i965/blorp: Modify manual_blend() to avoid unnecessary loss of precision.

When downsampling from an MSAA image to a single-sampled image, it is
inevitable that some loss of numerical precision will occur, since we
have to use 32-bit floating point registers to hold the intermediate
results while blending.  However, it seems reasonable to expect that
when all samples corresponding to a given pixel have the exact same
color value, there will be no loss of precision.

Previously, we averaged samples as follows:

    blend = (((sample[0] + sample[1]) + sample[2]) + sample[3]) / 4

This had the potential to lose numerical precision when all samples
have the same color value, since ((sample[0] + sample[1]) + sample[2])
may not be precisely representable as a 32-bit float, even if the
individual samples are.

This patch changes the formula to:

    blend = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4

This avoids any loss of precision in the event that all samples are
the same, by ensuring that each addition operation adds two equal
values.

As a side benefit, this puts the formula in the form we will need in
order to implement correct blending of integer formats.

Reviewed-by: Anuj Phogat <anuj.phogat@gmail.com>
This commit is contained in:
Paul Berry 2012-07-07 08:02:48 -07:00
parent 6a27506181
commit b961d37e61

View file

@ -434,6 +434,11 @@ private:
const sampler_message_arg *args, int num_args);
void render_target_write();
/**
* Base-2 logarithm of the maximum number of samples that can be blended.
*/
static const unsigned LOG2_MAX_BLEND_SAMPLES = 2;
void *mem_ctx;
struct brw_context *brw;
const brw_blorp_blit_prog_key *key;
@ -455,13 +460,8 @@ private:
struct brw_reg offset;
} x_transform, y_transform;
/* Data to be written to render target (4 vec16's) */
struct brw_reg result;
/* Auxiliary storage for data returned by a sampling operation when
* blending (4 vec16's)
*/
struct brw_reg texture_data;
/* Data read from texture (4 vec16's per array element) */
struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
/* Auxiliary storage for the contents of the MCS surface.
*
@ -622,7 +622,7 @@ brw_blorp_blit_program::compile(struct brw_context *brw,
if (brw->intel.gen == 6) {
/* Gen6 hardware an automatically blend using the SAMPLE message */
single_to_blend();
sample(result);
sample(texture_data[0]);
} else {
/* Gen7+ hardware doesn't automaticaly blend. */
manual_blend();
@ -656,7 +656,7 @@ brw_blorp_blit_program::compile(struct brw_context *brw,
*/
if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
mcs_fetch();
texel_fetch(result);
texel_fetch(texture_data[0]);
}
/* Finally, write the fetched (or blended) value to the render target and
@ -695,8 +695,9 @@ brw_blorp_blit_program::alloc_regs()
prog_data.first_curbe_grf = reg;
alloc_push_const_regs(reg);
reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
this->result = vec16(brw_vec8_grf(reg, 0)); reg += 8;
this->texture_data = vec16(brw_vec8_grf(reg, 0)); reg += 8;
for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
this->texture_data[i] = vec16(brw_vec8_grf(reg, 0)); reg += 8;
}
this->mcs_data =
retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
for (int i = 0; i < 2; ++i) {
@ -711,6 +712,9 @@ brw_blorp_blit_program::alloc_regs()
this->t1 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
this->t2 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
/* Make sure we didn't run out of registers */
assert(reg <= GEN7_MRF_HACK_START);
int mrf = 2;
this->base_mrf = mrf;
}
@ -1061,6 +1065,24 @@ brw_blorp_blit_program::single_to_blend()
SWAP_XY_AND_XPYP();
}
/**
* Count the number of trailing 1 bits in the given value. For example:
*
* count_trailing_one_bits(0) == 0
* count_trailing_one_bits(7) == 3
* count_trailing_one_bits(11) == 2
*/
inline int count_trailing_one_bits(unsigned value)
{
#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
return __builtin_ctz(~value);
#else
return _mesa_bitcount(value & ~(value + 1));
#endif
}
void
brw_blorp_blit_program::manual_blend()
{
@ -1070,27 +1092,68 @@ brw_blorp_blit_program::manual_blend()
if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
mcs_fetch();
/* Gather sample 0 data first */
s_is_zero = true;
texel_fetch(result);
/* We add together samples using a binary tree structure, e.g. for 4x MSAA:
*
* result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
*
* This ensures that when all samples have the same value, no numerical
* precision is lost, since each addition operation always adds two equal
* values, and summing two equal floating point values does not lose
* precision.
*
* We perform this computation by treating the texture_data array as a
* stack and performing the following operations:
*
* - push sample 0 onto stack
* - push sample 1 onto stack
* - add top two stack entries
* - push sample 2 onto stack
* - push sample 3 onto stack
* - add top two stack entries
* - add top two stack entries
* - divide top stack entry by 4
*
* Note that after pushing sample i onto the stack, the number of add
* operations we do is equal to the number of trailing 1 bits in i. This
* works provided the total number of samples is a power of two, which it
* always is for i965.
*/
unsigned stack_depth = 0;
for (int i = 0; i < num_samples; ++i) {
assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
/* Gather data for remaining samples and accumulate it into result. */
s_is_zero = false;
for (int i = 1; i < num_samples; ++i) {
brw_MOV(&func, S, brw_imm_uw(i));
texel_fetch(texture_data);
/* Push sample i onto the stack */
assert(stack_depth < ARRAY_SIZE(texture_data));
if (i == 0) {
s_is_zero = true;
} else {
s_is_zero = false;
brw_MOV(&func, S, brw_imm_uw(i));
}
texel_fetch(texture_data[stack_depth++]);
/* TODO: should use a smaller loop bound for non-RGBA formats */
for (int j = 0; j < 4; ++j) {
brw_ADD(&func, offset(result, 2*j), offset(vec8(result), 2*j),
offset(vec8(texture_data), 2*j));
/* Do count_trailing_one_bits(i) times */
for (int j = count_trailing_one_bits(i); j-- > 0; ) {
assert(stack_depth >= 2);
--stack_depth;
/* TODO: should use a smaller loop bound for non_RGBA formats */
for (int k = 0; k < 4; ++k) {
brw_ADD(&func, offset(texture_data[stack_depth - 1], 2*k),
offset(vec8(texture_data[stack_depth - 1]), 2*k),
offset(vec8(texture_data[stack_depth]), 2*k));
}
}
}
/* We should have just 1 sample on the stack now. */
assert(stack_depth == 1);
/* Scale the result down by a factor of num_samples */
/* TODO: should use a smaller loop bound for non-RGBA formats */
for (int j = 0; j < 4; ++j) {
brw_MUL(&func, offset(result, 2*j), offset(vec8(result), 2*j),
brw_MUL(&func, offset(texture_data[0], 2*j),
offset(vec8(texture_data[0]), 2*j),
brw_imm_f(1.0/num_samples));
}
}
@ -1274,7 +1337,7 @@ brw_blorp_blit_program::render_target_write()
for (int i = 0; i < 4; ++i) {
/* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
brw_MOV(&func, offset(mrf_rt_write, mrf_offset),
offset(vec8(result), 2*i));
offset(vec8(texture_data[0]), 2*i));
mrf_offset += 2;
}