radv/nir: add a pass to optimize shuffle/booleans dependent only on tid/consts

This pass uses constant folding to determine which invocation is read by shuffle
for each invocation. Then, it detects patterns in the result and uses more
a specialized intrinsic if possible.

For booleans it creates inverse_ballot.

Reviewed-by: Daniel Schürmann <daniel@schuermann.dev>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/24650>
This commit is contained in:
Georg Lehmann 2023-02-20 16:31:06 +01:00 committed by Marge Bot
parent 2d3f536174
commit ca88783318
3 changed files with 582 additions and 0 deletions

View file

@ -78,6 +78,7 @@ libradv_files = files(
'nir/radv_nir_lower_view_index.c',
'nir/radv_nir_lower_viewport_to_zero.c',
'nir/radv_nir_lower_vs_inputs.c',
'nir/radv_nir_opt_tid_function.c',
'nir/radv_nir_remap_color_attachment.c',
'nir/radv_nir_rt_common.c',
'nir/radv_nir_rt_shader.c',

View file

@ -73,6 +73,21 @@ bool radv_nir_lower_draw_id_to_zero(nir_shader *shader);
bool radv_nir_remap_color_attachment(nir_shader *shader, const struct radv_graphics_state_key *gfx_state);
typedef struct radv_nir_opt_tid_function_options {
bool use_masked_swizzle_amd : 1;
bool use_dpp16_shift_amd : 1;
bool use_shuffle_xor : 1;
bool use_clustered_rotate : 1;
/* The can be smaller than the api subgroup/ballot size
* if some invocations are always inactive.
*/
uint8_t hw_subgroup_size;
uint8_t hw_ballot_bit_size;
uint8_t hw_ballot_num_comp;
} radv_nir_opt_tid_function_options;
bool radv_nir_opt_tid_function(nir_shader *shader, const radv_nir_opt_tid_function_options *options);
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,566 @@
/*
* Copyright 2023 Valve Corporation
* SPDX-License-Identifier: MIT
*/
#include "nir_builder.h"
#include "nir_constant_expressions.h"
#include "radv_nir.h"
/* This pass optimizes shuffles and boolean alu where the source can be
* expressed as a function of tid (only subgroup_id,
* invocation_id or constant as inputs).
* Shuffles are replaced by specialized intrinsics, boolean alu by inverse_ballot.
* The pass first computes the function of tid (fotid) mask, and then uses constant
* folding to compute the source for each invocation.
*
* This pass assumes that local_invocation_index = subgroup_id * subgroup_size + subgroup_invocation_id.
* That is not guaranteed by the VK spec, but it's how amd hardware works, if the GFX12 INTERLEAVE_BITS_X/Y
* fields are not used. This is also the main reason why this pass is currently radv specific.
*/
#define NIR_MAX_SUBGROUP_SIZE 128
#define FOTID_MAX_RECURSION_DEPTH 16 /* totally arbitrary */
static inline unsigned
src_get_fotid_mask(nir_src src)
{
return src.ssa->parent_instr->pass_flags;
}
static inline unsigned
alu_src_get_fotid_mask(nir_alu_instr *instr, unsigned idx)
{
unsigned unswizzled = src_get_fotid_mask(instr->src[idx].src);
unsigned result = 0;
for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(instr, idx); i++) {
bool is_fotid = unswizzled & (1u << instr->src[idx].swizzle[i]);
result |= is_fotid << i;
}
return result;
}
static void
update_fotid_alu(nir_builder *b, nir_alu_instr *instr, const radv_nir_opt_tid_function_options *options)
{
/* For legacy reasons these are ALU instructions
* when they should be intrinsics.
*/
if (nir_op_is_derivative(instr->op))
return;
const nir_op_info *info = &nir_op_infos[instr->op];
unsigned res = BITFIELD_MASK(instr->def.num_components);
for (unsigned i = 0; res != 0 && i < info->num_inputs; i++) {
unsigned src_mask = alu_src_get_fotid_mask(instr, i);
if (info->input_sizes[i] == 0)
res &= src_mask;
else if (src_mask != BITFIELD_MASK(info->input_sizes[i]))
res = 0;
}
instr->instr.pass_flags = (uint8_t)res;
}
static void
update_fotid_intrinsic(nir_builder *b, nir_intrinsic_instr *instr, const radv_nir_opt_tid_function_options *options)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_subgroup_invocation: {
instr->instr.pass_flags = 1;
break;
}
case nir_intrinsic_load_local_invocation_id: {
if (b->shader->info.workgroup_size_variable)
break;
/* This assumes linear subgroup dispatch. */
unsigned partial_size = 1;
for (unsigned i = 0; i < 3; i++) {
partial_size *= b->shader->info.workgroup_size[i];
if (partial_size == options->hw_subgroup_size)
instr->instr.pass_flags = (uint8_t)BITFIELD_MASK(i + 1);
}
if (partial_size <= options->hw_subgroup_size)
instr->instr.pass_flags = 0x7;
break;
}
case nir_intrinsic_load_local_invocation_index: {
if (b->shader->info.workgroup_size_variable)
break;
unsigned workgroup_size =
b->shader->info.workgroup_size[0] * b->shader->info.workgroup_size[1] * b->shader->info.workgroup_size[2];
if (workgroup_size <= options->hw_subgroup_size)
instr->instr.pass_flags = 0x1;
break;
}
case nir_intrinsic_inverse_ballot: {
if (src_get_fotid_mask(instr->src[0]) == BITFIELD_MASK(instr->src[0].ssa->num_components)) {
instr->instr.pass_flags = 0x1;
}
break;
}
default: {
break;
}
}
}
static void
update_fotid_load_const(nir_load_const_instr *instr)
{
instr->instr.pass_flags = (uint8_t)BITFIELD_MASK(instr->def.num_components);
}
static bool
update_fotid_instr(nir_builder *b, nir_instr *instr, const radv_nir_opt_tid_function_options *options)
{
/* Gather a mask of components that are functions of tid. */
instr->pass_flags = 0;
switch (instr->type) {
case nir_instr_type_alu:
update_fotid_alu(b, nir_instr_as_alu(instr), options);
break;
case nir_instr_type_intrinsic:
update_fotid_intrinsic(b, nir_instr_as_intrinsic(instr), options);
break;
case nir_instr_type_load_const:
update_fotid_load_const(nir_instr_as_load_const(instr));
break;
default:
break;
}
return false;
}
static bool
constant_fold_scalar(nir_scalar s, unsigned invocation_id, nir_shader *shader, nir_const_value *dest, unsigned depth)
{
if (depth > FOTID_MAX_RECURSION_DEPTH)
return false;
memset(dest, 0, sizeof(*dest));
if (nir_scalar_is_alu(s)) {
nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
nir_const_value sources[NIR_ALU_MAX_INPUTS][NIR_MAX_VEC_COMPONENTS];
const nir_op_info *op_info = &nir_op_infos[alu->op];
unsigned bit_size = 0;
if (!nir_alu_type_get_type_size(op_info->output_type))
bit_size = alu->def.bit_size;
for (unsigned i = 0; i < op_info->num_inputs; i++) {
if (!bit_size && !nir_alu_type_get_type_size(op_info->input_types[i]))
bit_size = alu->src[i].src.ssa->bit_size;
unsigned offset = 0;
unsigned num_comp = op_info->input_sizes[i];
if (num_comp == 0) {
num_comp = 1;
offset = s.comp;
}
for (unsigned j = 0; j < num_comp; j++) {
nir_scalar src_scalar = nir_get_scalar(alu->src[i].src.ssa, alu->src[i].swizzle[offset + j]);
if (!constant_fold_scalar(src_scalar, invocation_id, shader, &sources[i][j], depth + 1))
return false;
}
}
if (!bit_size)
bit_size = 32;
unsigned exec_mode = shader->info.float_controls_execution_mode;
nir_const_value *srcs[NIR_ALU_MAX_INPUTS];
for (unsigned i = 0; i < op_info->num_inputs; ++i)
srcs[i] = sources[i];
nir_const_value dests[NIR_MAX_VEC_COMPONENTS];
if (op_info->output_size == 0) {
nir_eval_const_opcode(alu->op, dests, 1, bit_size, srcs, exec_mode);
*dest = dests[0];
} else {
nir_eval_const_opcode(alu->op, dests, s.def->num_components, bit_size, srcs, exec_mode);
*dest = dests[s.comp];
}
return true;
} else if (nir_scalar_is_intrinsic(s)) {
switch (nir_scalar_intrinsic_op(s)) {
case nir_intrinsic_load_subgroup_invocation:
case nir_intrinsic_load_local_invocation_index: {
*dest = nir_const_value_for_uint(invocation_id, s.def->bit_size);
return true;
}
case nir_intrinsic_load_local_invocation_id: {
unsigned local_ids[3];
local_ids[2] = invocation_id / (shader->info.workgroup_size[0] * shader->info.workgroup_size[1]);
unsigned xy = invocation_id % (shader->info.workgroup_size[0] * shader->info.workgroup_size[1]);
local_ids[1] = xy / shader->info.workgroup_size[0];
local_ids[0] = xy % shader->info.workgroup_size[0];
*dest = nir_const_value_for_uint(local_ids[s.comp], s.def->bit_size);
return true;
}
case nir_intrinsic_inverse_ballot: {
nir_def *src = nir_instr_as_intrinsic(s.def->parent_instr)->src[0].ssa;
unsigned comp = invocation_id / src->bit_size;
unsigned bit = invocation_id % src->bit_size;
if (!constant_fold_scalar(nir_get_scalar(src, comp), invocation_id, shader, dest, depth + 1))
return false;
uint64_t ballot = nir_const_value_as_uint(*dest, src->bit_size);
*dest = nir_const_value_for_bool(ballot & (1ull << bit), 1);
return true;
}
default:
break;
}
} else if (nir_scalar_is_const(s)) {
*dest = nir_scalar_as_const_value(s);
return true;
}
unreachable("unhandled scalar type");
return false;
}
struct fotid_context {
const radv_nir_opt_tid_function_options *options;
uint8_t src_invoc[NIR_MAX_SUBGROUP_SIZE];
bool reads_zero[NIR_MAX_SUBGROUP_SIZE];
nir_shader *shader;
};
static bool
gather_read_invocation_shuffle(nir_def *src, struct fotid_context *ctx)
{
nir_scalar s = {src, 0};
/* Recursive constant folding for each invocation */
for (unsigned i = 0; i < ctx->options->hw_subgroup_size; i++) {
nir_const_value value;
if (!constant_fold_scalar(s, i, ctx->shader, &value, 0))
return false;
ctx->src_invoc[i] = MIN2(nir_const_value_as_uint(value, src->bit_size), UINT8_MAX);
}
return true;
}
static nir_alu_instr *
get_singluar_user_bcsel(nir_def *def, unsigned *src_idx)
{
if (def->num_components != 1 || !list_is_singular(&def->uses))
return NULL;
nir_alu_instr *bcsel = NULL;
nir_foreach_use_including_if_safe (src, def) {
if (nir_src_is_if(src) || nir_src_parent_instr(src)->type != nir_instr_type_alu)
return NULL;
bcsel = nir_instr_as_alu(nir_src_parent_instr(src));
if (bcsel->op != nir_op_bcsel || bcsel->def.num_components != 1)
return NULL;
*src_idx = list_entry(src, nir_alu_src, src) - bcsel->src;
break;
}
assert(*src_idx < 3);
if (*src_idx == 0)
return NULL;
return bcsel;
}
static bool
gather_invocation_uses(nir_alu_instr *bcsel, unsigned shuffle_idx, struct fotid_context *ctx)
{
if (!alu_src_get_fotid_mask(bcsel, 0))
return false;
nir_scalar s = {bcsel->src[0].src.ssa, bcsel->src[0].swizzle[0]};
bool can_remove_bcsel =
nir_src_is_const(bcsel->src[3 - shuffle_idx].src) && nir_src_as_uint(bcsel->src[3 - shuffle_idx].src) == 0;
/* Recursive constant folding for each invocation */
for (unsigned i = 0; i < ctx->options->hw_subgroup_size; i++) {
nir_const_value value;
if (!constant_fold_scalar(s, i, ctx->shader, &value, 0)) {
can_remove_bcsel = false;
continue;
}
/* If this invocation selects the other source,
* so we can read an undefined result. */
if (nir_const_value_as_bool(value, 1) == (shuffle_idx != 1)) {
ctx->src_invoc[i] = UINT8_MAX;
ctx->reads_zero[i] = can_remove_bcsel;
}
}
if (can_remove_bcsel) {
return true;
} else {
memset(ctx->reads_zero, 0, sizeof(ctx->reads_zero));
return false;
}
}
static nir_def *
try_opt_bitwise_mask(nir_builder *b, nir_def *def, struct fotid_context *ctx)
{
unsigned one = NIR_MAX_SUBGROUP_SIZE - 1;
unsigned zero = NIR_MAX_SUBGROUP_SIZE - 1;
unsigned copy = NIR_MAX_SUBGROUP_SIZE - 1;
unsigned invert = NIR_MAX_SUBGROUP_SIZE - 1;
for (unsigned i = 0; i < ctx->options->hw_subgroup_size; i++) {
unsigned read = ctx->src_invoc[i];
if (read >= ctx->options->hw_subgroup_size)
continue; /* undefined result */
copy &= ~(read ^ i);
invert &= read ^ i;
one &= read;
zero &= ~read;
}
/* We didn't find valid masks for at least one bit. */
if ((copy | zero | one | invert) != NIR_MAX_SUBGROUP_SIZE - 1)
return NULL;
unsigned and_mask = copy | invert;
unsigned xor_mask = (one | invert) & ~copy;
#if 0
fprintf(stderr, "and %x, xor %x \n", and_mask, xor_mask);
assert(false);
#endif
if ((and_mask & (ctx->options->hw_subgroup_size - 1)) == 0) {
return nir_read_invocation(b, def, nir_imm_int(b, xor_mask));
} else if (and_mask == 0x7f && xor_mask == 0) {
return def;
} else if (ctx->options->use_shuffle_xor && and_mask == 0x7f) {
return nir_shuffle_xor(b, def, nir_imm_int(b, xor_mask));
} else if (ctx->options->use_masked_swizzle_amd && (and_mask & 0x60) == 0x60 && xor_mask <= 0x1f) {
return nir_masked_swizzle_amd(b, def, (xor_mask << 10) | (and_mask & 0x1f), .fetch_inactive = true);
}
return NULL;
}
static nir_def *
try_opt_rotate(nir_builder *b, nir_def *def, struct fotid_context *ctx)
{
for (unsigned csize = 4; csize <= ctx->options->hw_subgroup_size; csize *= 2) {
unsigned cmask = csize - 1;
unsigned delta = UINT_MAX;
for (unsigned i = 0; i < ctx->options->hw_subgroup_size; i++) {
if (ctx->src_invoc[i] >= ctx->options->hw_subgroup_size)
continue;
if (ctx->src_invoc[i] >= i)
delta = ctx->src_invoc[i] - i;
else
delta = csize - i + ctx->src_invoc[i];
break;
}
if (delta >= csize || delta == 0)
continue;
bool use_rotate = true;
for (unsigned i = 0; use_rotate && i < ctx->options->hw_subgroup_size; i++) {
if (ctx->src_invoc[i] >= ctx->options->hw_subgroup_size)
continue;
use_rotate &= (((i + delta) & cmask) + (i & ~cmask)) == ctx->src_invoc[i];
}
if (use_rotate)
return nir_rotate(b, def, nir_imm_int(b, delta), .cluster_size = csize);
}
return NULL;
}
static nir_def *
try_opt_dpp16_shift(nir_builder *b, nir_def *def, struct fotid_context *ctx)
{
int delta = INT_MAX;
for (unsigned i = 0; i < ctx->options->hw_subgroup_size; i++) {
if (ctx->src_invoc[i] >= ctx->options->hw_subgroup_size)
continue;
delta = ctx->src_invoc[i] - i;
break;
}
if (delta < -15 || delta > 15 || delta == 0)
return NULL;
for (unsigned i = 0; i < ctx->options->hw_subgroup_size; i++) {
int read = i + delta;
bool out_of_bounds = (read & ~0xf) != (i & ~0xf);
if (ctx->reads_zero[i] && !out_of_bounds)
return NULL;
if (ctx->src_invoc[i] >= ctx->options->hw_subgroup_size)
continue;
if (read != ctx->src_invoc[i] || out_of_bounds)
return NULL;
}
return nir_dpp16_shift_amd(b, def, .base = delta);
}
static bool
opt_fotid_shuffle(nir_builder *b, nir_intrinsic_instr *instr, const radv_nir_opt_tid_function_options *options,
bool revist_bcsel)
{
if (instr->intrinsic != nir_intrinsic_shuffle)
return false;
if (!instr->src[1].ssa->parent_instr->pass_flags)
return false;
unsigned src_idx = 0;
nir_alu_instr *bcsel = get_singluar_user_bcsel(&instr->def, &src_idx);
/* Skip this shuffle, it will be revisited later when
* the function of tid mask is set on the bcsel.
*/
if (bcsel && !revist_bcsel)
return false;
/* We already tried (and failed) to optimize this shuffle. */
if (!bcsel && revist_bcsel)
return false;
struct fotid_context ctx = {
.options = options,
.reads_zero = {0},
.shader = b->shader,
};
memset(ctx.src_invoc, 0xff, sizeof(ctx.src_invoc));
if (!gather_read_invocation_shuffle(instr->src[1].ssa, &ctx))
return false;
/* Generalize src_invoc by taking into account which invocations
* do not use the shuffle result because of bcsel.
*/
bool can_remove_bcsel = false;
if (bcsel)
can_remove_bcsel = gather_invocation_uses(bcsel, src_idx, &ctx);
#if 0
for (int i = 0; i < options->hw_subgroup_size; i++) {
fprintf(stderr, "invocation %d reads %d\n", i, ctx.src_invoc[i]);
}
for (int i = 0; i < options->hw_subgroup_size; i++) {
fprintf(stderr, "invocation %d zero %d\n", i, ctx.reads_zero[i]);
}
#endif
b->cursor = nir_after_instr(&instr->instr);
nir_def *res = NULL;
if (can_remove_bcsel && options->use_dpp16_shift_amd) {
res = try_opt_dpp16_shift(b, instr->src[0].ssa, &ctx);
if (res) {
nir_def_rewrite_uses(&bcsel->def, res);
return true;
}
}
if (!res)
res = try_opt_bitwise_mask(b, instr->src[0].ssa, &ctx);
if (!res && options->use_clustered_rotate)
res = try_opt_rotate(b, instr->src[0].ssa, &ctx);
if (res) {
nir_def_replace(&instr->def, res);
return true;
} else {
return false;
}
}
static bool
opt_fotid_bool(nir_builder *b, nir_alu_instr *instr, const radv_nir_opt_tid_function_options *options)
{
nir_scalar s = {&instr->def, 0};
b->cursor = nir_after_instr(&instr->instr);
nir_def *ballot_comp[NIR_MAX_VEC_COMPONENTS];
for (unsigned comp = 0; comp < options->hw_ballot_num_comp; comp++) {
uint64_t cballot = 0;
for (unsigned i = 0; i < options->hw_ballot_bit_size; i++) {
unsigned invocation_id = comp * options->hw_ballot_bit_size + i;
if (invocation_id >= options->hw_subgroup_size)
break;
nir_const_value value;
if (!constant_fold_scalar(s, invocation_id, b->shader, &value, 0))
return false;
cballot |= nir_const_value_as_uint(value, 1) << i;
}
ballot_comp[comp] = nir_imm_intN_t(b, cballot, options->hw_ballot_bit_size);
}
nir_def *ballot = nir_vec(b, ballot_comp, options->hw_ballot_num_comp);
nir_def *res = nir_inverse_ballot(b, 1, ballot);
res->parent_instr->pass_flags = 1;
nir_def_replace(&instr->def, res);
return true;
}
static bool
visit_instr(nir_builder *b, nir_instr *instr, void *params)
{
const radv_nir_opt_tid_function_options *options = params;
update_fotid_instr(b, instr, options);
switch (instr->type) {
case nir_instr_type_alu: {
nir_alu_instr *alu = nir_instr_as_alu(instr);
if (alu->op == nir_op_bcsel && alu->def.bit_size != 1) {
/* revist shuffles that we skipped previously */
bool progress = false;
for (unsigned i = 1; i < 3; i++) {
nir_instr *src_instr = alu->src[i].src.ssa->parent_instr;
if (src_instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src_instr);
progress |= opt_fotid_shuffle(b, intrin, options, true);
if (list_is_empty(&alu->def.uses))
break;
}
}
return progress;
}
if (!options->hw_ballot_bit_size || !options->hw_ballot_num_comp)
return false;
if (alu->def.bit_size != 1 || alu->def.num_components > 1 || !instr->pass_flags)
return false;
return opt_fotid_bool(b, alu, options);
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
return opt_fotid_shuffle(b, intrin, options, false);
}
default:
return false;
}
}
bool
radv_nir_opt_tid_function(nir_shader *shader, const radv_nir_opt_tid_function_options *options)
{
return nir_shader_instructions_pass(shader, visit_instr, nir_metadata_control_flow, (void *)options);
}