freedreno/ir3: lower arrays to regs

Instead of using load/store_var intrinsics, which can have complex
derefs in the case of multi-dimensional arrays, lower these to regs
and handle the direct/indirect loads in get_src() and stores in
put_dst().

This should let us switch to using nir by default.

Signed-off-by: Rob Clark <robdclark@gmail.com>
This commit is contained in:
Rob Clark 2017-05-21 12:40:30 -04:00
parent 232fc99544
commit caa64b24ce
2 changed files with 188 additions and 153 deletions

View file

@ -400,14 +400,14 @@ struct ir3 {
struct list_head array_list;
};
typedef struct nir_variable nir_variable;
typedef struct nir_register nir_register;
struct ir3_array {
struct list_head node;
unsigned length;
unsigned id;
nir_variable *var;
nir_register *r;
/* We track the last write and last access (read or write) to
* setup dependencies on instructions that read or write the

View file

@ -98,12 +98,17 @@ struct ir3_compile {
* duplicate instruction sequences (which our backend does not
* try to clean up, since that should be done as the NIR stage)
* we cache the address value generated for a given src value:
*
* Note that we have to cache these per alignment, since same
* src used for an array of vec1 cannot be also used for an
* array of vec4.
*/
struct hash_table *addr_ht;
struct hash_table *addr_ht[4];
/* last dst array, for indirect we need to insert a var-store.
*/
struct ir3_instruction **last_dst;
unsigned last_dst_n;
/* maps nir_block to ir3_block, mostly for the purposes of
* figuring out the blocks successors
@ -199,6 +204,11 @@ compile_init(struct ir3_compiler *compiler,
ctx->s = so->shader->nir;
}
/* this needs to be the last pass run, so do this here instead of
* in ir3_optimize_nir():
*/
NIR_PASS_V(ctx->s, nir_lower_locals_to_regs);
if (fd_mesa_debug & FD_DBG_DISASM) {
DBG("dump nir%dv%d: type=%d, k={bp=%u,cts=%u,hp=%u}",
so->shader->id, so->id, so->type,
@ -280,30 +290,37 @@ compile_free(struct ir3_compile *ctx)
}
static void
declare_var(struct ir3_compile *ctx, nir_variable *var)
declare_array(struct ir3_compile *ctx, nir_register *reg)
{
unsigned length = glsl_get_length(var->type) * 4; /* always vec4, at least with ttn */
struct ir3_array *arr = rzalloc(ctx, struct ir3_array);
arr->id = ++ctx->num_arrays;
arr->length = length;
arr->var = var;
/* NOTE: sometimes we get non array regs, for example for arrays of
* length 1. See fs-const-array-of-struct-of-array.shader_test. So
* treat a non-array as if it was an array of length 1.
*
* It would be nice if there was a nir pass to convert arrays of
* length 1 to ssa.
*/
arr->length = reg->num_components * MAX2(1, reg->num_array_elems);
compile_assert(ctx, arr->length > 0);
arr->r = reg;
list_addtail(&arr->node, &ctx->ir->array_list);
}
static struct ir3_array *
get_var(struct ir3_compile *ctx, nir_variable *var)
get_array(struct ir3_compile *ctx, nir_register *reg)
{
list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) {
if (arr->var == var)
if (arr->r == reg)
return arr;
}
compile_error(ctx, "bogus var: %s\n", var->name);
compile_error(ctx, "bogus reg: %s\n", reg->name);
return NULL;
}
/* relative (indirect) if address!=NULL */
static struct ir3_instruction *
create_var_load(struct ir3_compile *ctx, struct ir3_array *arr, int n,
create_array_load(struct ir3_compile *ctx, struct ir3_array *arr, int n,
struct ir3_instruction *address)
{
struct ir3_block *block = ctx->block;
@ -331,7 +348,7 @@ create_var_load(struct ir3_compile *ctx, struct ir3_array *arr, int n,
/* relative (indirect) if address!=NULL */
static struct ir3_instruction *
create_var_store(struct ir3_compile *ctx, struct ir3_array *arr, int n,
create_array_store(struct ir3_compile *ctx, struct ir3_array *arr, int n,
struct ir3_instruction *src, struct ir3_instruction *address)
{
struct ir3_block *block = ctx->block;
@ -349,7 +366,8 @@ create_var_store(struct ir3_compile *ctx, struct ir3_array *arr, int n,
dst->array.offset = n;
ir3_reg_create(mov, 0, IR3_REG_SSA)->instr = src;
ir3_instr_set_address(mov, address);
if (address)
ir3_instr_set_address(mov, address);
arr->last_write = arr->last_access = mov;
@ -360,51 +378,92 @@ create_var_store(struct ir3_compile *ctx, struct ir3_array *arr, int n,
* insert in def_ht
*/
static struct ir3_instruction **
__get_dst(struct ir3_compile *ctx, void *key, unsigned n)
get_dst_ssa(struct ir3_compile *ctx, nir_ssa_def *dst, unsigned n)
{
struct ir3_instruction **value =
ralloc_array(ctx->def_ht, struct ir3_instruction *, n);
_mesa_hash_table_insert(ctx->def_ht, key, value);
compile_assert(ctx, !ctx->last_dst);
ctx->last_dst = value;
_mesa_hash_table_insert(ctx->def_ht, dst, value);
return value;
}
static struct ir3_instruction **
get_dst(struct ir3_compile *ctx, nir_dest *dst, unsigned n)
{
compile_assert(ctx, dst->is_ssa);
struct ir3_instruction **value;
if (dst->is_ssa) {
return __get_dst(ctx, &dst->ssa, n);
value = get_dst_ssa(ctx, &dst->ssa, n);
} else {
return __get_dst(ctx, dst->reg.reg, n);
value = ralloc_array(ctx, struct ir3_instruction *, n);
}
/* NOTE: in non-ssa case, we don't really need to store last_dst
* but this helps us catch cases where put_dst() call is forgotten
*/
compile_assert(ctx, !ctx->last_dst);
ctx->last_dst = value;
ctx->last_dst_n = n;
return value;
}
static struct ir3_instruction * get_addr(struct ir3_compile *ctx, struct ir3_instruction *src, int align);
static struct ir3_instruction * const *
get_src(struct ir3_compile *ctx, nir_src *src)
{
if (src->is_ssa) {
struct hash_entry *entry;
entry = _mesa_hash_table_search(ctx->def_ht, src->ssa);
compile_assert(ctx, entry);
return entry->data;
} else {
nir_register *reg = src->reg.reg;
struct ir3_array *arr = get_array(ctx, reg);
unsigned num_components = arr->r->num_components;
struct ir3_instruction *addr = NULL;
struct ir3_instruction **value =
ralloc_array(ctx, struct ir3_instruction *, num_components);
if (src->reg.indirect)
addr = get_addr(ctx, get_src(ctx, src->reg.indirect)[0],
reg->num_components);
for (unsigned i = 0; i < num_components; i++) {
unsigned n = src->reg.base_offset * reg->num_components + i;
compile_assert(ctx, n < arr->length);
value[i] = create_array_load(ctx, arr, n, addr);
}
return value;
}
}
static void
put_dst(struct ir3_compile *ctx, nir_dest *dst)
{
ctx->last_dst = NULL;
}
if (!dst->is_ssa) {
nir_register *reg = dst->reg.reg;
struct ir3_array *arr = get_array(ctx, reg);
unsigned num_components = ctx->last_dst_n;
struct ir3_instruction *addr = NULL;
static struct ir3_instruction **
get_dst_ssa(struct ir3_compile *ctx, nir_ssa_def *dst, unsigned n)
{
return __get_dst(ctx, dst, n);
}
if (dst->reg.indirect)
addr = get_addr(ctx, get_src(ctx, dst->reg.indirect)[0],
reg->num_components);
static struct ir3_instruction * const *
get_src(struct ir3_compile *ctx, nir_src *src)
{
struct hash_entry *entry;
compile_assert(ctx, src->is_ssa);
if (src->is_ssa) {
entry = _mesa_hash_table_search(ctx->def_ht, src->ssa);
} else {
entry = _mesa_hash_table_search(ctx->def_ht, src->reg.reg);
for (unsigned i = 0; i < num_components; i++) {
unsigned n = dst->reg.base_offset * reg->num_components + i;
compile_assert(ctx, n < arr->length);
if (!ctx->last_dst[i])
continue;
create_array_store(ctx, arr, n, ctx->last_dst[i], addr);
}
ralloc_free(ctx->last_dst);
}
compile_assert(ctx, entry);
return entry->data;
ctx->last_dst = NULL;
ctx->last_dst_n = 0;
}
static struct ir3_instruction *
@ -422,7 +481,7 @@ create_immed(struct ir3_block *block, uint32_t val)
}
static struct ir3_instruction *
create_addr(struct ir3_block *block, struct ir3_instruction *src)
create_addr(struct ir3_block *block, struct ir3_instruction *src, int align)
{
struct ir3_instruction *instr, *immed;
@ -432,12 +491,41 @@ create_addr(struct ir3_block *block, struct ir3_instruction *src)
instr = ir3_COV(block, src, TYPE_U32, TYPE_S16);
instr->regs[0]->flags |= IR3_REG_HALF;
immed = create_immed(block, 2);
immed->regs[0]->flags |= IR3_REG_HALF;
switch(align){
case 1:
/* src *= 1: */
break;
case 2:
/* src *= 2 => src <<= 1: */
immed = create_immed(block, 1);
immed->regs[0]->flags |= IR3_REG_HALF;
instr = ir3_SHL_B(block, instr, 0, immed, 0);
instr->regs[0]->flags |= IR3_REG_HALF;
instr->regs[1]->flags |= IR3_REG_HALF;
instr = ir3_SHL_B(block, instr, 0, immed, 0);
instr->regs[0]->flags |= IR3_REG_HALF;
instr->regs[1]->flags |= IR3_REG_HALF;
break;
case 3:
/* src *= 3: */
immed = create_immed(block, 3);
immed->regs[0]->flags |= IR3_REG_HALF;
instr = ir3_MULL_U(block, instr, 0, immed, 0);
instr->regs[0]->flags |= IR3_REG_HALF;
instr->regs[1]->flags |= IR3_REG_HALF;
break;
case 4:
/* src *= 4 => src <<= 2: */
immed = create_immed(block, 2);
immed->regs[0]->flags |= IR3_REG_HALF;
instr = ir3_SHL_B(block, instr, 0, immed, 0);
instr->regs[0]->flags |= IR3_REG_HALF;
instr->regs[1]->flags |= IR3_REG_HALF;
break;
default:
unreachable("bad align");
return NULL;
}
instr = ir3_MOV(block, instr, TYPE_S16);
instr->regs[0]->num = regid(REG_A0, 0);
@ -451,22 +539,25 @@ create_addr(struct ir3_block *block, struct ir3_instruction *src)
* sequences for each use of a given NIR level src as address
*/
static struct ir3_instruction *
get_addr(struct ir3_compile *ctx, struct ir3_instruction *src)
get_addr(struct ir3_compile *ctx, struct ir3_instruction *src, int align)
{
struct ir3_instruction *addr;
unsigned idx = align - 1;
if (!ctx->addr_ht) {
ctx->addr_ht = _mesa_hash_table_create(ctx,
compile_assert(ctx, idx < ARRAY_SIZE(ctx->addr_ht));
if (!ctx->addr_ht[idx]) {
ctx->addr_ht[idx] = _mesa_hash_table_create(ctx,
_mesa_hash_pointer, _mesa_key_pointer_equal);
} else {
struct hash_entry *entry;
entry = _mesa_hash_table_search(ctx->addr_ht, src);
entry = _mesa_hash_table_search(ctx->addr_ht[idx], src);
if (entry)
return entry->data;
}
addr = create_addr(ctx->block, src);
_mesa_hash_table_insert(ctx->addr_ht, src, addr);
addr = create_addr(ctx->block, src, align);
_mesa_hash_table_insert(ctx->addr_ht[idx], src, addr);
return addr;
}
@ -725,8 +816,17 @@ emit_alu(struct ir3_compile *ctx, nir_alu_instr *alu)
const nir_op_info *info = &nir_op_infos[alu->op];
struct ir3_instruction **dst, *src[info->num_inputs];
struct ir3_block *b = ctx->block;
unsigned dst_sz, wrmask;
dst = get_dst(ctx, &alu->dest.dest, MAX2(info->output_size, 1));
if (alu->dest.dest.is_ssa) {
dst_sz = alu->dest.dest.ssa.num_components;
wrmask = (1 << dst_sz) - 1;
} else {
dst_sz = alu->dest.dest.reg.reg->num_components;
wrmask = alu->dest.write_mask;
}
dst = get_dst(ctx, &alu->dest.dest, dst_sz);
/* Vectors are special in that they have non-scalarized writemasks,
* and just take the first swizzle channel for each argument in
@ -752,6 +852,28 @@ emit_alu(struct ir3_compile *ctx, nir_alu_instr *alu)
return;
}
/* We also get mov's with more than one component for mov's so
* handle those specially:
*/
if ((alu->op == nir_op_imov) || (alu->op == nir_op_fmov)) {
type_t type = (alu->op == nir_op_imov) ? TYPE_U32 : TYPE_F32;
nir_alu_src *asrc = &alu->src[0];
struct ir3_instruction *const *src0 = get_src(ctx, &asrc->src);
for (unsigned i = 0; i < dst_sz; i++) {
if (wrmask & (1 << i)) {
dst[i] = ir3_MOV(b, src0[asrc->swizzle[i]], type);
} else {
dst[i] = NULL;
}
}
put_dst(ctx, &alu->dest.dest);
return;
}
compile_assert(ctx, alu->dest.dest.is_ssa);
/* General case: We can just grab the one used channel per src. */
for (int i = 0; i < info->num_inputs; i++) {
unsigned chan = ffs(alu->dest.write_mask) - 1;
@ -778,12 +900,6 @@ emit_alu(struct ir3_compile *ctx, nir_alu_instr *alu)
case nir_op_u2f32:
dst[0] = ir3_COV(b, src[0], TYPE_U32, TYPE_F32);
break;
case nir_op_imov:
dst[0] = ir3_MOV(b, src[0], TYPE_S32);
break;
case nir_op_fmov:
dst[0] = ir3_MOV(b, src[0], TYPE_F32);
break;
case nir_op_f2b:
dst[0] = ir3_CMPS_F(b, src[0], 0, create_immed(b, fui(0.0)), 0);
dst[0]->cat2.condition = IR3_COND_NE;
@ -1054,8 +1170,8 @@ emit_intrinsic_load_ubo(struct ir3_compile *ctx, nir_intrinsic_instr *intr,
base_lo = create_uniform(ctx, ubo + (src0->regs[1]->iim_val * ptrsz));
base_hi = create_uniform(ctx, ubo + (src0->regs[1]->iim_val * ptrsz) + 1);
} else {
base_lo = create_uniform_indirect(ctx, ubo, get_addr(ctx, src0));
base_hi = create_uniform_indirect(ctx, ubo + 1, get_addr(ctx, src0));
base_lo = create_uniform_indirect(ctx, ubo, get_addr(ctx, src0, 4));
base_hi = create_uniform_indirect(ctx, ubo + 1, get_addr(ctx, src0, 4));
}
/* note: on 32bit gpu's base_hi is ignored and DCE'd */
@ -1105,83 +1221,6 @@ emit_intrinsic_load_ubo(struct ir3_compile *ctx, nir_intrinsic_instr *intr,
}
}
/* handles array reads: */
static void
emit_intrinsic_load_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr,
struct ir3_instruction **dst)
{
nir_deref_var *dvar = intr->variables[0];
nir_deref_array *darr = nir_deref_as_array(dvar->deref.child);
struct ir3_array *arr = get_var(ctx, dvar->var);
compile_assert(ctx, dvar->deref.child &&
(dvar->deref.child->deref_type == nir_deref_type_array));
switch (darr->deref_array_type) {
case nir_deref_array_type_direct:
/* direct access does not require anything special: */
for (int i = 0; i < intr->num_components; i++) {
unsigned n = darr->base_offset * 4 + i;
compile_assert(ctx, n < arr->length);
dst[i] = create_var_load(ctx, arr, n, NULL);
}
break;
case nir_deref_array_type_indirect: {
/* for indirect, we need to collect all the array elements: */
struct ir3_instruction *addr =
get_addr(ctx, get_src(ctx, &darr->indirect)[0]);
for (int i = 0; i < intr->num_components; i++) {
unsigned n = darr->base_offset * 4 + i;
compile_assert(ctx, n < arr->length);
dst[i] = create_var_load(ctx, arr, n, addr);
}
break;
}
default:
compile_error(ctx, "Unhandled load deref type: %u\n",
darr->deref_array_type);
break;
}
}
/* handles array writes: */
static void
emit_intrinsic_store_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
{
nir_deref_var *dvar = intr->variables[0];
nir_deref_array *darr = nir_deref_as_array(dvar->deref.child);
struct ir3_array *arr = get_var(ctx, dvar->var);
struct ir3_instruction *addr;
struct ir3_instruction * const *src;
unsigned wrmask = nir_intrinsic_write_mask(intr);
compile_assert(ctx, dvar->deref.child &&
(dvar->deref.child->deref_type == nir_deref_type_array));
src = get_src(ctx, &intr->src[0]);
switch (darr->deref_array_type) {
case nir_deref_array_type_direct:
addr = NULL;
break;
case nir_deref_array_type_indirect:
addr = get_addr(ctx, get_src(ctx, &darr->indirect)[0]);
break;
default:
compile_error(ctx, "Unhandled store deref type: %u\n",
darr->deref_array_type);
return;
}
for (int i = 0; i < intr->num_components; i++) {
if (!(wrmask & (1 << i)))
continue;
unsigned n = darr->base_offset * 4 + i;
compile_assert(ctx, n < arr->length);
create_var_store(ctx, arr, n, src[i], addr);
}
}
static void
mark_ssbo_read(struct ir3_compile *ctx, struct ir3_instruction *instr)
{
@ -1399,7 +1438,7 @@ emit_intrinsic(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
for (int i = 0; i < intr->num_components; i++) {
int n = idx * 4 + i;
dst[i] = create_uniform_indirect(ctx, n,
get_addr(ctx, src[0]));
get_addr(ctx, src[0], 4));
}
/* NOTE: if relative addressing is used, we set
* constlen in the compiler (to worst-case value)
@ -1425,7 +1464,7 @@ emit_intrinsic(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
src = get_src(ctx, &intr->src[0]);
struct ir3_instruction *collect =
create_collect(b, ctx->ir->inputs, ctx->ir->ninputs);
struct ir3_instruction *addr = get_addr(ctx, src[0]);
struct ir3_instruction *addr = get_addr(ctx, src[0], 4);
for (int i = 0; i < intr->num_components; i++) {
unsigned n = idx * 4 + i;
dst[i] = create_indirect_load(ctx, ctx->ir->ninputs,
@ -1433,12 +1472,6 @@ emit_intrinsic(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
}
}
break;
case nir_intrinsic_load_var:
emit_intrinsic_load_var(ctx, intr, dst);
break;
case nir_intrinsic_store_var:
emit_intrinsic_store_var(ctx, intr);
break;
case nir_intrinsic_load_ssbo:
emit_intrinsic_load_ssbo(ctx, intr, dst);
break;
@ -1933,6 +1966,8 @@ emit_tex_txs(struct ir3_compile *ctx, nir_tex_instr *tex)
dst[coords] = ir3_MOV(b, dst[3], TYPE_U32);
}
}
put_dst(ctx, &tex->dest);
}
static void
@ -2088,8 +2123,10 @@ emit_block(struct ir3_compile *ctx, nir_block *nblock)
list_addtail(&block->node, &ctx->ir->block_list);
/* re-emit addr register in each block if needed: */
_mesa_hash_table_destroy(ctx->addr_ht, NULL);
ctx->addr_ht = NULL;
for (int i = 0; i < ARRAY_SIZE(ctx->addr_ht); i++) {
_mesa_hash_table_destroy(ctx->addr_ht[i], NULL);
ctx->addr_ht[i] = NULL;
}
nir_foreach_instr(instr, nblock) {
emit_instr(ctx, instr);
@ -2508,17 +2545,15 @@ emit_instructions(struct ir3_compile *ctx)
setup_output(ctx, var);
}
/* Setup global variables (which should only be arrays): */
nir_foreach_variable(var, &ctx->s->globals) {
declare_var(ctx, var);
/* Setup registers (which should only be arrays): */
nir_foreach_register(reg, &ctx->s->registers) {
declare_array(ctx, reg);
}
/* Setup local variables (which should only be arrays): */
/* NOTE: need to do something more clever when we support >1 fxn */
nir_foreach_variable(var, &fxn->locals) {
declare_var(ctx, var);
nir_foreach_register(reg, &fxn->registers) {
declare_array(ctx, reg);
}
/* And emit the body: */
ctx->impl = fxn;
emit_function(ctx, fxn);