mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-25 02:10:11 +01:00
radv/meta: add resolve pass using fragment/vertex shaders
In order to resolve into DCC enabled dests we need to use the fragment shader. This reuses the code from the compute path and implements a resolve path in vertex/fragment shader. This code isn't used until later. Reviewed-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl> Signed-off-by: Dave Airlie <airlied@redhat.com>
This commit is contained in:
parent
19be95f71e
commit
69136f4e63
6 changed files with 699 additions and 2 deletions
|
|
@ -51,6 +51,7 @@ VULKAN_FILES := \
|
|||
radv_meta_fast_clear.c \
|
||||
radv_meta_resolve.c \
|
||||
radv_meta_resolve_cs.c \
|
||||
radv_meta_resolve_fs.c \
|
||||
radv_pass.c \
|
||||
radv_pipeline.c \
|
||||
radv_pipeline_cache.c \
|
||||
|
|
|
|||
|
|
@ -350,8 +350,14 @@ radv_device_init_meta(struct radv_device *device)
|
|||
result = radv_device_init_meta_resolve_compute_state(device);
|
||||
if (result != VK_SUCCESS)
|
||||
goto fail_resolve_compute;
|
||||
|
||||
result = radv_device_init_meta_resolve_fragment_state(device);
|
||||
if (result != VK_SUCCESS)
|
||||
goto fail_resolve_fragment;
|
||||
return VK_SUCCESS;
|
||||
|
||||
fail_resolve_fragment:
|
||||
radv_device_finish_meta_resolve_compute_state(device);
|
||||
fail_resolve_compute:
|
||||
radv_device_finish_meta_fast_clear_flush_state(device);
|
||||
fail_fast_clear:
|
||||
|
|
@ -388,6 +394,7 @@ radv_device_finish_meta(struct radv_device *device)
|
|||
radv_device_finish_meta_buffer_state(device);
|
||||
radv_device_finish_meta_fast_clear_flush_state(device);
|
||||
radv_device_finish_meta_resolve_compute_state(device);
|
||||
radv_device_finish_meta_resolve_fragment_state(device);
|
||||
|
||||
radv_store_meta_pipeline(device);
|
||||
radv_pipeline_cache_finish(&device->meta_state.cache);
|
||||
|
|
|
|||
|
|
@ -91,6 +91,10 @@ void radv_device_finish_meta_query_state(struct radv_device *device);
|
|||
|
||||
VkResult radv_device_init_meta_resolve_compute_state(struct radv_device *device);
|
||||
void radv_device_finish_meta_resolve_compute_state(struct radv_device *device);
|
||||
|
||||
VkResult radv_device_init_meta_resolve_fragment_state(struct radv_device *device);
|
||||
void radv_device_finish_meta_resolve_fragment_state(struct radv_device *device);
|
||||
|
||||
void radv_meta_save(struct radv_meta_saved_state *state,
|
||||
const struct radv_cmd_buffer *cmd_buffer,
|
||||
uint32_t dynamic_mask);
|
||||
|
|
@ -218,6 +222,14 @@ void radv_meta_resolve_compute_image(struct radv_cmd_buffer *cmd_buffer,
|
|||
uint32_t region_count,
|
||||
const VkImageResolve *regions);
|
||||
|
||||
void radv_meta_resolve_fragment_image(struct radv_cmd_buffer *cmd_buffer,
|
||||
struct radv_image *src_image,
|
||||
VkImageLayout src_image_layout,
|
||||
struct radv_image *dest_image,
|
||||
VkImageLayout dest_image_layout,
|
||||
uint32_t region_count,
|
||||
const VkImageResolve *regions);
|
||||
|
||||
void radv_blit_to_prime_linear(struct radv_cmd_buffer *cmd_buffer,
|
||||
struct radv_image *image,
|
||||
struct radv_image *linear_image);
|
||||
|
|
|
|||
|
|
@ -319,7 +319,7 @@ void radv_CmdResolveImage(
|
|||
struct radv_meta_saved_state saved_state;
|
||||
VkDevice device_h = radv_device_to_handle(device);
|
||||
bool use_compute_resolve = false;
|
||||
|
||||
bool use_fragment_resolve = false;
|
||||
/* we can use the hw resolve only for single full resolves */
|
||||
if (region_count == 1) {
|
||||
if (regions[0].srcOffset.x ||
|
||||
|
|
@ -338,8 +338,17 @@ void radv_CmdResolveImage(
|
|||
} else
|
||||
use_compute_resolve = true;
|
||||
|
||||
if (use_compute_resolve) {
|
||||
if (use_fragment_resolve) {
|
||||
radv_meta_resolve_fragment_image(cmd_buffer,
|
||||
src_image,
|
||||
src_image_layout,
|
||||
dest_image,
|
||||
dest_image_layout,
|
||||
region_count, regions);
|
||||
return;
|
||||
}
|
||||
|
||||
if (use_compute_resolve) {
|
||||
radv_meta_resolve_compute_image(cmd_buffer,
|
||||
src_image,
|
||||
src_image_layout,
|
||||
|
|
|
|||
657
src/amd/vulkan/radv_meta_resolve_fs.c
Normal file
657
src/amd/vulkan/radv_meta_resolve_fs.c
Normal file
|
|
@ -0,0 +1,657 @@
|
|||
/*
|
||||
* Copyright © 2016 Dave Airlie
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice (including the next
|
||||
* paragraph) shall be included in all copies or substantial portions of the
|
||||
* Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#include "radv_meta.h"
|
||||
#include "radv_private.h"
|
||||
#include "nir/nir_builder.h"
|
||||
#include "sid.h"
|
||||
#include "vk_format.h"
|
||||
|
||||
static nir_shader *
|
||||
build_nir_vertex_shader(void)
|
||||
{
|
||||
const struct glsl_type *vec4 = glsl_vec4_type();
|
||||
nir_builder b;
|
||||
|
||||
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
|
||||
b.shader->info->name = ralloc_strdup(b.shader, "meta_resolve_vs");
|
||||
|
||||
nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
|
||||
vec4, "gl_Position");
|
||||
pos_out->data.location = VARYING_SLOT_POS;
|
||||
|
||||
nir_ssa_def *outvec = radv_meta_gen_rect_vertices(&b);
|
||||
|
||||
nir_store_var(&b, pos_out, outvec, 0xf);
|
||||
return b.shader;
|
||||
}
|
||||
|
||||
static nir_shader *
|
||||
build_resolve_fragment_shader(struct radv_device *dev, bool is_integer, bool is_srgb, int samples)
|
||||
{
|
||||
nir_builder b;
|
||||
char name[64];
|
||||
const struct glsl_type *vec2 = glsl_vector_type(GLSL_TYPE_FLOAT, 2);
|
||||
const struct glsl_type *vec4 = glsl_vec4_type();
|
||||
const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_MS,
|
||||
false,
|
||||
false,
|
||||
GLSL_TYPE_FLOAT);
|
||||
|
||||
snprintf(name, 64, "meta_resolve_fs-%d-%s", samples, is_integer ? "int" : (is_srgb ? "srgb" : "float"));
|
||||
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
|
||||
b.shader->info->name = ralloc_strdup(b.shader, name);
|
||||
|
||||
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform,
|
||||
sampler_type, "s_tex");
|
||||
input_img->data.descriptor_set = 0;
|
||||
input_img->data.binding = 0;
|
||||
|
||||
nir_variable *fs_pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec2, "fs_pos_in");
|
||||
fs_pos_in->data.location = VARYING_SLOT_POS;
|
||||
|
||||
nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
|
||||
vec4, "f_color");
|
||||
color_out->data.location = FRAG_RESULT_DATA0;
|
||||
|
||||
nir_ssa_def *pos_in = nir_load_var(&b, fs_pos_in);
|
||||
nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
|
||||
src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
|
||||
src_offset->num_components = 2;
|
||||
nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, 2, 32, "src_offset");
|
||||
nir_builder_instr_insert(&b, &src_offset->instr);
|
||||
|
||||
nir_ssa_def *pos_int = nir_f2i32(&b, pos_in);
|
||||
|
||||
nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, pos_int, &src_offset->dest.ssa), 0x3);
|
||||
nir_variable *color = nir_local_variable_create(b.impl, glsl_vec4_type(), "color");
|
||||
|
||||
radv_meta_build_resolve_shader_core(&b, is_integer, is_srgb,samples,
|
||||
input_img, color, img_coord);
|
||||
|
||||
nir_ssa_def *outval = nir_load_var(&b, color);
|
||||
nir_store_var(&b, color_out, outval, 0xf);
|
||||
return b.shader;
|
||||
}
|
||||
|
||||
|
||||
static VkResult
|
||||
create_layout(struct radv_device *device)
|
||||
{
|
||||
VkResult result;
|
||||
/*
|
||||
* one descriptors for the image being sampled
|
||||
*/
|
||||
VkDescriptorSetLayoutCreateInfo ds_create_info = {
|
||||
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
|
||||
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
|
||||
.bindingCount = 1,
|
||||
.pBindings = (VkDescriptorSetLayoutBinding[]) {
|
||||
{
|
||||
.binding = 0,
|
||||
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
|
||||
.descriptorCount = 1,
|
||||
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
|
||||
.pImmutableSamplers = NULL
|
||||
},
|
||||
}
|
||||
};
|
||||
|
||||
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device),
|
||||
&ds_create_info,
|
||||
&device->meta_state.alloc,
|
||||
&device->meta_state.resolve_fragment.ds_layout);
|
||||
if (result != VK_SUCCESS)
|
||||
goto fail;
|
||||
|
||||
|
||||
VkPipelineLayoutCreateInfo pl_create_info = {
|
||||
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
|
||||
.setLayoutCount = 1,
|
||||
.pSetLayouts = &device->meta_state.resolve_fragment.ds_layout,
|
||||
.pushConstantRangeCount = 1,
|
||||
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 8},
|
||||
};
|
||||
|
||||
result = radv_CreatePipelineLayout(radv_device_to_handle(device),
|
||||
&pl_create_info,
|
||||
&device->meta_state.alloc,
|
||||
&device->meta_state.resolve_fragment.p_layout);
|
||||
if (result != VK_SUCCESS)
|
||||
goto fail;
|
||||
return VK_SUCCESS;
|
||||
fail:
|
||||
return result;
|
||||
}
|
||||
|
||||
static const VkPipelineVertexInputStateCreateInfo normal_vi_create_info = {
|
||||
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
|
||||
.vertexBindingDescriptionCount = 1,
|
||||
.pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
|
||||
{
|
||||
.binding = 0,
|
||||
.stride = 2 * sizeof(float),
|
||||
.inputRate = VK_VERTEX_INPUT_RATE_VERTEX
|
||||
},
|
||||
},
|
||||
.vertexAttributeDescriptionCount = 1,
|
||||
.pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
|
||||
{
|
||||
/* Texture Coordinate */
|
||||
.location = 0,
|
||||
.binding = 0,
|
||||
.format = VK_FORMAT_R32G32_SFLOAT,
|
||||
.offset = 0
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
static VkFormat pipeline_formats[] = {
|
||||
VK_FORMAT_R8G8B8A8_UNORM,
|
||||
VK_FORMAT_R8G8B8A8_UINT,
|
||||
VK_FORMAT_R8G8B8A8_SINT,
|
||||
VK_FORMAT_R8G8B8A8_SRGB,
|
||||
VK_FORMAT_R16G16B16A16_UNORM,
|
||||
VK_FORMAT_R16G16B16A16_SNORM,
|
||||
VK_FORMAT_R16G16B16A16_UINT,
|
||||
VK_FORMAT_R16G16B16A16_SINT,
|
||||
VK_FORMAT_R32_SFLOAT,
|
||||
VK_FORMAT_R32G32_SFLOAT,
|
||||
VK_FORMAT_R32G32B32A32_SFLOAT
|
||||
};
|
||||
|
||||
static VkResult
|
||||
create_resolve_pipeline(struct radv_device *device,
|
||||
int samples_log2,
|
||||
VkFormat format)
|
||||
{
|
||||
VkResult result;
|
||||
bool is_integer = false, is_srgb = false;
|
||||
uint32_t samples = 1 << samples_log2;
|
||||
unsigned fs_key = radv_format_meta_fs_key(format);
|
||||
const VkPipelineVertexInputStateCreateInfo *vi_create_info;
|
||||
vi_create_info = &normal_vi_create_info;
|
||||
if (vk_format_is_int(format))
|
||||
is_integer = true;
|
||||
else if (vk_format_is_srgb(format))
|
||||
is_srgb = true;
|
||||
|
||||
struct radv_shader_module fs = { .nir = NULL };
|
||||
fs.nir = build_resolve_fragment_shader(device, is_integer, is_srgb, samples);
|
||||
struct radv_shader_module vs = {
|
||||
.nir = build_nir_vertex_shader(),
|
||||
};
|
||||
|
||||
/* compute shader */
|
||||
|
||||
VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
|
||||
{
|
||||
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
|
||||
.stage = VK_SHADER_STAGE_VERTEX_BIT,
|
||||
.module = radv_shader_module_to_handle(&vs),
|
||||
.pName = "main",
|
||||
.pSpecializationInfo = NULL
|
||||
}, {
|
||||
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
|
||||
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
|
||||
.module = radv_shader_module_to_handle(&fs),
|
||||
.pName = "main",
|
||||
.pSpecializationInfo = NULL
|
||||
},
|
||||
};
|
||||
|
||||
result = radv_CreateRenderPass(radv_device_to_handle(device),
|
||||
&(VkRenderPassCreateInfo) {
|
||||
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
|
||||
.attachmentCount = 1,
|
||||
.pAttachments = &(VkAttachmentDescription) {
|
||||
.format = format,
|
||||
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
|
||||
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
|
||||
.initialLayout = VK_IMAGE_LAYOUT_GENERAL,
|
||||
.finalLayout = VK_IMAGE_LAYOUT_GENERAL,
|
||||
},
|
||||
.subpassCount = 1,
|
||||
.pSubpasses = &(VkSubpassDescription) {
|
||||
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
|
||||
.inputAttachmentCount = 0,
|
||||
.colorAttachmentCount = 1,
|
||||
.pColorAttachments = &(VkAttachmentReference) {
|
||||
.attachment = 0,
|
||||
.layout = VK_IMAGE_LAYOUT_GENERAL,
|
||||
},
|
||||
.pResolveAttachments = NULL,
|
||||
.pDepthStencilAttachment = &(VkAttachmentReference) {
|
||||
.attachment = VK_ATTACHMENT_UNUSED,
|
||||
.layout = VK_IMAGE_LAYOUT_GENERAL,
|
||||
},
|
||||
.preserveAttachmentCount = 1,
|
||||
.pPreserveAttachments = (uint32_t[]) { 0 },
|
||||
},
|
||||
.dependencyCount = 0,
|
||||
}, &device->meta_state.alloc, &device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key]);
|
||||
|
||||
|
||||
const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
|
||||
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
|
||||
.stageCount = ARRAY_SIZE(pipeline_shader_stages),
|
||||
.pStages = pipeline_shader_stages,
|
||||
.pVertexInputState = vi_create_info,
|
||||
.pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
|
||||
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
|
||||
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
|
||||
.primitiveRestartEnable = false,
|
||||
},
|
||||
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
|
||||
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
|
||||
.viewportCount = 1,
|
||||
.scissorCount = 1,
|
||||
},
|
||||
.pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
|
||||
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
|
||||
.rasterizerDiscardEnable = false,
|
||||
.polygonMode = VK_POLYGON_MODE_FILL,
|
||||
.cullMode = VK_CULL_MODE_NONE,
|
||||
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
|
||||
},
|
||||
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
|
||||
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
|
||||
.rasterizationSamples = 1,
|
||||
.sampleShadingEnable = false,
|
||||
.pSampleMask = (VkSampleMask[]) { UINT32_MAX },
|
||||
},
|
||||
.pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
|
||||
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
|
||||
.attachmentCount = 1,
|
||||
.pAttachments = (VkPipelineColorBlendAttachmentState []) {
|
||||
{ .colorWriteMask =
|
||||
VK_COLOR_COMPONENT_A_BIT |
|
||||
VK_COLOR_COMPONENT_R_BIT |
|
||||
VK_COLOR_COMPONENT_G_BIT |
|
||||
VK_COLOR_COMPONENT_B_BIT },
|
||||
}
|
||||
},
|
||||
.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
|
||||
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
|
||||
.dynamicStateCount = 9,
|
||||
.pDynamicStates = (VkDynamicState[]) {
|
||||
VK_DYNAMIC_STATE_VIEWPORT,
|
||||
VK_DYNAMIC_STATE_SCISSOR,
|
||||
VK_DYNAMIC_STATE_LINE_WIDTH,
|
||||
VK_DYNAMIC_STATE_DEPTH_BIAS,
|
||||
VK_DYNAMIC_STATE_BLEND_CONSTANTS,
|
||||
VK_DYNAMIC_STATE_DEPTH_BOUNDS,
|
||||
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
|
||||
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
|
||||
VK_DYNAMIC_STATE_STENCIL_REFERENCE,
|
||||
},
|
||||
},
|
||||
.flags = 0,
|
||||
.layout = device->meta_state.resolve_fragment.p_layout,
|
||||
.renderPass = device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key],
|
||||
.subpass = 0,
|
||||
};
|
||||
|
||||
const struct radv_graphics_pipeline_create_info radv_pipeline_info = {
|
||||
.use_rectlist = true
|
||||
};
|
||||
|
||||
result = radv_graphics_pipeline_create(radv_device_to_handle(device),
|
||||
radv_pipeline_cache_to_handle(&device->meta_state.cache),
|
||||
&vk_pipeline_info, &radv_pipeline_info,
|
||||
&device->meta_state.alloc,
|
||||
&device->meta_state.resolve_fragment.rc[samples_log2].pipeline[fs_key]);
|
||||
|
||||
|
||||
ralloc_free(vs.nir);
|
||||
ralloc_free(fs.nir);
|
||||
if (result != VK_SUCCESS)
|
||||
goto fail;
|
||||
|
||||
return VK_SUCCESS;
|
||||
fail:
|
||||
ralloc_free(vs.nir);
|
||||
ralloc_free(fs.nir);
|
||||
return result;
|
||||
}
|
||||
|
||||
VkResult
|
||||
radv_device_init_meta_resolve_fragment_state(struct radv_device *device)
|
||||
{
|
||||
struct radv_meta_state *state = &device->meta_state;
|
||||
VkResult res;
|
||||
memset(&state->resolve_fragment, 0, sizeof(state->resolve_fragment));
|
||||
|
||||
res = create_layout(device);
|
||||
if (res != VK_SUCCESS)
|
||||
return res;
|
||||
|
||||
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
|
||||
for (unsigned j = 0; j < ARRAY_SIZE(pipeline_formats); ++j) {
|
||||
res = create_resolve_pipeline(device, i, pipeline_formats[j]);
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
void
|
||||
radv_device_finish_meta_resolve_fragment_state(struct radv_device *device)
|
||||
{
|
||||
struct radv_meta_state *state = &device->meta_state;
|
||||
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
|
||||
for (unsigned j = 0; j < NUM_META_FS_KEYS; ++j) {
|
||||
radv_DestroyRenderPass(radv_device_to_handle(device),
|
||||
state->resolve_fragment.rc[i].render_pass[j],
|
||||
&state->alloc);
|
||||
radv_DestroyPipeline(radv_device_to_handle(device),
|
||||
state->resolve_fragment.rc[i].pipeline[j],
|
||||
&state->alloc);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
radv_DestroyDescriptorSetLayout(radv_device_to_handle(device),
|
||||
state->resolve_fragment.ds_layout,
|
||||
&state->alloc);
|
||||
radv_DestroyPipelineLayout(radv_device_to_handle(device),
|
||||
state->resolve_fragment.p_layout,
|
||||
&state->alloc);
|
||||
}
|
||||
|
||||
static void
|
||||
emit_resolve(struct radv_cmd_buffer *cmd_buffer,
|
||||
struct radv_image_view *src_iview,
|
||||
const VkOffset2D *src_offset,
|
||||
const VkOffset2D *dest_offset,
|
||||
const VkExtent2D *resolve_extent)
|
||||
{
|
||||
struct radv_device *device = cmd_buffer->device;
|
||||
VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
|
||||
const uint32_t samples = src_iview->image->info.samples;
|
||||
const uint32_t samples_log2 = ffs(samples) - 1;
|
||||
radv_meta_push_descriptor_set(cmd_buffer,
|
||||
VK_PIPELINE_BIND_POINT_GRAPHICS,
|
||||
cmd_buffer->device->meta_state.resolve_fragment.p_layout,
|
||||
0, /* set */
|
||||
1, /* descriptorWriteCount */
|
||||
(VkWriteDescriptorSet[]) {
|
||||
{
|
||||
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
|
||||
.dstBinding = 0,
|
||||
.dstArrayElement = 0,
|
||||
.descriptorCount = 1,
|
||||
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
|
||||
.pImageInfo = (VkDescriptorImageInfo[]) {
|
||||
{
|
||||
.sampler = VK_NULL_HANDLE,
|
||||
.imageView = radv_image_view_to_handle(src_iview),
|
||||
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
|
||||
},
|
||||
}
|
||||
},
|
||||
});
|
||||
|
||||
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
|
||||
|
||||
unsigned push_constants[2] = {
|
||||
src_offset->x,
|
||||
src_offset->y,
|
||||
};
|
||||
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
|
||||
device->meta_state.resolve_fragment.p_layout,
|
||||
VK_SHADER_STAGE_FRAGMENT_BIT, 0, 8,
|
||||
push_constants);
|
||||
|
||||
unsigned fs_key = radv_format_meta_fs_key(src_iview->vk_format);
|
||||
VkPipeline pipeline_h = device->meta_state.resolve_fragment.rc[samples_log2].pipeline[fs_key];
|
||||
|
||||
radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS,
|
||||
pipeline_h);
|
||||
|
||||
radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport) {
|
||||
.x = dest_offset->x,
|
||||
.y = dest_offset->y,
|
||||
.width = resolve_extent->width,
|
||||
.height = resolve_extent->height,
|
||||
.minDepth = 0.0f,
|
||||
.maxDepth = 1.0f
|
||||
});
|
||||
|
||||
radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkRect2D) {
|
||||
.offset = *dest_offset,
|
||||
.extent = *resolve_extent,
|
||||
});
|
||||
|
||||
radv_CmdDraw(cmd_buffer_h, 3, 1, 0, 0);
|
||||
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
|
||||
}
|
||||
|
||||
void radv_meta_resolve_fragment_image(struct radv_cmd_buffer *cmd_buffer,
|
||||
struct radv_image *src_image,
|
||||
VkImageLayout src_image_layout,
|
||||
struct radv_image *dest_image,
|
||||
VkImageLayout dest_image_layout,
|
||||
uint32_t region_count,
|
||||
const VkImageResolve *regions)
|
||||
{
|
||||
struct radv_device *device = cmd_buffer->device;
|
||||
struct radv_meta_saved_state saved_state;
|
||||
const uint32_t samples = src_image->info.samples;
|
||||
const uint32_t samples_log2 = ffs(samples) - 1;
|
||||
unsigned fs_key = radv_format_meta_fs_key(dest_image->vk_format);
|
||||
for (uint32_t r = 0; r < region_count; ++r) {
|
||||
const VkImageResolve *region = ®ions[r];
|
||||
const uint32_t src_base_layer =
|
||||
radv_meta_get_iview_layer(src_image, ®ion->srcSubresource,
|
||||
®ion->srcOffset);
|
||||
VkImageSubresourceRange range;
|
||||
range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
range.baseMipLevel = region->srcSubresource.mipLevel;
|
||||
range.levelCount = 1;
|
||||
range.baseArrayLayer = src_base_layer;
|
||||
range.layerCount = region->srcSubresource.layerCount;
|
||||
radv_fast_clear_flush_image_inplace(cmd_buffer, src_image, &range);
|
||||
}
|
||||
|
||||
radv_meta_save_graphics_reset_vport_scissor_novertex(&saved_state, cmd_buffer);
|
||||
|
||||
for (uint32_t r = 0; r < region_count; ++r) {
|
||||
const VkImageResolve *region = ®ions[r];
|
||||
|
||||
assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
|
||||
assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
|
||||
assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount);
|
||||
|
||||
const uint32_t src_base_layer =
|
||||
radv_meta_get_iview_layer(src_image, ®ion->srcSubresource,
|
||||
®ion->srcOffset);
|
||||
|
||||
const uint32_t dest_base_layer =
|
||||
radv_meta_get_iview_layer(dest_image, ®ion->dstSubresource,
|
||||
®ion->dstOffset);
|
||||
|
||||
const struct VkExtent3D extent =
|
||||
radv_sanitize_image_extent(src_image->type, region->extent);
|
||||
const struct VkOffset3D srcOffset =
|
||||
radv_sanitize_image_offset(src_image->type, region->srcOffset);
|
||||
const struct VkOffset3D dstOffset =
|
||||
radv_sanitize_image_offset(dest_image->type, region->dstOffset);
|
||||
|
||||
for (uint32_t layer = 0; layer < region->srcSubresource.layerCount;
|
||||
++layer) {
|
||||
|
||||
struct radv_image_view src_iview;
|
||||
radv_image_view_init(&src_iview, cmd_buffer->device,
|
||||
&(VkImageViewCreateInfo) {
|
||||
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
|
||||
.image = radv_image_to_handle(src_image),
|
||||
.viewType = radv_meta_get_view_type(src_image),
|
||||
.format = src_image->vk_format,
|
||||
.subresourceRange = {
|
||||
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
|
||||
.baseMipLevel = region->srcSubresource.mipLevel,
|
||||
.levelCount = 1,
|
||||
.baseArrayLayer = src_base_layer + layer,
|
||||
.layerCount = 1,
|
||||
},
|
||||
},
|
||||
cmd_buffer, VK_IMAGE_USAGE_SAMPLED_BIT);
|
||||
|
||||
struct radv_image_view dest_iview;
|
||||
radv_image_view_init(&dest_iview, cmd_buffer->device,
|
||||
&(VkImageViewCreateInfo) {
|
||||
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
|
||||
.image = radv_image_to_handle(dest_image),
|
||||
.viewType = radv_meta_get_view_type(dest_image),
|
||||
.format = dest_image->vk_format,
|
||||
.subresourceRange = {
|
||||
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
|
||||
.baseMipLevel = region->dstSubresource.mipLevel,
|
||||
.levelCount = 1,
|
||||
.baseArrayLayer = dest_base_layer + layer,
|
||||
.layerCount = 1,
|
||||
},
|
||||
},
|
||||
cmd_buffer, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
|
||||
|
||||
|
||||
VkFramebuffer fb;
|
||||
radv_CreateFramebuffer(radv_device_to_handle(cmd_buffer->device),
|
||||
&(VkFramebufferCreateInfo) {
|
||||
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
|
||||
.attachmentCount = 1,
|
||||
.pAttachments = (VkImageView[]) {
|
||||
radv_image_view_to_handle(&dest_iview),
|
||||
},
|
||||
.width = extent.width,
|
||||
.height = extent.height,
|
||||
.layers = 1
|
||||
}, &cmd_buffer->pool->alloc, &fb);
|
||||
|
||||
radv_CmdBeginRenderPass(radv_cmd_buffer_to_handle(cmd_buffer),
|
||||
&(VkRenderPassBeginInfo) {
|
||||
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
|
||||
.renderPass = device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key],
|
||||
.framebuffer = fb,
|
||||
.renderArea = {
|
||||
.offset = { dstOffset.x, dstOffset.y, },
|
||||
.extent = { extent.width, extent.height },
|
||||
},
|
||||
.clearValueCount = 0,
|
||||
.pClearValues = NULL,
|
||||
}, VK_SUBPASS_CONTENTS_INLINE);
|
||||
|
||||
|
||||
|
||||
emit_resolve(cmd_buffer,
|
||||
&src_iview,
|
||||
&(VkOffset2D) { srcOffset.x, srcOffset.y },
|
||||
&(VkOffset2D) { dstOffset.x, dstOffset.y },
|
||||
&(VkExtent2D) { extent.width, extent.height });
|
||||
|
||||
radv_CmdEndRenderPass(radv_cmd_buffer_to_handle(cmd_buffer));
|
||||
|
||||
radv_DestroyFramebuffer(radv_device_to_handle(cmd_buffer->device), fb, &cmd_buffer->pool->alloc);
|
||||
}
|
||||
}
|
||||
|
||||
radv_meta_restore(&saved_state, cmd_buffer);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Emit any needed resolves for the current subpass.
|
||||
*/
|
||||
void
|
||||
radv_cmd_buffer_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer)
|
||||
{
|
||||
struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
|
||||
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
|
||||
struct radv_meta_saved_state saved_state;
|
||||
|
||||
/* FINISHME(perf): Skip clears for resolve attachments.
|
||||
*
|
||||
* From the Vulkan 1.0 spec:
|
||||
*
|
||||
* If the first use of an attachment in a render pass is as a resolve
|
||||
* attachment, then the loadOp is effectively ignored as the resolve is
|
||||
* guaranteed to overwrite all pixels in the render area.
|
||||
*/
|
||||
|
||||
if (!subpass->has_resolve)
|
||||
return;
|
||||
|
||||
radv_meta_save_graphics_reset_vport_scissor(&saved_state, cmd_buffer);
|
||||
|
||||
for (uint32_t i = 0; i < subpass->color_count; ++i) {
|
||||
VkAttachmentReference src_att = subpass->color_attachments[i];
|
||||
VkAttachmentReference dest_att = subpass->resolve_attachments[i];
|
||||
struct radv_image *dst_img = cmd_buffer->state.framebuffer->attachments[dest_att.attachment].attachment->image;
|
||||
struct radv_image_view *src_iview = cmd_buffer->state.framebuffer->attachments[src_att.attachment].attachment;
|
||||
if (dest_att.attachment == VK_ATTACHMENT_UNUSED)
|
||||
continue;
|
||||
|
||||
if (dst_img->surface.dcc_size) {
|
||||
radv_initialize_dcc(cmd_buffer, dst_img, 0xffffffff);
|
||||
cmd_buffer->state.attachments[dest_att.attachment].current_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
||||
}
|
||||
{
|
||||
VkImageSubresourceRange range;
|
||||
range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
range.baseMipLevel = 0;
|
||||
range.levelCount = 1;
|
||||
range.baseArrayLayer = 0;
|
||||
range.layerCount = 1;
|
||||
radv_fast_clear_flush_image_inplace(cmd_buffer, src_iview->image, &range);
|
||||
}
|
||||
|
||||
struct radv_subpass resolve_subpass = {
|
||||
.color_count = 1,
|
||||
.color_attachments = (VkAttachmentReference[]) { dest_att },
|
||||
.depth_stencil_attachment = { .attachment = VK_ATTACHMENT_UNUSED },
|
||||
};
|
||||
|
||||
radv_cmd_buffer_set_subpass(cmd_buffer, &resolve_subpass, false);
|
||||
|
||||
/* Subpass resolves must respect the render area. We can ignore the
|
||||
* render area here because vkCmdBeginRenderPass set the render area
|
||||
* with 3DSTATE_DRAWING_RECTANGLE.
|
||||
*
|
||||
* XXX(chadv): Does the hardware really respect
|
||||
* 3DSTATE_DRAWING_RECTANGLE when draing a 3DPRIM_RECTLIST?
|
||||
*/
|
||||
emit_resolve(cmd_buffer,
|
||||
src_iview,
|
||||
&(VkOffset2D) { 0, 0 },
|
||||
&(VkOffset2D) { 0, 0 },
|
||||
&(VkExtent2D) { fb->width, fb->height });
|
||||
}
|
||||
|
||||
cmd_buffer->state.subpass = subpass;
|
||||
radv_meta_restore(&saved_state, cmd_buffer);
|
||||
}
|
||||
|
|
@ -419,6 +419,16 @@ struct radv_meta_state {
|
|||
} rc[MAX_SAMPLES_LOG2];
|
||||
} resolve_compute;
|
||||
|
||||
struct {
|
||||
VkDescriptorSetLayout ds_layout;
|
||||
VkPipelineLayout p_layout;
|
||||
|
||||
struct {
|
||||
VkRenderPass render_pass[NUM_META_FS_KEYS];
|
||||
VkPipeline pipeline[NUM_META_FS_KEYS];
|
||||
} rc[MAX_SAMPLES_LOG2];
|
||||
} resolve_fragment;
|
||||
|
||||
struct {
|
||||
VkPipeline decompress_pipeline;
|
||||
VkPipeline resummarize_pipeline;
|
||||
|
|
@ -863,6 +873,7 @@ radv_emit_framebuffer_state(struct radv_cmd_buffer *cmd_buffer);
|
|||
void radv_cmd_buffer_clear_subpass(struct radv_cmd_buffer *cmd_buffer);
|
||||
void radv_cmd_buffer_resolve_subpass(struct radv_cmd_buffer *cmd_buffer);
|
||||
void radv_cmd_buffer_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer);
|
||||
void radv_cmd_buffer_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer);
|
||||
void radv_cayman_emit_msaa_sample_locs(struct radeon_winsys_cs *cs, int nr_samples);
|
||||
unsigned radv_cayman_get_maxdist(int log_samples);
|
||||
void radv_device_init_msaa(struct radv_device *device);
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue