amd/common: Cache intra-tile addresses for retile map.

However complicated DCC addressing is it is still based on tiles.
If we have the intra-tile offsets + tile dimensions we can expand
that to the full image ourselves.

Behavior around ~1080p on a 2500U:

old:
  30-60 ms on every miss

new:
  5 ms initally (miss in the tile cache)
  <0.5 ms afterwards

The most common case is that the tile cache only contains data for
2 tiles, which for Raven/Renoir/Navi14 will be 4 KiB each, so the
size increase is fairly modest.

Reviewed-by: Marek Olšák <marek.olsak@amd.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/5865>
This commit is contained in:
Bas Nieuwenhuizen 2020-07-11 22:04:25 +02:00 committed by Marge Bot
parent f302ef3853
commit a37aeb128d

View file

@ -61,6 +61,7 @@ struct ac_addrlib {
*/ */
simple_mtx_t dcc_retile_map_lock; simple_mtx_t dcc_retile_map_lock;
struct hash_table *dcc_retile_maps; struct hash_table *dcc_retile_maps;
struct hash_table *dcc_retile_tile_indices;
}; };
struct dcc_retile_map_key { struct dcc_retile_map_key {
@ -89,6 +90,156 @@ static void dcc_retile_map_free(struct hash_entry *entry)
free(entry->data); free(entry->data);
} }
struct dcc_retile_tile_key {
enum radeon_family family;
unsigned bpp;
unsigned swizzle_mode;
bool rb_aligned;
bool pipe_aligned;
};
struct dcc_retile_tile_data {
unsigned tile_width_log2;
unsigned tile_height_log2;
uint16_t *data;
};
static uint32_t dcc_retile_tile_hash_key(const void *key)
{
return _mesa_hash_data(key, sizeof(struct dcc_retile_tile_key));
}
static bool dcc_retile_tile_keys_equal(const void *a, const void *b)
{
return memcmp(a, b, sizeof(struct dcc_retile_tile_key)) == 0;
}
static void dcc_retile_tile_free(struct hash_entry *entry)
{
free((void*)entry->key);
free(((struct dcc_retile_tile_data*)entry->data)->data);
free(entry->data);
}
/* Assumes dcc_retile_map_lock is taken. */
static const struct dcc_retile_tile_data *
ac_compute_dcc_retile_tile_indices(struct ac_addrlib *addrlib,
const struct radeon_info *info,
unsigned bpp, unsigned swizzle_mode,
bool rb_aligned, bool pipe_aligned)
{
struct dcc_retile_tile_key key = (struct dcc_retile_tile_key) {
.family = info->family,
.bpp = bpp,
.swizzle_mode = swizzle_mode,
.rb_aligned = rb_aligned,
.pipe_aligned = pipe_aligned
};
struct hash_entry *entry = _mesa_hash_table_search(addrlib->dcc_retile_tile_indices, &key);
if (entry)
return entry->data;
ADDR2_COMPUTE_DCCINFO_INPUT din = {0};
ADDR2_COMPUTE_DCCINFO_OUTPUT dout = {0};
din.size = sizeof(ADDR2_COMPUTE_DCCINFO_INPUT);
dout.size = sizeof(ADDR2_COMPUTE_DCCINFO_OUTPUT);
din.dccKeyFlags.pipeAligned = pipe_aligned;
din.dccKeyFlags.rbAligned = rb_aligned;
din.resourceType = ADDR_RSRC_TEX_2D;
din.swizzleMode = swizzle_mode;
din.bpp = bpp;
din.unalignedWidth = 1;
din.unalignedHeight = 1;
din.numSlices = 1;
din.numFrags = 1;
din.numMipLevels = 1;
ADDR_E_RETURNCODE ret = Addr2ComputeDccInfo(addrlib->handle, &din, &dout);
if (ret != ADDR_OK)
return NULL;
ADDR2_COMPUTE_DCC_ADDRFROMCOORD_INPUT addrin = {0};
addrin.size = sizeof(addrin);
addrin.swizzleMode = swizzle_mode;
addrin.resourceType = ADDR_RSRC_TEX_2D;
addrin.bpp = bpp;
addrin.numSlices = 1;
addrin.numMipLevels = 1;
addrin.numFrags = 1;
addrin.pitch = dout.pitch;
addrin.height = dout.height;
addrin.compressBlkWidth = dout.compressBlkWidth;
addrin.compressBlkHeight = dout.compressBlkHeight;
addrin.compressBlkDepth = dout.compressBlkDepth;
addrin.metaBlkWidth = dout.metaBlkWidth;
addrin.metaBlkHeight = dout.metaBlkHeight;
addrin.metaBlkDepth = dout.metaBlkDepth;
addrin.dccKeyFlags.pipeAligned = pipe_aligned;
addrin.dccKeyFlags.rbAligned = rb_aligned;
unsigned w = dout.metaBlkWidth / dout.compressBlkWidth;
unsigned h = dout.metaBlkHeight / dout.compressBlkHeight;
uint16_t *indices = malloc(w * h * sizeof (uint16_t));
if (!indices)
return NULL;
ADDR2_COMPUTE_DCC_ADDRFROMCOORD_OUTPUT addrout = {};
addrout.size = sizeof(addrout);
for (unsigned y = 0; y < h; ++y) {
addrin.y = y * dout.compressBlkHeight;
for (unsigned x = 0; x < w; ++x) {
addrin.x = x * dout.compressBlkWidth;
addrout.addr = 0;
if (Addr2ComputeDccAddrFromCoord(addrlib->handle, &addrin, &addrout) != ADDR_OK) {
free(indices);
return NULL;
}
indices[y * w + x] = addrout.addr;
}
}
struct dcc_retile_tile_data *data = calloc(1, sizeof(*data));
if (!data) {
free(indices);
return NULL;
}
data->tile_width_log2 = util_logbase2(w);
data->tile_height_log2 = util_logbase2(h);
data->data = indices;
struct dcc_retile_tile_key *heap_key = mem_dup(&key, sizeof(key));
if (!heap_key) {
free(data);
free(indices);
return NULL;
}
entry = _mesa_hash_table_insert(addrlib->dcc_retile_tile_indices, heap_key, data);
if (!entry) {
free(heap_key);
free(data);
free(indices);
}
return data;
}
static uint32_t ac_compute_retile_tile_addr(const struct dcc_retile_tile_data *tile,
unsigned stride, unsigned x, unsigned y)
{
unsigned x_mask = (1u << tile->tile_width_log2) - 1;
unsigned y_mask = (1u << tile->tile_height_log2) - 1;
unsigned tile_size_log2 = tile->tile_width_log2 + tile->tile_height_log2;
unsigned base = ((y >> tile->tile_height_log2) * stride + (x >> tile->tile_width_log2)) << tile_size_log2;
unsigned offset_in_tile = tile->data[((y & y_mask) << tile->tile_width_log2) + (x & x_mask)];
return base + offset_in_tile;
}
static uint32_t *ac_compute_dcc_retile_map(struct ac_addrlib *addrlib, static uint32_t *ac_compute_dcc_retile_map(struct ac_addrlib *addrlib,
const struct radeon_info *info, const struct radeon_info *info,
unsigned retile_width, unsigned retile_height, unsigned retile_width, unsigned retile_height,
@ -120,11 +271,17 @@ static uint32_t *ac_compute_dcc_retile_map(struct ac_addrlib *addrlib,
return map; return map;
} }
ADDR2_COMPUTE_DCC_ADDRFROMCOORD_INPUT addrin; const struct dcc_retile_tile_data *src_tile =
memcpy(&addrin, in, sizeof(*in)); ac_compute_dcc_retile_tile_indices(addrlib, info, in->bpp,
in->swizzleMode,
ADDR2_COMPUTE_DCC_ADDRFROMCOORD_OUTPUT addrout = {}; rb_aligned, pipe_aligned);
addrout.size = sizeof(addrout); const struct dcc_retile_tile_data *dst_tile =
ac_compute_dcc_retile_tile_indices(addrlib, info, in->bpp,
in->swizzleMode, false, false);
if (!src_tile || !dst_tile) {
simple_mtx_unlock(&addrlib->dcc_retile_map_lock);
return NULL;
}
void *dcc_retile_map = malloc(dcc_retile_map_size); void *dcc_retile_map = malloc(dcc_retile_map_size);
if (!dcc_retile_map) { if (!dcc_retile_map) {
@ -133,47 +290,27 @@ static uint32_t *ac_compute_dcc_retile_map(struct ac_addrlib *addrlib,
} }
unsigned index = 0; unsigned index = 0;
unsigned w = DIV_ROUND_UP(retile_width, in->compressBlkWidth);
unsigned h = DIV_ROUND_UP(retile_height, in->compressBlkHeight);
unsigned src_stride = DIV_ROUND_UP(w, 1u << src_tile->tile_width_log2);
unsigned dst_stride = DIV_ROUND_UP(w, 1u << dst_tile->tile_width_log2);
for (unsigned y = 0; y < retile_height; y += in->compressBlkHeight) { for (unsigned y = 0; y < h; ++y) {
addrin.y = y; for (unsigned x = 0; x < w; ++x) {
unsigned src_addr = ac_compute_retile_tile_addr(src_tile, src_stride, x, y);
unsigned dst_addr = ac_compute_retile_tile_addr(dst_tile, dst_stride, x, y);
for (unsigned x = 0; x < retile_width; x += in->compressBlkWidth) { if (use_uint16) {
addrin.x = x; ((uint16_t*)dcc_retile_map)[2 * index] = src_addr;
((uint16_t*)dcc_retile_map)[2 * index + 1] = dst_addr;
/* Compute src DCC address */ } else {
addrin.dccKeyFlags.pipeAligned = pipe_aligned; ((uint32_t*)dcc_retile_map)[2 * index] = src_addr;
addrin.dccKeyFlags.rbAligned = rb_aligned; ((uint32_t*)dcc_retile_map)[2 * index + 1] = dst_addr;
addrout.addr = 0;
if (Addr2ComputeDccAddrFromCoord(addrlib->handle, &addrin, &addrout) != ADDR_OK) {
simple_mtx_unlock(&addrlib->dcc_retile_map_lock);
return NULL;
} }
++index;
if (use_uint16)
((uint16_t*)dcc_retile_map)[index * 2] = addrout.addr;
else
((uint32_t*)dcc_retile_map)[index * 2] = addrout.addr;
/* Compute dst DCC address */
addrin.dccKeyFlags.pipeAligned = 0;
addrin.dccKeyFlags.rbAligned = 0;
addrout.addr = 0;
if (Addr2ComputeDccAddrFromCoord(addrlib->handle, &addrin, &addrout) != ADDR_OK) {
simple_mtx_unlock(&addrlib->dcc_retile_map_lock);
return NULL;
}
if (use_uint16)
((uint16_t*)dcc_retile_map)[index * 2 + 1] = addrout.addr;
else
((uint32_t*)dcc_retile_map)[index * 2 + 1] = addrout.addr;
assert(index * 2 + 1 < dcc_retile_num_elements);
index++;
} }
} }
/* Fill the remaining pairs with the last one (for the compute shader). */ /* Fill the remaining pairs with the last one (for the compute shader). */
for (unsigned i = index * 2; i < dcc_retile_num_elements; i++) { for (unsigned i = index * 2; i < dcc_retile_num_elements; i++) {
if (use_uint16) if (use_uint16)
@ -276,6 +413,8 @@ struct ac_addrlib *ac_addrlib_create(const struct radeon_info *info,
simple_mtx_init(&addrlib->dcc_retile_map_lock, mtx_plain); simple_mtx_init(&addrlib->dcc_retile_map_lock, mtx_plain);
addrlib->dcc_retile_maps = _mesa_hash_table_create(NULL, dcc_retile_map_hash_key, addrlib->dcc_retile_maps = _mesa_hash_table_create(NULL, dcc_retile_map_hash_key,
dcc_retile_map_keys_equal); dcc_retile_map_keys_equal);
addrlib->dcc_retile_tile_indices = _mesa_hash_table_create(NULL, dcc_retile_tile_hash_key,
dcc_retile_tile_keys_equal);
return addrlib; return addrlib;
} }
@ -284,6 +423,7 @@ void ac_addrlib_destroy(struct ac_addrlib *addrlib)
AddrDestroy(addrlib->handle); AddrDestroy(addrlib->handle);
simple_mtx_destroy(&addrlib->dcc_retile_map_lock); simple_mtx_destroy(&addrlib->dcc_retile_map_lock);
_mesa_hash_table_destroy(addrlib->dcc_retile_maps, dcc_retile_map_free); _mesa_hash_table_destroy(addrlib->dcc_retile_maps, dcc_retile_map_free);
_mesa_hash_table_destroy(addrlib->dcc_retile_tile_indices, dcc_retile_tile_free);
free(addrlib); free(addrlib);
} }