aco: add helpers for ensuring correct ordering while scheduling

Pipeline-db changes in 721 shaders.

Totals from affected shaders:
SGPRS: 42336 -> 42656 (0.76 %)
VGPRS: 38368 -> 38636 (0.70 %)
Spilled SGPRs: 11967 -> 11967 (0.00 %)
Spilled VGPRs: 0 -> 0 (0.00 %)
Scratch size: 0 -> 0 (0.00 %) dwords per thread
Code Size: 5268088 -> 5269840 (0.03 %) bytes
LDS: 1069 -> 1069 (0.00 %) blocks
Max Waves: 4473 -> 4447 (-0.58 %)
SMEM score: 41155.00 -> 41826.00 (1.63 %)
VMEM score: 146339.00 -> 147471.00 (0.77 %)
SMEM clauses: 24434 -> 24535 (0.41 %)
VMEM clauses: 16637 -> 16592 (-0.27 %)
Instructions: 996037 -> 996388 (0.04 %)
Cycles: 76476112 -> 75281416 (-1.56 %)

Signed-off-by: Rhys Perry <pendingchaos02@gmail.com>
Reviewed-by: Daniel Schürmann <daniel@schuermann.dev>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/3776>
This commit is contained in:
Rhys Perry 2019-11-07 14:48:51 +00:00 committed by Marge Bot
parent 2cd760847a
commit 928ac97875
2 changed files with 170 additions and 192 deletions

View file

@ -113,6 +113,8 @@ enum barrier_interaction : uint8_t {
barrier_gs_data = 0x10,
/* used for geometry shaders to ensure s_sendmsg instructions are in-order. */
barrier_gs_sendmsg = 0x20,
/* used by barriers. created by s_barrier */
barrier_barrier = 0x40,
barrier_count = 6,
};

View file

@ -347,11 +347,6 @@ void MoveState::upwards_skip()
source_idx++;
}
static bool is_spill_reload(aco_ptr<Instruction>& instr)
{
return instr->opcode == aco_opcode::p_spill || instr->opcode == aco_opcode::p_reload;
}
bool can_reorder(Instruction* candidate)
{
switch (candidate->format) {
@ -415,64 +410,119 @@ barrier_interaction get_barrier_interaction(Instruction* instr)
return barrier_gs_sendmsg;
else
return barrier_none;
case Format::PSEUDO_BARRIER:
return barrier_barrier;
default:
return barrier_none;
}
}
bool can_move_instr(aco_ptr<Instruction>& instr, Instruction* current, int moving_interaction)
barrier_interaction parse_barrier(Instruction *instr)
{
if (instr->format == Format::PSEUDO_BARRIER) {
switch (instr->opcode) {
case aco_opcode::p_memory_barrier_atomic:
return barrier_atomic;
/* For now, buffer and image barriers are treated the same. this is because of
* dEQP-VK.memory_model.message_passing.core11.u32.coherent.fence_fence.atomicwrite.device.payload_nonlocal.buffer.guard_nonlocal.image.comp
* which seems to use an image load to determine if the result of a buffer load is valid. So the ordering of the two loads is important.
* I /think/ we should probably eventually expand the meaning of a buffer barrier so that all buffer operations before it, must stay before it
* and that both image and buffer operations after it, must stay after it. We should also do the same for image barriers.
* Or perhaps the problem is that we don't have a combined barrier instruction for both buffers and images, but the CTS test expects us to?
* Either way, this solution should work. */
case aco_opcode::p_memory_barrier_buffer:
case aco_opcode::p_memory_barrier_image:
return (barrier_interaction)(barrier_image | barrier_buffer);
case aco_opcode::p_memory_barrier_shared:
return barrier_shared;
case aco_opcode::p_memory_barrier_common:
return (barrier_interaction)(barrier_image | barrier_buffer | barrier_shared | barrier_atomic);
case aco_opcode::p_memory_barrier_gs_data:
return barrier_gs_data;
case aco_opcode::p_memory_barrier_gs_sendmsg:
return barrier_gs_sendmsg;
default:
break;
}
} else if (instr->opcode == aco_opcode::s_barrier) {
return (barrier_interaction)(barrier_barrier | barrier_image | barrier_buffer | barrier_shared | barrier_atomic);
}
return barrier_none;
}
struct hazard_query {
bool contains_spill;
int barriers;
bool can_reorder_vmem;
bool can_reorder_smem;
};
void init_hazard_query(hazard_query *query) {
query->contains_spill = false;
query->barriers = 0;
query->can_reorder_vmem = true;
query->can_reorder_smem = true;
}
void add_to_hazard_query(hazard_query *query, Instruction *instr)
{
query->barriers |= get_barrier_interaction(instr);
if (instr->opcode == aco_opcode::p_spill || instr->opcode == aco_opcode::p_reload)
query->contains_spill = true;
bool can_reorder_instr = can_reorder(instr);
query->can_reorder_smem &= instr->format != Format::SMEM || can_reorder_instr;
query->can_reorder_vmem &= !(instr->isVMEM() || instr->isFlatOrGlobal()) || can_reorder_instr;
}
enum HazardResult {
hazard_success,
hazard_fail_reorder_vmem_smem,
hazard_fail_reorder_ds,
hazard_fail_reorder_sendmsg,
hazard_fail_spill,
/* Must stop at these failures. The hazard query code doesn't consider them
* when added. */
hazard_fail_exec,
hazard_fail_barrier,
};
HazardResult perform_hazard_query(hazard_query *query, Instruction *instr)
{
bool can_reorder_candidate = can_reorder(instr);
if (instr->opcode == aco_opcode::p_exit_early_if)
return hazard_fail_exec;
for (const Definition& def : instr->definitions) {
if (def.isFixed() && def.physReg() == exec)
return hazard_fail_exec;
}
/* don't move exports so that they stay closer together */
if (instr->format == Format::EXP)
return false;
return hazard_fail_barrier;
/* don't move s_memtime/s_memrealtime */
if (instr->opcode == aco_opcode::s_memtime || instr->opcode == aco_opcode::s_memrealtime)
return false;
return hazard_fail_barrier;
/* handle barriers */
if (query->barriers & parse_barrier(instr))
return hazard_fail_barrier;
/* TODO: instead of stopping, maybe try to move the barriers and any
* instructions interacting with them instead? */
if (instr->format != Format::PSEUDO_BARRIER) {
if (instr->opcode == aco_opcode::s_barrier) {
return can_reorder(current) && moving_interaction == barrier_none;
} else if (is_gs_or_done_sendmsg(instr.get())) {
int interaction = get_barrier_interaction(current);
interaction |= moving_interaction;
return !(interaction & get_barrier_interaction(instr.get()));
} else {
return true;
}
}
if (!query->can_reorder_smem && instr->format == Format::SMEM && !can_reorder_candidate)
return hazard_fail_reorder_vmem_smem;
if (!query->can_reorder_vmem && (instr->isVMEM() || instr->isFlatOrGlobal()) && !can_reorder_candidate)
return hazard_fail_reorder_vmem_smem;
if ((query->barriers & barrier_shared) && instr->format == Format::DS)
return hazard_fail_reorder_ds;
if (is_gs_or_done_sendmsg(instr) && (query->barriers & get_barrier_interaction(instr)))
return hazard_fail_reorder_sendmsg;
int interaction = get_barrier_interaction(current);
interaction |= moving_interaction;
if ((instr->opcode == aco_opcode::p_spill || instr->opcode == aco_opcode::p_reload) &&
query->contains_spill)
return hazard_fail_spill;
switch (instr->opcode) {
case aco_opcode::p_memory_barrier_atomic:
return !(interaction & barrier_atomic);
/* For now, buffer and image barriers are treated the same. this is because of
* dEQP-VK.memory_model.message_passing.core11.u32.coherent.fence_fence.atomicwrite.device.payload_nonlocal.buffer.guard_nonlocal.image.comp
* which seems to use an image load to determine if the result of a buffer load is valid. So the ordering of the two loads is important.
* I /think/ we should probably eventually expand the meaning of a buffer barrier so that all buffer operations before it, must stay before it
* and that both image and buffer operations after it, must stay after it. We should also do the same for image barriers.
* Or perhaps the problem is that we don't have a combined barrier instruction for both buffers and images, but the CTS test expects us to?
* Either way, this solution should work. */
case aco_opcode::p_memory_barrier_buffer:
case aco_opcode::p_memory_barrier_image:
return !(interaction & (barrier_image | barrier_buffer));
case aco_opcode::p_memory_barrier_shared:
return !(interaction & barrier_shared);
case aco_opcode::p_memory_barrier_common:
return !(interaction & (barrier_image | barrier_buffer | barrier_shared | barrier_atomic));
case aco_opcode::p_memory_barrier_gs_data:
return !(interaction & barrier_gs_data);
case aco_opcode::p_memory_barrier_gs_sendmsg:
return !(interaction & barrier_gs_sendmsg);
default:
return false;
}
return hazard_success;
}
void schedule_SMEM(sched_ctx& ctx, Block* block,
@ -483,15 +533,15 @@ void schedule_SMEM(sched_ctx& ctx, Block* block,
int window_size = SMEM_WINDOW_SIZE;
int max_moves = SMEM_MAX_MOVES;
int16_t k = 0;
bool can_reorder_cur = can_reorder(current);
/* don't move s_memtime/s_memrealtime */
if (current->opcode == aco_opcode::s_memtime || current->opcode == aco_opcode::s_memrealtime)
return;
/* first, check if we have instructions before current to move down */
int moving_interaction = barrier_none;
bool moving_spill = false;
hazard_query hq;
init_hazard_query(&hq);
add_to_hazard_query(&hq, current);
ctx.mv.downwards_init(idx, false, false);
@ -499,7 +549,6 @@ void schedule_SMEM(sched_ctx& ctx, Block* block,
assert(candidate_idx >= 0);
assert(candidate_idx == ctx.mv.source_idx);
aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];
bool can_reorder_candidate = can_reorder(candidate.get());
/* break if we'd make the previous SMEM instruction stall */
bool can_stall_prev_smem = idx <= ctx.last_SMEM_dep_idx && candidate_idx < ctx.last_SMEM_dep_idx;
@ -507,43 +556,32 @@ void schedule_SMEM(sched_ctx& ctx, Block* block,
break;
/* break when encountering another MEM instruction, logical_start or barriers */
if (!can_reorder_candidate && !can_reorder_cur)
break;
if (candidate->opcode == aco_opcode::p_logical_start)
break;
if (candidate->opcode == aco_opcode::p_exit_early_if)
break;
if (!can_move_instr(candidate, current, moving_interaction))
break;
if (candidate->isVMEM())
break;
/* if current depends on candidate, add additional dependencies and continue */
bool writes_exec = false;
for (const Definition& def : candidate->definitions) {
if (def.isFixed() && def.physReg() == exec)
writes_exec = true;
}
if (writes_exec)
bool can_move_down = true;
HazardResult haz = perform_hazard_query(&hq, candidate.get());
if (haz == hazard_fail_reorder_ds || haz == hazard_fail_spill || haz == hazard_fail_reorder_sendmsg)
can_move_down = false;
else if (haz == hazard_fail_reorder_vmem_smem || haz == hazard_fail_barrier ||
haz == hazard_fail_exec)
break;
bool can_move_down = true;
if (moving_spill && is_spill_reload(candidate))
can_move_down = false;
if ((moving_interaction & barrier_shared) && candidate->format == Format::DS)
can_move_down = false;
moving_interaction |= get_barrier_interaction(candidate.get());
moving_spill |= is_spill_reload(candidate);
if (!can_move_down) {
/* don't use LDS/GDS instructions to hide latency since it can
* significanly worsen LDS scheduling */
if (candidate->format == Format::DS || !can_move_down) {
add_to_hazard_query(&hq, candidate.get());
ctx.mv.downwards_skip();
can_reorder_cur &= can_reorder_candidate;
continue;
}
MoveResult res = ctx.mv.downwards_move(false);
if (res == move_fail_ssa || res == move_fail_rar) {
add_to_hazard_query(&hq, candidate.get());
ctx.mv.downwards_skip();
can_reorder_cur &= can_reorder_candidate;
continue;
} else if (res == move_fail_pressure) {
break;
@ -555,10 +593,6 @@ void schedule_SMEM(sched_ctx& ctx, Block* block,
}
/* find the first instruction depending on current or find another MEM */
moving_interaction = barrier_none;
moving_spill = false;
can_reorder_cur = true;
ctx.mv.upwards_init(idx + 1, false);
bool found_dependency = false;
@ -567,48 +601,39 @@ void schedule_SMEM(sched_ctx& ctx, Block* block,
assert(candidate_idx == ctx.mv.source_idx);
assert(candidate_idx < (int) block->instructions.size());
aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];
bool can_reorder_candidate = can_reorder(candidate.get());
if (candidate->opcode == aco_opcode::p_logical_end)
break;
if (!can_move_instr(candidate, current, moving_interaction))
break;
const bool writes_exec = std::any_of(candidate->definitions.begin(), candidate->definitions.end(),
[](const Definition& def) { return def.isFixed() && def.physReg() == exec;});
if (writes_exec)
break;
/* check if candidate depends on current */
bool is_dependency = !found_dependency && !ctx.mv.upwards_check_deps();
/* no need to steal from following VMEM instructions */
if (is_dependency && candidate->isVMEM())
break;
if (moving_spill && is_spill_reload(candidate))
is_dependency = true;
if ((moving_interaction & barrier_shared) && candidate->format == Format::DS)
is_dependency = true;
moving_interaction |= get_barrier_interaction(candidate.get());
moving_spill |= is_spill_reload(candidate);
if (found_dependency) {
HazardResult haz = perform_hazard_query(&hq, candidate.get());
if (haz == hazard_fail_reorder_ds || haz == hazard_fail_spill || haz == hazard_fail_reorder_sendmsg)
is_dependency = true;
else if (haz == hazard_fail_reorder_vmem_smem || haz == hazard_fail_barrier ||
haz == hazard_fail_exec)
break;
}
if (is_dependency) {
if (!found_dependency) {
ctx.mv.upwards_set_insert_idx(candidate_idx);
init_hazard_query(&hq);
found_dependency = true;
}
}
if (!can_reorder_candidate && !can_reorder_cur)
break;
if (!found_dependency) {
if (is_dependency || !found_dependency) {
if (found_dependency)
add_to_hazard_query(&hq, candidate.get());
else
k++;
ctx.mv.upwards_skip();
k++;
continue;
}
if (is_dependency) {
ctx.mv.upwards_skip();
can_reorder_cur &= can_reorder_candidate;
continue;
}
@ -617,8 +642,8 @@ void schedule_SMEM(sched_ctx& ctx, Block* block,
/* no need to steal from following VMEM instructions */
if (res == move_fail_ssa && candidate->isVMEM())
break;
add_to_hazard_query(&hq, candidate.get());
ctx.mv.upwards_skip();
can_reorder_cur &= can_reorder_candidate;
continue;
} else if (res == move_fail_pressure) {
break;
@ -639,14 +664,13 @@ void schedule_VMEM(sched_ctx& ctx, Block* block,
int max_moves = VMEM_MAX_MOVES;
int clause_max_grab_dist = VMEM_CLAUSE_MAX_GRAB_DIST;
int16_t k = 0;
/* initially true as we don't pull other VMEM instructions
* through the current instruction */
bool can_reorder_vmem = true;
bool can_reorder_smem = true;
/* first, check if we have instructions before current to move down */
int moving_interaction = barrier_none;
bool moving_spill = false;
hazard_query indep_hq;
hazard_query clause_hq;
init_hazard_query(&indep_hq);
init_hazard_query(&clause_hq);
add_to_hazard_query(&indep_hq, current);
ctx.mv.downwards_init(idx, true, true);
@ -654,18 +678,11 @@ void schedule_VMEM(sched_ctx& ctx, Block* block,
assert(candidate_idx == ctx.mv.source_idx);
assert(candidate_idx >= 0);
aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];
bool can_reorder_candidate = can_reorder(candidate.get());
bool is_vmem = candidate->isVMEM() || candidate->isFlatOrGlobal();
/* break when encountering another VMEM instruction, logical_start or barriers */
if (!can_reorder_smem && candidate->format == Format::SMEM && !can_reorder_candidate)
break;
if (candidate->opcode == aco_opcode::p_logical_start)
break;
if (candidate->opcode == aco_opcode::p_exit_early_if)
break;
if (!can_move_instr(candidate, current, moving_interaction))
break;
/* break if we'd make the previous SMEM instruction stall */
bool can_stall_prev_smem = idx <= ctx.last_SMEM_dep_idx && candidate_idx < ctx.last_SMEM_dep_idx;
@ -677,41 +694,33 @@ void schedule_VMEM(sched_ctx& ctx, Block* block,
bool same_resource = true;
if (current->isVMEM())
same_resource = candidate->operands[0].tempId() == current->operands[0].tempId();
bool can_reorder = can_reorder_vmem || can_reorder_candidate;
int grab_dist = ctx.mv.insert_idx_clause - candidate_idx;
/* We can't easily tell how much this will decrease the def-to-use
* distances, so just use how far it will be moved as a heuristic. */
part_of_clause = can_reorder && same_resource && grab_dist < clause_max_grab_dist;
part_of_clause = same_resource && grab_dist < clause_max_grab_dist;
}
/* if current depends on candidate, add additional dependencies and continue */
bool can_move_down = !is_vmem || part_of_clause;
bool writes_exec = false;
for (const Definition& def : candidate->definitions) {
if (def.isFixed() && def.physReg() == exec)
writes_exec = true;
}
if (writes_exec)
HazardResult haz = perform_hazard_query(part_of_clause ? &clause_hq : &indep_hq, candidate.get());
if (haz == hazard_fail_reorder_ds || haz == hazard_fail_spill || haz == hazard_fail_reorder_sendmsg)
can_move_down = false;
else if (haz != hazard_success)
break;
if (moving_spill && is_spill_reload(candidate))
can_move_down = false;
if ((moving_interaction & barrier_shared) && candidate->format == Format::DS)
can_move_down = false;
moving_interaction |= get_barrier_interaction(candidate.get());
moving_spill |= is_spill_reload(candidate);
if (!can_move_down) {
add_to_hazard_query(&indep_hq, candidate.get());
add_to_hazard_query(&clause_hq, candidate.get());
ctx.mv.downwards_skip();
can_reorder_smem &= candidate->format != Format::SMEM || can_reorder_candidate;
can_reorder_vmem &= !is_vmem || can_reorder_candidate;
continue;
}
MoveResult res = ctx.mv.downwards_move(part_of_clause);
if (res == move_fail_ssa || res == move_fail_rar) {
add_to_hazard_query(&indep_hq, candidate.get());
add_to_hazard_query(&clause_hq, candidate.get());
ctx.mv.downwards_skip();
can_reorder_smem &= candidate->format != Format::SMEM || can_reorder_candidate;
can_reorder_vmem &= !is_vmem || can_reorder_candidate;
continue;
} else if (res == move_fail_pressure) {
break;
@ -722,12 +731,6 @@ void schedule_VMEM(sched_ctx& ctx, Block* block,
}
/* find the first instruction depending on current or find another VMEM */
moving_interaction = barrier_none;
moving_spill = false;
// TODO: differentiate between loads and stores (load-load can always reorder)
can_reorder_vmem = true;
can_reorder_smem = true;
ctx.mv.upwards_init(idx + 1, true);
bool found_dependency = false;
@ -736,42 +739,29 @@ void schedule_VMEM(sched_ctx& ctx, Block* block,
assert(candidate_idx == ctx.mv.source_idx);
assert(candidate_idx < (int) block->instructions.size());
aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];
bool can_reorder_candidate = can_reorder(candidate.get());
bool is_vmem = candidate->isVMEM() || candidate->isFlatOrGlobal();
if (candidate->opcode == aco_opcode::p_logical_end)
break;
if (!can_move_instr(candidate, current, moving_interaction))
break;
const bool writes_exec = std::any_of(candidate->definitions.begin(), candidate->definitions.end(),
[](const Definition& def) {return def.isFixed() && def.physReg() == exec; });
if (writes_exec)
break;
/* check if candidate depends on current */
bool is_dependency = false;
if (candidate->format == Format::SMEM)
is_dependency = !can_reorder_smem && !can_reorder_candidate;
if (is_vmem)
is_dependency = !can_reorder_vmem && !can_reorder_candidate;
is_dependency |= !found_dependency && !ctx.mv.upwards_check_deps();
if (moving_spill && is_spill_reload(candidate))
is_dependency = true;
if ((moving_interaction & barrier_shared) && candidate->format == Format::DS)
is_dependency = true;
moving_interaction |= get_barrier_interaction(candidate.get());
moving_spill |= is_spill_reload(candidate);
if (is_dependency) {
/* update flag whether we can reorder other memory instructions */
can_reorder_smem &= candidate->format != Format::SMEM || can_reorder_candidate;
can_reorder_vmem &= !is_vmem || can_reorder_candidate;
if (found_dependency) {
HazardResult haz = perform_hazard_query(&indep_hq, candidate.get());
if (haz == hazard_fail_reorder_ds || haz == hazard_fail_spill ||
haz == hazard_fail_reorder_vmem_smem || haz == hazard_fail_reorder_sendmsg)
is_dependency = true;
else if (haz == hazard_fail_barrier || haz == hazard_fail_exec)
break;
}
is_dependency |= !found_dependency && !ctx.mv.upwards_check_deps();
if (is_dependency) {
if (!found_dependency) {
ctx.mv.upwards_set_insert_idx(candidate_idx);
init_hazard_query(&indep_hq);
found_dependency = true;
}
} else if (is_vmem) {
/* don't move up dependencies of other VMEM instructions */
for (const Definition& def : candidate->definitions) {
@ -781,15 +771,16 @@ void schedule_VMEM(sched_ctx& ctx, Block* block,
}
if (is_dependency || !found_dependency) {
if (found_dependency)
add_to_hazard_query(&indep_hq, candidate.get());
ctx.mv.upwards_skip();
continue;
}
MoveResult res = ctx.mv.upwards_move();
if (res == move_fail_ssa || res == move_fail_rar) {
add_to_hazard_query(&indep_hq, candidate.get());
ctx.mv.upwards_skip();
can_reorder_smem &= candidate->format != Format::SMEM || can_reorder_candidate;
can_reorder_vmem &= !is_vmem || can_reorder_candidate;
continue;
} else if (res == move_fail_pressure) {
break;
@ -809,47 +800,32 @@ void schedule_position_export(sched_ctx& ctx, Block* block,
ctx.mv.downwards_init(idx, true, false);
/* first, check if we have instructions before current to move down */
int moving_interaction = barrier_none;
bool moving_spill = false;
hazard_query hq;
init_hazard_query(&hq);
add_to_hazard_query(&hq, current);
for (int candidate_idx = idx - 1; k < max_moves && candidate_idx > (int) idx - window_size; candidate_idx--) {
assert(candidate_idx >= 0);
aco_ptr<Instruction>& candidate = block->instructions[candidate_idx];
/* break when encountering logical_start or barriers */
if (candidate->opcode == aco_opcode::p_logical_start)
break;
if (candidate->opcode == aco_opcode::p_exit_early_if)
break;
if (candidate->isVMEM() || candidate->format == Format::SMEM || candidate->isFlatOrGlobal())
break;
if (!can_move_instr(candidate, current, moving_interaction))
HazardResult haz = perform_hazard_query(&hq, candidate.get());
if (haz == hazard_fail_barrier || haz == hazard_fail_exec)
break;
/* if current depends on candidate, add additional dependencies and continue */
bool writes_exec = false;
for (unsigned i = 0; i < candidate->definitions.size(); i++) {
if (candidate->definitions[i].isFixed() && candidate->definitions[i].physReg() == exec)
writes_exec = true;
}
if (writes_exec)
break;
bool can_move_down = true;
if (moving_spill && is_spill_reload(candidate))
can_move_down = false;
if ((moving_interaction & barrier_shared) && candidate->format == Format::DS)
can_move_down = false;
moving_interaction |= get_barrier_interaction(candidate.get());
moving_spill |= is_spill_reload(candidate);
if (!can_move_down) {
if (haz != hazard_success) {
add_to_hazard_query(&hq, candidate.get());
ctx.mv.downwards_skip();
continue;
}
MoveResult res = ctx.mv.downwards_move(false);
if (res == move_fail_ssa || res == move_fail_rar) {
add_to_hazard_query(&hq, candidate.get());
ctx.mv.downwards_skip();
continue;
} else if (res == move_fail_pressure) {