pan/bi: Move notes on ADD ops to notes file

Again, we'd like to see just the opcode table more clearly.

Signed-off-by: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4025>
This commit is contained in:
Alyssa Rosenzweig 2020-03-01 11:51:01 -05:00 committed by Marge Bot
parent 7c96bd2dc5
commit 67bbaddf7d
2 changed files with 80 additions and 44 deletions

View file

@ -1,6 +1,6 @@
# Notes on opcodes
_Notes by Connor Abbott extracted from the disassembler_
_Notes mainly by Connor Abbott extracted from the disassembler_
LOG_FREXPM:
@ -99,3 +99,82 @@ LSHIFT_ADD_LOW32:
// ld_st_op temp, ptr.y, ...
//
// Again, the same as the unsigned case except for the offset.
---
ADD ops..
F16_TO_F32.X: // take the low 16 bits, and expand it to a 32-bit float
F16_TO_F32.Y: // take the high 16 bits, and expand it to a 32-bit float
MOV:
// Logically, this should be SWZ.XY, but that's equivalent to a move, and
// this seems to be the canonical way the blob generates a MOV.
FRCP_FREXPM:
// Given a floating point number m * 2^e, returns m ^ 2^{-1}.
FLOG_FREXPE:
// From the ARM patent US20160364209A1:
// "Decompose v (the input) into numbers x1 and s such that v = x1 * 2^s,
// and x1 is a floating point value in a predetermined range where the
// value 1 is within the range and not at one extremity of the range (e.g.
// choose a range where 1 is towards middle of range)."
//
// This computes s.
LD_UBO.v4i32
// src0 = offset, src1 = binding
FRCP_FAST.f32:
// *_FAST does not exist on G71 (added to G51, G72, and everything after)
FRCP_TABLE
// Given a floating point number m * 2^e, produces a table-based
// approximation of 2/m using the top 17 bits. Includes special cases for
// infinity, NaN, and zero, and copies the sign bit.
FRCP_FAST.f16.X
// Exists on G71
FRSQ_TABLE:
// A similar table for inverse square root, using the high 17 bits of the
// mantissa as well as the low bit of the exponent.
FRCP_APPROX:
// Used in the argument reduction for log. Given a floating-point number
// m * 2^e, uses the top 4 bits of m to produce an approximation to 1/m
// with the exponent forced to 0 and only the top 5 bits are nonzero. 0,
// infinity, and NaN all return 1.0.
// See the ARM patent for more information.
MUX:
// For each bit i, return src2[i] ? src0[i] : src1[i]. In other words, this
// is the same as (src2 & src0) | (~src2 & src1).
ST_VAR:
// store a varying given the address and datatype from LD_VAR_ADDR
LD_VAR_ADDR:
// Compute varying address and datatype (for storing in the vertex shader),
// and store the vec3 result in the data register. The result is passed as
// the 3 normal arguments to ST_VAR.
DISCARD
// Conditional discards (discard_if) in NIR. Compares the first two
// sources and discards if the result is true
ATEST.f32:
// Implements alpha-to-coverage, as well as possibly the late depth and
// stencil tests. The first source is the existing sample mask in R60
// (possibly modified by gl_SampleMask), and the second source is the alpha
// value. The sample mask is written right away based on the
// alpha-to-coverage result using the normal register write mechanism,
// since that doesn't need to read from any memory, and then written again
// later based on the result of the stencil and depth tests using the
// special register.
BLEND:
// This takes the sample coverage mask (computed by ATEST above) as a
// regular argument, in addition to the vec4 color in the special register.

View file

@ -1108,30 +1108,18 @@ static const struct add_op_info add_op_infos[] = {
{ 0x0799d, "U16_TO_F32.X", ADD_ONE_SRC },
{ 0x0799e, "I16_TO_F32.Y", ADD_ONE_SRC },
{ 0x0799f, "U16_TO_F32.Y", ADD_ONE_SRC },
// take the low 16 bits, and expand it to a 32-bit float
{ 0x079a2, "F16_TO_F32.X", ADD_ONE_SRC },
// take the high 16 bits, ...
{ 0x079a3, "F16_TO_F32.Y", ADD_ONE_SRC },
{ 0x07b2b, "SWZ.YX.v2i16", ADD_ONE_SRC },
{ 0x07b2c, "NOP", ADD_ONE_SRC },
{ 0x07b29, "SWZ.XX.v2i16", ADD_ONE_SRC },
// Logically, this should be SWZ.XY, but that's equivalent to a move, and
// this seems to be the canonical way the blob generates a MOV.
{ 0x07b2d, "MOV", ADD_ONE_SRC },
{ 0x07b2f, "SWZ.YY.v2i16", ADD_ONE_SRC },
// Given a floating point number m * 2^e, returns m ^ 2^{-1}.
{ 0x07b65, "FRCP_FREXPM", ADD_ONE_SRC },
{ 0x07b75, "FSQRT_FREXPM", ADD_ONE_SRC },
{ 0x07b8d, "FRCP_FREXPE", ADD_ONE_SRC },
{ 0x07ba5, "FSQRT_FREXPE", ADD_ONE_SRC },
{ 0x07bad, "FRSQ_FREXPE", ADD_ONE_SRC },
// From the ARM patent US20160364209A1:
// "Decompose v (the input) into numbers x1 and s such that v = x1 * 2^s,
// and x1 is a floating point value in a predetermined range where the
// value 1 is within the range and not at one extremity of the range (e.g.
// choose a range where 1 is towards middle of range)."
//
// This computes s.
{ 0x07bc5, "FLOG_FREXPE", ADD_ONE_SRC },
{ 0x07d45, "CEIL", ADD_ONE_SRC },
{ 0x07d85, "FLOOR", ADD_ONE_SRC },
@ -1162,7 +1150,6 @@ static const struct add_op_info add_op_infos[] = {
{ 0x0c1e0, "LD_UBO.v2i32", ADD_TWO_SRC, true },
{ 0x0c1f8, "LD_SCRATCH.v2i32", ADD_TWO_SRC, true },
{ 0x0c208, "LOAD.v4i32", ADD_TWO_SRC, true },
// src0 = offset, src1 = binding
{ 0x0c220, "LD_UBO.v4i32", ADD_TWO_SRC, true },
{ 0x0c238, "LD_SCRATCH.v4i32", ADD_TWO_SRC, true },
{ 0x0c248, "STORE.v4i32", ADD_TWO_SRC, true },
@ -1177,25 +1164,13 @@ static const struct add_op_info add_op_infos[] = {
{ 0x0cab8, "LD_SCRATCH.v3i32", ADD_TWO_SRC, true },
{ 0x0cb88, "STORE.v3i32", ADD_TWO_SRC, true },
{ 0x0cbb8, "ST_SCRATCH.v3i32", ADD_TWO_SRC, true },
// *_FAST does not exist on G71 (added to G51, G72, and everything after)
{ 0x0cc00, "FRCP_FAST.f32", ADD_ONE_SRC },
{ 0x0cc20, "FRSQ_FAST.f32", ADD_ONE_SRC },
// Given a floating point number m * 2^e, produces a table-based
// approximation of 2/m using the top 17 bits. Includes special cases for
// infinity, NaN, and zero, and copies the sign bit.
{ 0x0ce00, "FRCP_TABLE", ADD_ONE_SRC },
// Exists on G71
{ 0x0ce10, "FRCP_FAST.f16.X", ADD_ONE_SRC },
// A similar table for inverse square root, using the high 17 bits of the
// mantissa as well as the low bit of the exponent.
{ 0x0ce20, "FRSQ_TABLE", ADD_ONE_SRC },
{ 0x0ce30, "FRCP_FAST.f16.Y", ADD_ONE_SRC },
{ 0x0ce50, "FRSQ_FAST.f16.X", ADD_ONE_SRC },
// Used in the argument reduction for log. Given a floating-point number
// m * 2^e, uses the top 4 bits of m to produce an approximation to 1/m
// with the exponent forced to 0 and only the top 5 bits are nonzero. 0,
// infinity, and NaN all return 1.0.
// See the ARM patent for more information.
{ 0x0ce60, "FRCP_APPROX", ADD_ONE_SRC },
{ 0x0ce70, "FRSQ_FAST.f16.Y", ADD_ONE_SRC },
{ 0x0cf40, "ATAN_ASSIST", ADD_TWO_SRC },
@ -1206,8 +1181,6 @@ static const struct add_op_info add_op_infos[] = {
{ 0x0cf60, "FLOG2_TABLE", ADD_ONE_SRC },
{ 0x0cf64, "FLOGE_TABLE", ADD_ONE_SRC },
{ 0x0d000, "BRANCH", ADD_BRANCH },
// For each bit i, return src2[i] ? src0[i] : src1[i]. In other words, this
// is the same as (src2 & src0) | (~src2 & src1).
{ 0x0e8c0, "MUX", ADD_THREE_SRC },
{ 0x0e9b0, "ATAN_LDEXP.Y.f32", ADD_TWO_SRC },
{ 0x0e9b8, "ATAN_LDEXP.X.f32", ADD_TWO_SRC },
@ -1240,38 +1213,22 @@ static const struct add_op_info add_op_infos[] = {
{ 0x17d90, "ADD.i32.u16.X", ADD_TWO_SRC },
{ 0x17dc0, "ADD.i32.i16.Y", ADD_TWO_SRC },
{ 0x17dd0, "ADD.i32.u16.Y", ADD_TWO_SRC },
// Compute varying address and datatype (for storing in the vertex shader),
// and store the vec3 result in the data register. The result is passed as
// the 3 normal arguments to ST_VAR.
{ 0x18000, "LD_VAR_ADDR.f16", ADD_VARYING_ADDRESS, true },
{ 0x18100, "LD_VAR_ADDR.f32", ADD_VARYING_ADDRESS, true },
{ 0x18200, "LD_VAR_ADDR.i32", ADD_VARYING_ADDRESS, true },
{ 0x18300, "LD_VAR_ADDR.u32", ADD_VARYING_ADDRESS, true },
// Conditional discards (discard_if) in NIR. Compares the first two
// sources and discards if the result is true
{ 0x19181, "DISCARD.FEQ.f32", ADD_TWO_SRC, true },
{ 0x19189, "DISCARD.FNE.f32", ADD_TWO_SRC, true },
{ 0x1918C, "DISCARD.GL.f32", ADD_TWO_SRC, true }, /* Consumes ICMP.GL/etc with fixed 0 argument */
{ 0x19190, "DISCARD.FLE.f32", ADD_TWO_SRC, true },
{ 0x19198, "DISCARD.FLT.f32", ADD_TWO_SRC, true },
// Implements alpha-to-coverage, as well as possibly the late depth and
// stencil tests. The first source is the existing sample mask in R60
// (possibly modified by gl_SampleMask), and the second source is the alpha
// value. The sample mask is written right away based on the
// alpha-to-coverage result using the normal register write mechanism,
// since that doesn't need to read from any memory, and then written again
// later based on the result of the stencil and depth tests using the
// special register.
{ 0x191e8, "ATEST.f32", ADD_TWO_SRC, true },
{ 0x191f0, "ATEST.X.f16", ADD_TWO_SRC, true },
{ 0x191f8, "ATEST.Y.f16", ADD_TWO_SRC, true },
// store a varying given the address and datatype from LD_VAR_ADDR
{ 0x19300, "ST_VAR.v1", ADD_THREE_SRC, true },
{ 0x19340, "ST_VAR.v2", ADD_THREE_SRC, true },
{ 0x19380, "ST_VAR.v3", ADD_THREE_SRC, true },
{ 0x193c0, "ST_VAR.v4", ADD_THREE_SRC, true },
// This takes the sample coverage mask (computed by ATEST above) as a
// regular argument, in addition to the vec4 color in the special register.
{ 0x1952c, "BLEND", ADD_BLENDING, true },
{ 0x1a000, "LD_VAR.16", ADD_VARYING_INTERP, true },
{ 0x1ae60, "TEX", ADD_TEX, true },