i965: Use the VAOs binding information in array setup.

The change basically reimplements array setup by walking
the gl_contex::Array._DrawVAO on a per binding sequence.
In this way we can make direct use of the application
provided minimum set of buffer objects and emit fewer relocs.

v2: Rebase onto:
    compiler: Move double_inputs to gl_program::DualSlotInputs
v3: Rebase onto introduction of gl_vertex_format
v4: Reorder and extend patch series.
v5: Split out two hunks into seperate patches.
v6: Avoid using GL* types.

Reviewed-by: Matt Turner <mattst88@gmail.com>
Signed-off-by: Mathias Fröhlich <Mathias.Froehlich@web.de>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/308>
This commit is contained in:
Mathias Fröhlich 2019-04-20 07:57:15 +02:00 committed by Marge Bot
parent e1f2c84282
commit b684030c3a

View file

@ -400,30 +400,12 @@ brw_get_vertex_surface_type(struct brw_context *brw,
static void
copy_array_to_vbo_array(struct brw_context *brw,
struct brw_vertex_element *element,
const uint8_t *const ptr, const int src_stride,
int min, int max,
struct brw_vertex_buffer *buffer,
GLuint dst_stride)
{
const struct gl_vertex_buffer_binding *glbinding = element->glbinding;
const struct gl_array_attributes *glattrib = element->glattrib;
const struct gl_vertex_format *glformat = &glattrib->Format;
const int src_stride = glbinding->Stride;
/* If the source stride is zero, we just want to upload the current
* attribute once and set the buffer's stride to 0. There's no need
* to replicate it out.
*/
if (src_stride == 0) {
brw_upload_data(&brw->upload, glattrib->Ptr, glformat->_ElementSize,
glformat->_ElementSize, &buffer->bo, &buffer->offset);
buffer->stride = 0;
buffer->size = glformat->_ElementSize;
return;
}
const unsigned char *src = glattrib->Ptr + min * src_stride;
const unsigned char *src = ptr + min * src_stride;
int count = max - min + 1;
GLuint size = count * dst_stride;
uint8_t *dst = brw_upload_space(&brw->upload, size, dst_stride,
@ -466,16 +448,10 @@ brw_prepare_vertices(struct brw_context *brw)
vp->DualSlotInputs);
assert((vs_inputs64 & ~(uint64_t)VERT_BIT_ALL) == 0);
unsigned vs_inputs = (unsigned)vs_inputs64;
const unsigned char *ptr = NULL;
GLuint interleaved = 0;
unsigned int min_index = brw->vb.min_index + brw->basevertex;
unsigned int max_index = brw->vb.max_index + brw->basevertex;
unsigned i;
int delta, j;
struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
GLuint nr_uploads = 0;
/* _NEW_POLYGON
*
* On gen6+, edge flags don't end up in the VUE (either in or out of the
@ -498,7 +474,6 @@ brw_prepare_vertices(struct brw_context *brw)
while (mask) {
const gl_vert_attrib attr = u_bit_scan(&mask);
struct brw_vertex_element *input = &brw->vb.inputs[attr];
input->is_dual_slot = (vp->DualSlotInputs & BITFIELD64_BIT(attr)) != 0;
brw->vb.enabled[brw->vb.nr_enabled++] = input;
}
assert(brw->vb.nr_enabled <= VERT_ATTRIB_MAX);
@ -509,134 +484,84 @@ brw_prepare_vertices(struct brw_context *brw)
if (brw->vb.nr_buffers)
return;
/* The range of data in a given buffer represented as [min, max) */
struct intel_buffer_object *enabled_buffer[VERT_ATTRIB_MAX];
uint32_t buffer_range_start[VERT_ATTRIB_MAX];
uint32_t buffer_range_end[VERT_ATTRIB_MAX];
j = 0;
const struct gl_vertex_array_object *vao = ctx->Array._DrawVAO;
for (i = j = 0; i < brw->vb.nr_enabled; i++) {
struct brw_vertex_element *input = brw->vb.enabled[i];
const struct gl_vertex_buffer_binding *glbinding = input->glbinding;
const struct gl_array_attributes *glattrib = input->glattrib;
unsigned vbomask = vs_inputs & _mesa_draw_vbo_array_bits(ctx);
while (vbomask) {
const struct gl_vertex_buffer_binding *const glbinding =
_mesa_draw_buffer_binding(vao, ffs(vbomask) - 1);
const GLsizei stride = glbinding->Stride;
if (_mesa_is_bufferobj(glbinding->BufferObj)) {
struct intel_buffer_object *intel_buffer =
intel_buffer_object(glbinding->BufferObj);
assert(_mesa_is_bufferobj(glbinding->BufferObj));
const uint32_t offset = _mesa_draw_binding_offset(glbinding) +
/* Accumulate the range of a single vertex, start with inverted range */
uint32_t vertex_range_start = ~(uint32_t)0;
uint32_t vertex_range_end = 0;
const unsigned boundmask = _mesa_draw_bound_attrib_bits(glbinding);
unsigned attrmask = vbomask & boundmask;
/* Mark the those attributes as processed */
vbomask ^= attrmask;
/* We can assume that we have an array for the binding */
assert(attrmask);
/* Walk attributes belonging to the binding */
while (attrmask) {
const gl_vert_attrib attr = u_bit_scan(&attrmask);
const struct gl_array_attributes *const glattrib =
_mesa_draw_array_attrib(vao, attr);
const uint32_t rel_offset =
_mesa_draw_attributes_relative_offset(glattrib);
const uint32_t rel_end = rel_offset + glattrib->Format._ElementSize;
/* Start with the worst case */
uint32_t start = 0;
uint32_t range = intel_buffer->Base.Size;
if (glbinding->InstanceDivisor) {
if (brw->num_instances) {
start = offset + glbinding->Stride * brw->baseinstance;
range = (glbinding->Stride * ((brw->num_instances - 1) /
glbinding->InstanceDivisor) +
glattrib->Format._ElementSize);
}
} else {
if (brw->vb.index_bounds_valid) {
start = offset + min_index * glbinding->Stride;
range = (glbinding->Stride * (max_index - min_index) +
glattrib->Format._ElementSize);
}
}
vertex_range_start = MIN2(vertex_range_start, rel_offset);
vertex_range_end = MAX2(vertex_range_end, rel_end);
/* If we have a VB set to be uploaded for this buffer object
* already, reuse that VB state so that we emit fewer
* relocations.
*/
unsigned k;
for (k = 0; k < i; k++) {
struct brw_vertex_element *other = brw->vb.enabled[k];
const struct gl_vertex_buffer_binding *obind = other->glbinding;
const struct gl_array_attributes *oattrib = other->glattrib;
const uint32_t ooffset = _mesa_draw_binding_offset(obind) +
_mesa_draw_attributes_relative_offset(oattrib);
if (glbinding->BufferObj == obind->BufferObj &&
glbinding->Stride == obind->Stride &&
glbinding->InstanceDivisor == obind->InstanceDivisor &&
(offset - ooffset) < glbinding->Stride)
{
input->buffer = brw->vb.enabled[k]->buffer;
input->offset = offset - ooffset;
buffer_range_start[input->buffer] =
MIN2(buffer_range_start[input->buffer], start);
buffer_range_end[input->buffer] =
MAX2(buffer_range_end[input->buffer], start + range);
break;
}
}
if (k == i) {
struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
/* Named buffer object: Just reference its contents directly. */
buffer->offset = offset;
buffer->stride = glbinding->Stride;
buffer->step_rate = glbinding->InstanceDivisor;
buffer->size = glbinding->BufferObj->Size - offset;
enabled_buffer[j] = intel_buffer;
buffer_range_start[j] = start;
buffer_range_end[j] = start + range;
input->buffer = j++;
input->offset = 0;
}
} else {
/* Queue the buffer object up to be uploaded in the next pass,
* when we've decided if we're doing interleaved or not.
*/
if (nr_uploads == 0) {
interleaved = glbinding->Stride;
ptr = glattrib->Ptr;
}
else if (interleaved != glbinding->Stride ||
glbinding->InstanceDivisor != 0 ||
glattrib->Ptr < ptr ||
(uintptr_t)(glattrib->Ptr - ptr) +
glattrib->Format._ElementSize > interleaved)
{
/* If our stride is different from the first attribute's stride,
* or if we are using an instance divisor or if the first
* attribute's stride didn't cover our element, disable the
* interleaved upload optimization. The second case can most
* commonly occur in cases where there is a single vertex and, for
* example, the data is stored on the application's stack.
*
* NOTE: This will also disable the optimization in cases where
* the data is in a different order than the array indices.
* Something like:
*
* float data[...];
* glVertexAttribPointer(0, 4, GL_FLOAT, 32, &data[4]);
* glVertexAttribPointer(1, 4, GL_FLOAT, 32, &data[0]);
*/
interleaved = 0;
}
upload[nr_uploads++] = input;
struct brw_vertex_element *input = &brw->vb.inputs[attr];
input->glattrib = glattrib;
input->buffer = j;
input->is_dual_slot = (vp->DualSlotInputs & BITFIELD64_BIT(attr)) != 0;
input->offset = rel_offset;
}
}
assert(vertex_range_start <= vertex_range_end);
/* Now that we've set up all of the buffers, we walk through and reference
* each of them. We do this late so that we get the right size in each
* buffer and don't reference too little data.
*/
for (i = 0; i < j; i++) {
struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
if (buffer->bo)
continue;
struct intel_buffer_object *intel_buffer =
intel_buffer_object(glbinding->BufferObj);
struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
const uint32_t start = buffer_range_start[i];
const uint32_t range = buffer_range_end[i] - buffer_range_start[i];
const uint32_t offset = _mesa_draw_binding_offset(glbinding);
buffer->bo = intel_bufferobj_buffer(brw, enabled_buffer[i], start,
/* If nothing else is known take the buffer size and offset as a bound */
uint32_t start = vertex_range_start;
uint32_t range = intel_buffer->Base.Size - offset - vertex_range_start;
/* Check if we can get a more narrow range */
if (glbinding->InstanceDivisor) {
if (brw->num_instances) {
const uint32_t vertex_size = vertex_range_end - vertex_range_start;
start = vertex_range_start + stride * brw->baseinstance;
range = (stride * ((brw->num_instances - 1) /
glbinding->InstanceDivisor) +
vertex_size);
}
} else {
if (brw->vb.index_bounds_valid) {
const uint32_t vertex_size = vertex_range_end - vertex_range_start;
start = vertex_range_start + stride * min_index;
range = (stride * (max_index - min_index) +
vertex_size);
}
}
buffer->offset = offset;
buffer->size = start + range;
buffer->stride = stride;
buffer->step_rate = glbinding->InstanceDivisor;
buffer->bo = intel_bufferobj_buffer(brw, intel_buffer, offset + start,
range, false);
brw_bo_reference(buffer->bo);
j++;
}
/* If we need to upload all the arrays, then we can trim those arrays to
@ -645,43 +570,64 @@ brw_prepare_vertices(struct brw_context *brw)
*/
brw->vb.start_vertex_bias = 0;
delta = min_index;
if (nr_uploads == brw->vb.nr_enabled) {
if ((vs_inputs & _mesa_draw_vbo_array_bits(ctx)) == 0) {
brw->vb.start_vertex_bias = -delta;
delta = 0;
}
/* Handle any arrays to be uploaded. */
if (nr_uploads > 1) {
if (interleaved) {
struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
/* All uploads are interleaved, so upload the arrays together as
* interleaved. First, upload the contents and set up upload[0].
*/
copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
buffer, interleaved);
buffer->offset -= delta * interleaved;
buffer->size += delta * interleaved;
buffer->step_rate = 0;
unsigned usermask = vs_inputs & _mesa_draw_user_array_bits(ctx);
while (usermask) {
const struct gl_vertex_buffer_binding *const glbinding =
_mesa_draw_buffer_binding(vao, ffs(usermask) - 1);
const GLsizei stride = glbinding->Stride;
for (i = 0; i < nr_uploads; i++) {
const struct gl_array_attributes *glattrib = upload[i]->glattrib;
/* Then, just point upload[i] at upload[0]'s buffer. */
upload[i]->offset = ((const unsigned char *)glattrib->Ptr - ptr);
upload[i]->buffer = j;
}
j++;
assert(!_mesa_is_bufferobj(glbinding->BufferObj));
assert(brw->vb.index_bounds_valid);
nr_uploads = 0;
/* Accumulate the range of a single vertex, start with inverted range */
uint32_t vertex_range_start = ~(uint32_t)0;
uint32_t vertex_range_end = 0;
const unsigned boundmask = _mesa_draw_bound_attrib_bits(glbinding);
unsigned attrmask = usermask & boundmask;
/* Mark the those attributes as processed */
usermask ^= attrmask;
/* We can assume that we have an array for the binding */
assert(attrmask);
/* Walk attributes belonging to the binding */
while (attrmask) {
const gl_vert_attrib attr = u_bit_scan(&attrmask);
const struct gl_array_attributes *const glattrib =
_mesa_draw_array_attrib(vao, attr);
const uint32_t rel_offset =
_mesa_draw_attributes_relative_offset(glattrib);
const uint32_t rel_end = rel_offset + glattrib->Format._ElementSize;
vertex_range_start = MIN2(vertex_range_start, rel_offset);
vertex_range_end = MAX2(vertex_range_end, rel_end);
struct brw_vertex_element *input = &brw->vb.inputs[attr];
input->glattrib = glattrib;
input->buffer = j;
input->is_dual_slot = (vp->DualSlotInputs & BITFIELD64_BIT(attr)) != 0;
input->offset = rel_offset;
}
}
/* Upload non-interleaved arrays */
for (i = 0; i < nr_uploads; i++) {
assert(vertex_range_start <= vertex_range_end);
struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
const struct gl_vertex_buffer_binding *glbinding = upload[i]->glbinding;
const struct gl_array_attributes *glattrib = upload[i]->glattrib;
if (glbinding->InstanceDivisor == 0) {
copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
buffer, glattrib->Format._ElementSize);
const uint8_t *ptr = (const uint8_t*)_mesa_draw_binding_offset(glbinding);
ptr += vertex_range_start;
const uint32_t vertex_size = vertex_range_end - vertex_range_start;
if (glbinding->Stride == 0) {
/* If the source stride is zero, we just want to upload the current
* attribute once and set the buffer's stride to 0. There's no need
* to replicate it out.
*/
copy_array_to_vbo_array(brw, ptr, 0, 0, 0, buffer, vertex_size);
} else if (glbinding->InstanceDivisor == 0) {
copy_array_to_vbo_array(brw, ptr, stride, min_index,
max_index, buffer, vertex_size);
} else {
/* This is an instanced attribute, since its InstanceDivisor
* is not zero. Therefore, its data will be stepped after the
@ -689,16 +635,52 @@ brw_prepare_vertices(struct brw_context *brw)
*/
uint32_t instanced_attr_max_index =
(brw->num_instances - 1) / glbinding->InstanceDivisor;
copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
buffer, glattrib->Format._ElementSize);
copy_array_to_vbo_array(brw, ptr, stride, 0,
instanced_attr_max_index, buffer, vertex_size);
}
buffer->offset -= delta * buffer->stride;
buffer->size += delta * buffer->stride;
buffer->offset -= delta * buffer->stride + vertex_range_start;
buffer->size += delta * buffer->stride + vertex_range_start;
buffer->step_rate = glbinding->InstanceDivisor;
upload[i]->buffer = j++;
upload[i]->offset = 0;
j++;
}
/* Upload the current values */
unsigned curmask = vs_inputs & _mesa_draw_current_bits(ctx);
if (curmask) {
/* For each attribute, upload the maximum possible size. */
uint8_t data[VERT_ATTRIB_MAX * sizeof(GLdouble) * 4];
uint8_t *cursor = data;
do {
const gl_vert_attrib attr = u_bit_scan(&curmask);
const struct gl_array_attributes *const glattrib =
_mesa_draw_current_attrib(ctx, attr);
const unsigned size = glattrib->Format._ElementSize;
const unsigned alignment = align(size, sizeof(GLdouble));
memcpy(cursor, glattrib->Ptr, size);
if (alignment != size)
memset(cursor + size, 0, alignment - size);
struct brw_vertex_element *input = &brw->vb.inputs[attr];
input->glattrib = glattrib;
input->buffer = j;
input->is_dual_slot = (vp->DualSlotInputs & BITFIELD64_BIT(attr)) != 0;
input->offset = cursor - data;
cursor += alignment;
} while (curmask);
struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
const unsigned size = cursor - data;
brw_upload_data(&brw->upload, data, size, size,
&buffer->bo, &buffer->offset);
buffer->stride = 0;
buffer->size = size;
buffer->step_rate = 0;
j++;
}
brw->vb.nr_buffers = j;
}