i965: Validate "Region Alignment Rules"

This commit is contained in:
Matt Turner 2016-11-15 16:06:51 -08:00
parent f817d132c1
commit 75b7f5a269
2 changed files with 697 additions and 1 deletions

View file

@ -45,6 +45,7 @@ cat(struct string *dest, const struct string src)
#define CAT(dest, src) cat(&dest, (struct string){src, strlen(src)})
#define error(str) "\tERROR: " str "\n"
#define ERROR_INDENT "\t "
#define ERROR(msg) ERROR_IF(true, msg)
#define ERROR_IF(cond, msg) \
@ -104,6 +105,22 @@ src0_is_grf(const struct gen_device_info *devinfo, const brw_inst *inst)
return brw_inst_src0_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE;
}
static bool
src0_has_scalar_region(const struct gen_device_info *devinfo, const brw_inst *inst)
{
return brw_inst_src0_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
brw_inst_src0_width(devinfo, inst) == BRW_WIDTH_1 &&
brw_inst_src0_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
}
static bool
src1_has_scalar_region(const struct gen_device_info *devinfo, const brw_inst *inst)
{
return brw_inst_src1_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
brw_inst_src1_width(devinfo, inst) == BRW_WIDTH_1 &&
brw_inst_src1_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
}
static unsigned
num_sources_from_inst(const struct gen_device_info *devinfo,
const brw_inst *inst)
@ -327,6 +344,26 @@ execution_type(const struct gen_device_info *devinfo, const brw_inst *inst)
return BRW_HW_REG_TYPE_F;
}
/**
* Returns whether a region is packed
*
* A region is packed if its elements are adjacent in memory, with no
* intervening space, no overlap, and no replicated values.
*/
static bool
is_packed(unsigned vstride, unsigned width, unsigned hstride)
{
if (vstride == width) {
if (vstride == 1) {
return hstride == 0;
} else {
return hstride == 1;
}
}
return false;
}
/**
* Checks restrictions listed in "General Restrictions Based on Operand Types"
* in the "Register Region Restrictions" section.
@ -557,6 +594,376 @@ general_restrictions_on_region_parameters(const struct gen_device_info *devinfo,
return error_msg;
}
/**
* Creates an \p access_mask for an \p exec_size, \p element_size, and a region
*
* An \p access_mask is a 32-element array of uint64_t, where each uint64_t is
* a bitmask of bytes accessed by the region.
*
* For instance the access mask of the source gX.1<4,2,2>F in an exec_size = 4
* instruction would be
*
* access_mask[0] = 0x00000000000000F0
* access_mask[1] = 0x000000000000F000
* access_mask[2] = 0x0000000000F00000
* access_mask[3] = 0x00000000F0000000
* access_mask[4-31] = 0
*
* because the first execution channel accesses bytes 7-4 and the second
* execution channel accesses bytes 15-12, etc.
*/
static void
align1_access_mask(uint64_t access_mask[static 32],
unsigned exec_size, unsigned element_size, unsigned subreg,
unsigned vstride, unsigned width, unsigned hstride)
{
const uint64_t mask = (1 << element_size) - 1;
unsigned rowbase = subreg;
unsigned element = 0;
for (int y = 0; y < exec_size / width; y++) {
unsigned offset = rowbase;
for (int x = 0; x < width; x++) {
access_mask[element++] = mask << offset;
offset += hstride * element_size;
}
rowbase += vstride * element_size;
}
assert(element == 0 || element == exec_size);
}
/**
* Returns the number of registers accessed according to the \p access_mask
*/
static int
registers_read(const uint64_t access_mask[static 32])
{
int regs_read = 0;
for (unsigned i = 0; i < 32; i++) {
if (access_mask[i] > 0xFFFFFFFF) {
return 2;
} else if (access_mask[i]) {
regs_read = 1;
}
}
return regs_read;
}
/**
* Checks restrictions listed in "Region Alignment Rules" in the "Register
* Region Restrictions" section.
*/
static struct string
region_alignment_rules(const struct gen_device_info *devinfo,
const brw_inst *inst)
{
const struct opcode_desc *desc =
brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
unsigned num_sources = num_sources_from_inst(devinfo, inst);
unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
uint64_t dst_access_mask[32], src0_access_mask[32], src1_access_mask[32];
struct string error_msg = { .str = NULL, .len = 0 };
if (num_sources == 3)
return (struct string){};
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16)
return (struct string){};
if (inst_is_send(devinfo, inst))
return (struct string){};
memset(dst_access_mask, 0, sizeof(dst_access_mask));
memset(src0_access_mask, 0, sizeof(src0_access_mask));
memset(src1_access_mask, 0, sizeof(src1_access_mask));
for (unsigned i = 0; i < num_sources; i++) {
unsigned vstride, width, hstride, element_size, subreg;
/* In Direct Addressing mode, a source cannot span more than 2 adjacent
* GRF registers.
*/
#define DO_SRC(n) \
if (brw_inst_src ## n ## _address_mode(devinfo, inst) != \
BRW_ADDRESS_DIRECT) \
continue; \
\
if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
BRW_IMMEDIATE_VALUE) \
continue; \
\
vstride = brw_inst_src ## n ## _vstride(devinfo, inst) ? \
(1 << (brw_inst_src ## n ## _vstride(devinfo, inst) - 1)) : 0; \
width = 1 << brw_inst_src ## n ## _width(devinfo, inst); \
hstride = brw_inst_src ## n ## _hstride(devinfo, inst) ? \
(1 << (brw_inst_src ## n ## _hstride(devinfo, inst) - 1)) : 0; \
element_size = brw_element_size(devinfo, inst, src ## n); \
subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
align1_access_mask(src ## n ## _access_mask, \
exec_size, element_size, subreg, \
vstride, width, hstride)
if (i == 0) {
DO_SRC(0);
} else if (i == 1) {
DO_SRC(1);
}
#undef DO_SRC
unsigned num_vstride = exec_size / width;
unsigned num_hstride = width;
unsigned vstride_elements = (num_vstride - 1) * vstride;
unsigned hstride_elements = (num_hstride - 1) * hstride;
unsigned offset = (vstride_elements + hstride_elements) * element_size +
subreg;
ERROR_IF(offset >= 64,
"A source cannot span more than 2 adjacent GRF registers");
}
if (desc->ndst == 0 || dst_is_null(devinfo, inst))
return error_msg;
unsigned stride = 1 << (brw_inst_dst_hstride(devinfo, inst) - 1);
unsigned element_size = brw_element_size(devinfo, inst, dst);
unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
unsigned offset = ((exec_size - 1) * stride * element_size) + subreg;
ERROR_IF(offset >= 64,
"A destination cannot span more than 2 adjacent GRF registers");
if (error_msg.str)
return error_msg;
align1_access_mask(dst_access_mask, exec_size, element_size, subreg,
exec_size == 1 ? 0 : exec_size * stride,
exec_size == 1 ? 1 : exec_size,
exec_size == 1 ? 0 : stride);
unsigned dst_regs = registers_read(dst_access_mask);
unsigned src0_regs = registers_read(src0_access_mask);
unsigned src1_regs = registers_read(src1_access_mask);
/* The SNB, IVB, HSW, BDW, and CHV PRMs say:
*
* When an instruction has a source region spanning two registers and a
* destination region contained in one register, the number of elements
* must be the same between two sources and one of the following must be
* true:
*
* 1. The destination region is entirely contained in the lower OWord
* of a register.
* 2. The destination region is entirely contained in the upper OWord
* of a register.
* 3. The destination elements are evenly split between the two OWords
* of a register.
*/
if (devinfo->gen <= 8) {
if (dst_regs == 1 && (src0_regs == 2 || src1_regs == 2)) {
unsigned upper_oword_writes = 0, lower_oword_writes = 0;
for (unsigned i = 0; i < exec_size; i++) {
if (dst_access_mask[i] > 0x0000FFFF) {
upper_oword_writes++;
} else {
assert(dst_access_mask[i] != 0);
lower_oword_writes++;
}
}
ERROR_IF(lower_oword_writes != 0 &&
upper_oword_writes != 0 &&
upper_oword_writes != lower_oword_writes,
"Writes must be to only one OWord or "
"evenly split between OWords");
}
}
/* The IVB and HSW PRMs say:
*
* When an instruction has a source region that spans two registers and
* the destination spans two registers, the destination elements must be
* evenly split between the two registers [...]
*
* The SNB PRM contains similar wording (but written in a much more
* confusing manner).
*
* The BDW PRM says:
*
* When destination spans two registers, the source may be one or two
* registers. The destination elements must be evenly split between the
* two registers.
*
* The SKL PRM says:
*
* When destination of MATH instruction spans two registers, the
* destination elements must be evenly split between the two registers.
*
* It is not known whether this restriction applies to KBL other Gens after
* SKL.
*/
if (devinfo->gen <= 8 ||
brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) {
/* Nothing explicitly states that on Gen < 8 elements must be evenly
* split between two destination registers in the two exceptional
* source-region-spans-one-register cases, but since Broadwell requires
* evenly split writes regardless of source region, we assume that it was
* an oversight and require it.
*/
if (dst_regs == 2) {
unsigned upper_reg_writes = 0, lower_reg_writes = 0;
for (unsigned i = 0; i < exec_size; i++) {
if (dst_access_mask[i] > 0xFFFFFFFF) {
upper_reg_writes++;
} else {
assert(dst_access_mask[i] != 0);
lower_reg_writes++;
}
}
ERROR_IF(upper_reg_writes != lower_reg_writes,
"Writes must be evenly split between the two "
"destination registers");
}
}
/* The IVB and HSW PRMs say:
*
* When an instruction has a source region that spans two registers and
* the destination spans two registers, the destination elements must be
* evenly split between the two registers and each destination register
* must be entirely derived from one source register.
*
* Note: In such cases, the regioning parameters must ensure that the
* offset from the two source registers is the same.
*
* The SNB PRM contains similar wording (but written in a much more
* confusing manner).
*
* There are effectively three rules stated here:
*
* For an instruction with a source and a destination spanning two
* registers,
*
* (1) destination elements must be evenly split between the two
* registers
* (2) all destination elements in a register must be derived
* from one source register
* (3) the offset (i.e. the starting location in each of the two
* registers spanned by a region) must be the same in the two
* registers spanned by a region
*
* It is impossible to violate rule (1) without violating (2) or (3), so we
* do not attempt to validate it.
*/
if (devinfo->gen <= 7 && dst_regs == 2) {
for (unsigned i = 0; i < num_sources; i++) {
#define DO_SRC(n) \
if (src ## n ## _regs <= 1) \
continue; \
\
for (unsigned i = 0; i < exec_size; i++) { \
if ((dst_access_mask[i] > 0xFFFFFFFF) != \
(src ## n ## _access_mask[i] > 0xFFFFFFFF)) { \
ERROR("Each destination register must be entirely derived " \
"from one source register"); \
break; \
} \
} \
\
unsigned offset_0 = \
brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
unsigned offset_1 = offset_0; \
\
for (unsigned i = 0; i < exec_size; i++) { \
if (src ## n ## _access_mask[i] > 0xFFFFFFFF) { \
offset_1 = __builtin_ctzll(src ## n ## _access_mask[i]) - 32; \
break; \
} \
} \
\
ERROR_IF(offset_0 != offset_1, \
"The offset from the two source registers " \
"must be the same")
if (i == 0) {
DO_SRC(0);
} else if (i == 1) {
DO_SRC(1);
}
#undef DO_SRC
}
}
/* The IVB and HSW PRMs say:
*
* When destination spans two registers, the source MUST span two
* registers. The exception to the above rule:
* 1. When source is scalar, the source registers are not
* incremented.
* 2. When source is packed integer Word and destination is packed
* integer DWord, the source register is not incremented by the
* source sub register is incremented.
*
* The SNB PRM does not contain this rule, but the internal documentation
* indicates that it applies to SNB as well. We assume that the rule applies
* to Gen <= 5 although their PRMs do not state it.
*
* While the documentation explicitly says in exception (2) that the
* destination must be an integer DWord, the hardware allows at least a
* float destination type as well. We emit such instructions from
*
* fs_visitor::emit_interpolation_setup_gen6
* fs_visitor::emit_fragcoord_interpolation
*
* and have for years with no ill effects.
*
* Additionally the simulator source code indicates that the real condition
* is that the size of the destination type is 4 bytes.
*/
if (devinfo->gen <= 7 && dst_regs == 2) {
bool dst_is_packed_dword =
is_packed(exec_size * stride, exec_size, stride) &&
brw_element_size(devinfo, inst, dst) == 4;
for (unsigned i = 0; i < num_sources; i++) {
#define DO_SRC(n) \
unsigned vstride, width, hstride; \
vstride = brw_inst_src ## n ## _vstride(devinfo, inst) ? \
(1 << (brw_inst_src ## n ## _vstride(devinfo, inst) - 1)) : 0; \
width = 1 << brw_inst_src ## n ## _width(devinfo, inst); \
hstride = brw_inst_src ## n ## _hstride(devinfo, inst) ? \
(1 << (brw_inst_src ## n ## _hstride(devinfo, inst) - 1)) : 0; \
bool src ## n ## _is_packed_word = \
is_packed(vstride, width, hstride) && \
(brw_inst_src ## n ## _reg_type(devinfo, inst) == BRW_HW_REG_TYPE_W || \
brw_inst_src ## n ## _reg_type(devinfo, inst) == BRW_HW_REG_TYPE_UW); \
\
ERROR_IF(src ## n ## _regs == 1 && \
!src ## n ## _has_scalar_region(devinfo, inst) && \
!(dst_is_packed_dword && src ## n ## _is_packed_word), \
"When the destination spans two registers, the source must " \
"span two registers\n" ERROR_INDENT "(exceptions for scalar " \
"source and packed-word to packed-dword expansion)")
if (i == 0) {
DO_SRC(0);
} else if (i == 1) {
DO_SRC(1);
}
#undef DO_SRC
}
}
return error_msg;
}
bool
brw_validate_instructions(const struct brw_codegen *p, int start_offset,
struct annotation_info *annotation)
@ -577,6 +984,7 @@ brw_validate_instructions(const struct brw_codegen *p, int start_offset,
CHECK(send_restrictions);
CHECK(general_restrictions_based_on_operand_types);
CHECK(general_restrictions_on_region_parameters);
CHECK(region_alignment_rules);
}
if (error_msg.str && annotation) {

View file

@ -468,3 +468,291 @@ TEST_P(validation_test, vstride_on_align16_must_be_0_or_4)
clear_instructions(p);
}
}
/* In Direct Addressing mode, a source cannot span more than 2 adjacent GRF
* registers.
*/
TEST_P(validation_test, source_cannot_span_more_than_2_registers)
{
brw_ADD(p, g0, g0, g0);
brw_inst_set_exec_size(&devinfo, last_inst, BRW_EXECUTE_32);
brw_inst_set_dst_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src0_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_16);
brw_inst_set_src1_width(&devinfo, last_inst, BRW_WIDTH_8);
brw_inst_set_src1_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_2);
EXPECT_FALSE(validate(p));
clear_instructions(p);
brw_ADD(p, g0, g0, g0);
brw_inst_set_exec_size(&devinfo, last_inst, BRW_EXECUTE_16);
brw_inst_set_dst_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src0_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_16);
brw_inst_set_src1_width(&devinfo, last_inst, BRW_WIDTH_8);
brw_inst_set_src1_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_2);
brw_inst_set_src1_da1_subreg_nr(&devinfo, last_inst, 2);
EXPECT_TRUE(validate(p));
clear_instructions(p);
brw_ADD(p, g0, g0, g0);
brw_inst_set_exec_size(&devinfo, last_inst, BRW_EXECUTE_16);
EXPECT_TRUE(validate(p));
}
/* A destination cannot span more than 2 adjacent GRF registers. */
TEST_P(validation_test, destination_cannot_span_more_than_2_registers)
{
brw_ADD(p, g0, g0, g0);
brw_inst_set_exec_size(&devinfo, last_inst, BRW_EXECUTE_32);
brw_inst_set_dst_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_2);
brw_inst_set_dst_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src0_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
EXPECT_FALSE(validate(p));
clear_instructions(p);
brw_ADD(p, g0, g0, g0);
brw_inst_set_exec_size(&devinfo, last_inst, BRW_EXECUTE_8);
brw_inst_set_dst_da1_subreg_nr(&devinfo, last_inst, 6);
brw_inst_set_dst_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_4);
brw_inst_set_dst_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src0_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src0_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_16);
brw_inst_set_src0_width(&devinfo, last_inst, BRW_WIDTH_4);
brw_inst_set_src0_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_1);
brw_inst_set_src1_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_16);
brw_inst_set_src1_width(&devinfo, last_inst, BRW_WIDTH_4);
brw_inst_set_src1_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_1);
EXPECT_TRUE(validate(p));
}
TEST_P(validation_test, src_region_spans_two_regs_dst_region_spans_one)
{
/* Writes to dest are to the lower OWord */
brw_ADD(p, g0, g0, g0);
brw_inst_set_dst_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src0_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_16);
brw_inst_set_src1_width(&devinfo, last_inst, BRW_WIDTH_4);
brw_inst_set_src1_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_2);
EXPECT_TRUE(validate(p));
clear_instructions(p);
/* Writes to dest are to the upper OWord */
brw_ADD(p, g0, g0, g0);
brw_inst_set_dst_da1_subreg_nr(&devinfo, last_inst, 16);
brw_inst_set_dst_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src0_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_16);
brw_inst_set_src1_width(&devinfo, last_inst, BRW_WIDTH_4);
brw_inst_set_src1_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_2);
EXPECT_TRUE(validate(p));
clear_instructions(p);
/* Writes to dest are evenly split between OWords */
brw_ADD(p, g0, g0, g0);
brw_inst_set_exec_size(&devinfo, last_inst, BRW_EXECUTE_16);
brw_inst_set_dst_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src0_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_16);
brw_inst_set_src1_width(&devinfo, last_inst, BRW_WIDTH_8);
brw_inst_set_src1_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_2);
EXPECT_TRUE(validate(p));
clear_instructions(p);
/* Writes to dest are uneven between OWords */
brw_ADD(p, g0, g0, g0);
brw_inst_set_exec_size(&devinfo, last_inst, BRW_EXECUTE_4);
brw_inst_set_dst_da1_subreg_nr(&devinfo, last_inst, 10);
brw_inst_set_dst_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src0_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src0_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_4);
brw_inst_set_src0_width(&devinfo, last_inst, BRW_WIDTH_4);
brw_inst_set_src0_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_1);
brw_inst_set_src1_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_16);
brw_inst_set_src1_width(&devinfo, last_inst, BRW_WIDTH_2);
brw_inst_set_src1_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_1);
if (devinfo.gen >= 9) {
EXPECT_TRUE(validate(p));
} else {
EXPECT_FALSE(validate(p));
}
}
TEST_P(validation_test, dst_elements_must_be_evenly_split_between_registers)
{
brw_ADD(p, g0, g0, g0);
brw_inst_set_dst_da1_subreg_nr(&devinfo, last_inst, 4);
if (devinfo.gen >= 9) {
EXPECT_TRUE(validate(p));
} else {
EXPECT_FALSE(validate(p));
}
clear_instructions(p);
brw_ADD(p, g0, g0, g0);
brw_inst_set_exec_size(&devinfo, last_inst, BRW_EXECUTE_16);
EXPECT_TRUE(validate(p));
clear_instructions(p);
if (devinfo.gen >= 6) {
gen6_math(p, g0, BRW_MATH_FUNCTION_SIN, g0, null);
EXPECT_TRUE(validate(p));
clear_instructions(p);
gen6_math(p, g0, BRW_MATH_FUNCTION_SIN, g0, null);
brw_inst_set_dst_da1_subreg_nr(&devinfo, last_inst, 4);
EXPECT_FALSE(validate(p));
}
}
TEST_P(validation_test, two_src_two_dst_source_offsets_must_be_same)
{
brw_ADD(p, g0, g0, g0);
brw_inst_set_exec_size(&devinfo, last_inst, BRW_EXECUTE_4);
brw_inst_set_dst_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_4);
brw_inst_set_src0_da1_subreg_nr(&devinfo, last_inst, 16);
brw_inst_set_src0_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_2);
brw_inst_set_src0_width(&devinfo, last_inst, BRW_WIDTH_1);
brw_inst_set_src0_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_0);
brw_inst_set_src1_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_4);
brw_inst_set_src1_width(&devinfo, last_inst, BRW_WIDTH_4);
brw_inst_set_src1_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_1);
if (devinfo.gen <= 7) {
EXPECT_FALSE(validate(p));
} else {
EXPECT_TRUE(validate(p));
}
clear_instructions(p);
brw_ADD(p, g0, g0, g0);
brw_inst_set_exec_size(&devinfo, last_inst, BRW_EXECUTE_4);
brw_inst_set_dst_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_4);
brw_inst_set_src0_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_4);
brw_inst_set_src0_width(&devinfo, last_inst, BRW_WIDTH_1);
brw_inst_set_src0_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_0);
brw_inst_set_src1_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_8);
brw_inst_set_src1_width(&devinfo, last_inst, BRW_WIDTH_2);
brw_inst_set_src1_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_1);
EXPECT_TRUE(validate(p));
}
#if 0
TEST_P(validation_test, two_src_two_dst_each_dst_must_be_derived_from_one_src)
{
// mov (16) r10.0<2>:w r12.4<4;4,1>:w
brw_MOV(p, g0, g0);
brw_inst_set_exec_size(&devinfo, last_inst, BRW_EXECUTE_16);
brw_inst_set_dst_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_dst_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_2);
brw_inst_set_src0_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src0_da1_subreg_nr(&devinfo, last_inst, 8);
brw_inst_set_src0_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_4);
brw_inst_set_src0_width(&devinfo, last_inst, BRW_WIDTH_4);
brw_inst_set_src0_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_4);
EXPECT_FALSE(validate(p));
clear_instructions(p);
#if 0
brw_ADD(p, g0, g0, g0);
brw_inst_set_src1_da1_subreg_nr(&devinfo, last_inst, 16);
brw_inst_set_src1_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_4);
brw_inst_set_src1_width(&devinfo, last_inst, BRW_WIDTH_4);
brw_inst_set_src1_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_1);
EXPECT_FALSE(validate(p));
#endif
}
#endif
TEST_P(validation_test, one_src_two_dst)
{
struct brw_reg g0_0 = brw_vec1_grf(0, 0);
brw_ADD(p, g0, g0_0, g0_0);
brw_inst_set_exec_size(&devinfo, last_inst, BRW_EXECUTE_16);
EXPECT_TRUE(validate(p));
clear_instructions(p);
brw_ADD(p, g0, g0, g0);
brw_inst_set_exec_size(&devinfo, last_inst, BRW_EXECUTE_16);
brw_inst_set_dst_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_D);
brw_inst_set_src0_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
EXPECT_TRUE(validate(p));
clear_instructions(p);
brw_ADD(p, g0, g0, g0);
brw_inst_set_exec_size(&devinfo, last_inst, BRW_EXECUTE_16);
brw_inst_set_dst_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_2);
brw_inst_set_dst_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src0_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src1_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_0);
brw_inst_set_src1_width(&devinfo, last_inst, BRW_WIDTH_1);
brw_inst_set_src1_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_0);
if (devinfo.gen >= 8) {
EXPECT_TRUE(validate(p));
} else {
EXPECT_FALSE(validate(p));
}
clear_instructions(p);
brw_ADD(p, g0, g0, g0);
brw_inst_set_exec_size(&devinfo, last_inst, BRW_EXECUTE_16);
brw_inst_set_dst_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_2);
brw_inst_set_dst_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src0_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
brw_inst_set_src0_vstride(&devinfo, last_inst, BRW_VERTICAL_STRIDE_0);
brw_inst_set_src0_width(&devinfo, last_inst, BRW_WIDTH_1);
brw_inst_set_src0_hstride(&devinfo, last_inst, BRW_HORIZONTAL_STRIDE_0);
brw_inst_set_src1_reg_type(&devinfo, last_inst, BRW_HW_REG_TYPE_W);
if (devinfo.gen >= 8) {
EXPECT_TRUE(validate(p));
} else {
EXPECT_FALSE(validate(p));
}
}