(GLcontext *ctx, GLint x, GLint y, GLfloat z,
}
/* fragment shader state: TEX lookup program */
{
static struct st_fragment_program *stfp = NULL;
if (!stfp) {
stfp = make_fragment_shader(ctx->st);
}
pipe->bind_fs_state(pipe, stfp->fs->data);
}
pipe->bind_fs_state(pipe, stfp->fs->data);
/* vertex shader state: position + texcoord pass-through */
{
static struct st_vertex_program *stvp = NULL;
if (!stvp) {
stvp = make_vertex_shader(ctx->st);
}
pipe->bind_vs_state(pipe, stvp->vs->data);
}
pipe->bind_vs_state(pipe, stvp->vs->data);
/* texture sampling state: */
{
@ -383,7 +492,10 @@ draw_textured_quad(GLcontext *ctx, GLint x, GLint y, GLfloat z,
y1 = y + height * ctx->Pixel.ZoomY;
/* draw textured quad */
draw_quad(ctx, x0, y0, z, x1, y1);
if (color)
draw_quad_colored(ctx, x0, y0, z, x1, y1, color);
else
draw_quad(ctx, x0, y0, z, x1, y1);
/* restore GL state */
pipe->bind_rasterizer_state(pipe, ctx->st->state.rasterizer->data);
@ -514,10 +626,21 @@ st_DrawPixels(GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type,
const struct gl_pixelstore_attrib *unpack, const GLvoid *pixels)
{
static struct st_fragment_program *stfp = NULL;
static struct st_vertex_program *stvp = NULL;
struct st_context *st = ctx->st;
struct pipe_surface *ps;
GLuint bufferFormat;
/* create the fragment program if needed */
if (!stfp) {
stfp = make_fragment_shader(ctx->st, GL_FALSE);
}
/* and vertex program */
if (!stvp) {
stvp = make_vertex_shader(ctx->st, GL_FALSE);
}
st_validate_state(st);
if (format == GL_DEPTH_COMPONENT) {
@ -540,7 +663,7 @@ st_DrawPixels(GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height,
= make_mipmap_tree(ctx->st, width, height, format, type,
unpack, pixels);
draw_textured_quad(ctx, x, y, ctx->Current.RasterPos[2],
width, height, mt);
width, height, mt, stvp, stfp, NULL);
free_mipmap_tree(st->pipe, mt);
}
else {
@ -550,16 +673,169 @@ st_DrawPixels(GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height,
}
/**
* Create a texture which represents a bitmap image.
*/
static struct pipe_mipmap_tree *
create_bitmap_texture(GLcontext *ctx, GLsizei width, GLsizei height,
const struct gl_pixelstore_attrib *unpack,
const GLubyte *bitmap)
{
struct pipe_context *pipe = ctx->st->pipe;
const uint flags = PIPE_SURFACE_FLAG_TEXTURE;
uint numFormats, i, format = 0, cpp, comp, pitch;
const uint *formats = ctx->st->pipe->supported_formats(pipe, &numFormats);
ubyte *dest;
struct pipe_mipmap_tree *mt;
int row, col;
/* find a texture format we know */
for (i = 0; i < numFormats; i++) {
switch (formats[i]) {
case PIPE_FORMAT_U_I8:
format = formats[i];
cpp = 1;
comp = 0;
break;
case PIPE_FORMAT_U_A8_R8_G8_B8:
format = formats[i];
cpp = 4;
comp = 3; /* alpha channel */ /*XXX little-endian dependency */
break;
default:
/* XXX support more formats */
;
}
}
assert(format);
/**
* Create a mipmap tree.
*/
mt = CALLOC_STRUCT(pipe_mipmap_tree);
/* allocate texture region/storage */
mt->region = pipe->region_alloc(pipe, cpp, width, height, flags);
pitch = mt->region->pitch;
/* map texture region */
dest = pipe->region_map(pipe, mt->region);
/* Put image into texture region.
* Note that the image is actually going to be upside down in
* the texture. We deal with that with texcoords.
*/
for (row = 0; row < height; row++) {
const GLubyte *src = (const GLubyte *) _mesa_image_address2d(unpack,
bitmap, width, height, GL_COLOR_INDEX, GL_BITMAP, row, 0);
ubyte *destRow = dest + row * pitch * cpp;
if (unpack->LsbFirst) {
/* Lsb first */
GLubyte mask = 1U << (unpack->SkipPixels & 0x7);
assert(0);
for (col = 0; col < width; col++) {
/* set texel to 255 if bit is set */
destRow[comp] = 255; //(*src & mask) ? 255 : 0;
destRow += cpp;
if (mask == 128U) {
src++;
mask = 1U;
}
else {
mask = mask << 1;
}
}
/* get ready for next row */
if (mask != 1)
src++;
}
else {
/* Msb first */
GLubyte mask = 128U >> (unpack->SkipPixels & 0x7);
for (col = 0; col < width; col++) {
/* set texel to 255 if bit is set */
destRow[comp] =(*src & mask) ? 255 : 0;
destRow += cpp;
if (mask == 1U) {
src++;
mask = 128U;
}
else {
mask = mask >> 1;
}
}
/* get ready for next row */
if (mask != 128)
src++;
}
} /* row */
/* unmap */
pipe->region_unmap(pipe, mt->region);
mt->target = PIPE_TEXTURE_2D;
mt->internal_format = GL_RGBA;
mt->format = format;
mt->first_level = 0;
mt->last_level = 0;
mt->width0 = width;
mt->height0 = height;
mt->depth0 = 1;
mt->cpp = cpp;
mt->compressed = 0;
mt->pitch = mt->region->pitch;
mt->depth_pitch = 0;
mt->total_height = height;
mt->level[0].level_offset = 0;
mt->level[0].width = width;
mt->level[0].height = height;
mt->level[0].depth = 1;
mt->level[0].nr_images = 1;
mt->level[0].image_offset = NULL;
mt->refcount = 1;
return mt;
}
static void
st_Bitmap(GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height,
const struct gl_pixelstore_attrib *unpack, const GLubyte *bitmap )
{
static struct st_vertex_program *stvp = NULL;
static struct st_fragment_program *stfp = NULL;
struct st_context *st = ctx->st;
struct pipe_mipmap_tree *mt;
/* create the fragment program if needed */
if (!stfp) {
stfp = make_fragment_shader(ctx->st, GL_TRUE);
}
/* and vertex program */
if (!stvp) {
stvp = make_vertex_shader(ctx->st, GL_TRUE);
}
st_validate_state(st);
fprintf(stderr, "st_Bitmap not implemented yet\n");
/* XXX to do */
mt = create_bitmap_texture(ctx, width, height, unpack, bitmap);
draw_textured_quad(ctx, x, y, ctx->Current.RasterPos[2],
width, height, mt, stvp, stfp,
ctx->Current.RasterColor);
free_mipmap_tree(st->pipe, mt);
}