radeonsi: Add offchip buffer address calculation.

Instead of creating a memory area per patch and per vertex, we put
the same attribute of every vertex & patch together. Most loads
and stores access the same attribute across all lanes, only for
different patches and vertices.

For the TCS this results in tightly packed data for 4-component
stores.

For the TES this is not the case as within a patch the loads
often also access the same vertex. However if there are < 4
vertices/patch, this still results in a reduction of the number
of cache lines. In the LDS situation we only do better than worst
case if the data per patch < 64 bytes, which due to the
tessellation factors is pretty much never.

We do not use hardware swizzling for this. It would slightly reduce
the number of executed VALU instructions, but I had issues with
increased wait times that I haven't been able to solve yet.
Furthermore, the tbuffer_store intrinsic does not support both
VGPR offset and an index, so we have a problem storing
indirectly indexed outputs. This can be solved by temporarily
storing arrays in LDS and then copying them, but I don't think
that is worth the effort. The difference in VALU cycles
hardware swizzling gives is about 0.2% of total busy cycles.
That is without handling the array case.

I chose for attributes instead of components as they are often
accessed together, and the software swizzling takes VALU cycles
for calculating offsets.

v2: - Rename functions to get_tcs_tes_buffer_address.
    - multiply by 16 as late as possible.
    - Use  tgsi_full_src_register_from_dst.
    - Remove some bad comments.

Signed-off-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
Reviewed-by: Marek Olšák <marek.olsak@amd.com>
This commit is contained in:
Bas Nieuwenhuizen 2016-05-10 00:49:39 +02:00
parent c49e68dc4b
commit 7846fa8768

View file

@ -671,6 +671,130 @@ static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
lp_build_const_int32(gallivm, param * 4), "");
}
/* The offchip buffer layout for TCS->TES is
*
* - attribute 0 of patch 0 vertex 0
* - attribute 0 of patch 0 vertex 1
* - attribute 0 of patch 0 vertex 2
* ...
* - attribute 0 of patch 1 vertex 0
* - attribute 0 of patch 1 vertex 1
* ...
* - attribute 1 of patch 0 vertex 0
* - attribute 1 of patch 0 vertex 1
* ...
* - per patch attribute 0 of patch 0
* - per patch attribute 0 of patch 1
* ...
*
* Note that every attribute has 4 components.
*/
static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
LLVMValueRef vertex_index,
LLVMValueRef param_index)
{
struct gallivm_state *gallivm = ctx->radeon_bld.soa.bld_base.base.gallivm;
LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
LLVMValueRef param_stride, constant16;
vertices_per_patch = unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 9, 6);
num_patches = unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 0, 9);
total_vertices = LLVMBuildMul(gallivm->builder, vertices_per_patch,
num_patches, "");
constant16 = lp_build_const_int32(gallivm, 16);
if (vertex_index) {
base_addr = LLVMBuildMul(gallivm->builder, get_rel_patch_id(ctx),
vertices_per_patch, "");
base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
vertex_index, "");
param_stride = total_vertices;
} else {
base_addr = get_rel_patch_id(ctx);
param_stride = num_patches;
}
base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
LLVMBuildMul(gallivm->builder, param_index,
param_stride, ""), "");
base_addr = LLVMBuildMul(gallivm->builder, base_addr, constant16, "");
if (!vertex_index) {
LLVMValueRef patch_data_offset =
unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 16, 16);
base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
patch_data_offset, "");
}
return base_addr;
}
static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
struct si_shader_context *ctx,
const struct tgsi_full_dst_register *dst,
const struct tgsi_full_src_register *src)
{
struct gallivm_state *gallivm = ctx->radeon_bld.soa.bld_base.base.gallivm;
struct tgsi_shader_info *info = &ctx->shader->selector->info;
ubyte *name, *index, *array_first;
struct tgsi_full_src_register reg;
LLVMValueRef vertex_index = NULL;
LLVMValueRef param_index = NULL;
unsigned param_index_base, param_base;
reg = src ? *src : tgsi_full_src_register_from_dst(dst);
if (reg.Register.Dimension) {
if (reg.Dimension.Indirect)
vertex_index = get_indirect_index(ctx, &reg.DimIndirect,
reg.Dimension.Index);
else
vertex_index = lp_build_const_int32(gallivm,
reg.Dimension.Index);
}
/* Get information about the register. */
if (reg.Register.File == TGSI_FILE_INPUT) {
name = info->input_semantic_name;
index = info->input_semantic_index;
array_first = info->input_array_first;
} else if (reg.Register.File == TGSI_FILE_OUTPUT) {
name = info->output_semantic_name;
index = info->output_semantic_index;
array_first = info->output_array_first;
} else {
assert(0);
return NULL;
}
if (reg.Register.Indirect) {
if (reg.Indirect.ArrayID)
param_base = array_first[reg.Indirect.ArrayID];
else
param_base = reg.Register.Index;
param_index = get_indirect_index(ctx, &reg.Indirect,
reg.Register.Index - param_base);
} else {
param_base = reg.Register.Index;
param_index = lp_build_const_int32(gallivm, 0);
}
param_index_base = si_shader_io_get_unique_index(name[param_base],
index[param_base]);
param_index = LLVMBuildAdd(gallivm->builder, param_index,
lp_build_const_int32(gallivm, param_index_base),
"");
return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
}
/* TBUFFER_STORE_FORMAT_{X,XY,XYZ,XYZW} <- the suffix is selected by num_channels=1..4.
* The type of vdata must be one of i32 (num_channels=1), v2i32 (num_channels=2),
* or v4i32 (num_channels=3,4). */