i965: Split register allocation out of the ever-growing brw_fs.cpp.

This commit is contained in:
Eric Anholt 2010-10-20 10:26:29 -07:00
parent 3f5fde5c45
commit 5ac6c4ecfe
3 changed files with 266 additions and 216 deletions

View file

@ -108,6 +108,7 @@ CXX_SOURCES = \
brw_cubemap_normalize.cpp \
brw_fs.cpp \
brw_fs_channel_expressions.cpp \
brw_fs_reg_allocate.cpp \
brw_fs_vector_splitting.cpp
ASM_SOURCES =

View file

@ -2311,222 +2311,6 @@ fs_visitor::assign_urb_setup()
this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
}
static void
assign_reg(int *reg_hw_locations, fs_reg *reg)
{
if (reg->file == GRF && reg->reg != 0) {
assert(reg->reg_offset >= 0);
reg->hw_reg = reg_hw_locations[reg->reg] + reg->reg_offset;
reg->reg = 0;
}
}
void
fs_visitor::assign_regs_trivial()
{
int last_grf = 0;
int hw_reg_mapping[this->virtual_grf_next];
int i;
hw_reg_mapping[0] = 0;
hw_reg_mapping[1] = this->first_non_payload_grf;
for (i = 2; i < this->virtual_grf_next; i++) {
hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
this->virtual_grf_sizes[i - 1]);
}
last_grf = hw_reg_mapping[i - 1] + this->virtual_grf_sizes[i - 1];
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
assign_reg(hw_reg_mapping, &inst->dst);
assign_reg(hw_reg_mapping, &inst->src[0]);
assign_reg(hw_reg_mapping, &inst->src[1]);
}
this->grf_used = last_grf + 1;
}
void
fs_visitor::assign_regs()
{
int last_grf = 0;
int hw_reg_mapping[this->virtual_grf_next + 1];
int base_reg_count = BRW_MAX_GRF - this->first_non_payload_grf;
int class_sizes[base_reg_count];
int class_count = 0;
int aligned_pair_class = -1;
/* Set up the register classes.
*
* The base registers store a scalar value. For texture samples,
* we get virtual GRFs composed of 4 contiguous hw register. For
* structures and arrays, we store them as contiguous larger things
* than that, though we should be able to do better most of the
* time.
*/
class_sizes[class_count++] = 1;
if (brw->has_pln && intel->gen < 6) {
/* Always set up the (unaligned) pairs for gen5, so we can find
* them for making the aligned pair class.
*/
class_sizes[class_count++] = 2;
}
for (int r = 1; r < this->virtual_grf_next; r++) {
int i;
for (i = 0; i < class_count; i++) {
if (class_sizes[i] == this->virtual_grf_sizes[r])
break;
}
if (i == class_count) {
if (this->virtual_grf_sizes[r] >= base_reg_count) {
fprintf(stderr, "Object too large to register allocate.\n");
this->fail = true;
}
class_sizes[class_count++] = this->virtual_grf_sizes[r];
}
}
int ra_reg_count = 0;
int class_base_reg[class_count];
int class_reg_count[class_count];
int classes[class_count + 1];
for (int i = 0; i < class_count; i++) {
class_base_reg[i] = ra_reg_count;
class_reg_count[i] = base_reg_count - (class_sizes[i] - 1);
ra_reg_count += class_reg_count[i];
}
struct ra_regs *regs = ra_alloc_reg_set(ra_reg_count);
for (int i = 0; i < class_count; i++) {
classes[i] = ra_alloc_reg_class(regs);
for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
ra_class_add_reg(regs, classes[i], class_base_reg[i] + i_r);
}
/* Add conflicts between our contiguous registers aliasing
* base regs and other register classes' contiguous registers
* that alias base regs, or the base regs themselves for classes[0].
*/
for (int c = 0; c <= i; c++) {
for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
for (int c_r = MAX2(0, i_r - (class_sizes[c] - 1));
c_r < MIN2(class_reg_count[c], i_r + class_sizes[i]);
c_r++) {
if (0) {
printf("%d/%d conflicts %d/%d\n",
class_sizes[i], this->first_non_payload_grf + i_r,
class_sizes[c], this->first_non_payload_grf + c_r);
}
ra_add_reg_conflict(regs,
class_base_reg[i] + i_r,
class_base_reg[c] + c_r);
}
}
}
}
/* Add a special class for aligned pairs, which we'll put delta_x/y
* in on gen5 so that we can do PLN.
*/
if (brw->has_pln && intel->gen < 6) {
int reg_count = (base_reg_count - 1) / 2;
int unaligned_pair_class = 1;
assert(class_sizes[unaligned_pair_class] == 2);
aligned_pair_class = class_count;
classes[aligned_pair_class] = ra_alloc_reg_class(regs);
class_sizes[aligned_pair_class] = 2;
class_base_reg[aligned_pair_class] = 0;
class_reg_count[aligned_pair_class] = 0;
int start = (this->first_non_payload_grf & 1) ? 1 : 0;
for (int i = 0; i < reg_count; i++) {
ra_class_add_reg(regs, classes[aligned_pair_class],
class_base_reg[unaligned_pair_class] + i * 2 + start);
}
class_count++;
}
ra_set_finalize(regs);
struct ra_graph *g = ra_alloc_interference_graph(regs,
this->virtual_grf_next);
/* Node 0 is just a placeholder to keep virtual_grf[] mapping 1:1
* with nodes.
*/
ra_set_node_class(g, 0, classes[0]);
for (int i = 1; i < this->virtual_grf_next; i++) {
for (int c = 0; c < class_count; c++) {
if (class_sizes[c] == this->virtual_grf_sizes[i]) {
if (aligned_pair_class >= 0 &&
this->delta_x.reg == i) {
ra_set_node_class(g, i, classes[aligned_pair_class]);
} else {
ra_set_node_class(g, i, classes[c]);
}
break;
}
}
for (int j = 1; j < i; j++) {
if (virtual_grf_interferes(i, j)) {
ra_add_node_interference(g, i, j);
}
}
}
/* FINISHME: Handle spilling */
if (!ra_allocate_no_spills(g)) {
fprintf(stderr, "Failed to allocate registers.\n");
this->fail = true;
return;
}
/* Get the chosen virtual registers for each node, and map virtual
* regs in the register classes back down to real hardware reg
* numbers.
*/
hw_reg_mapping[0] = 0; /* unused */
for (int i = 1; i < this->virtual_grf_next; i++) {
int reg = ra_get_node_reg(g, i);
int hw_reg = -1;
for (int c = 0; c < class_count; c++) {
if (reg >= class_base_reg[c] &&
reg < class_base_reg[c] + class_reg_count[c]) {
hw_reg = reg - class_base_reg[c];
break;
}
}
assert(hw_reg >= 0);
hw_reg_mapping[i] = this->first_non_payload_grf + hw_reg;
last_grf = MAX2(last_grf,
hw_reg_mapping[i] + this->virtual_grf_sizes[i] - 1);
}
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
assign_reg(hw_reg_mapping, &inst->dst);
assign_reg(hw_reg_mapping, &inst->src[0]);
assign_reg(hw_reg_mapping, &inst->src[1]);
}
this->grf_used = last_grf + 1;
talloc_free(g);
talloc_free(regs);
}
/**
* Split large virtual GRFs into separate components if we can.
*

View file

@ -0,0 +1,265 @@
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
extern "C" {
#include <sys/types.h>
#include "main/macros.h"
#include "main/shaderobj.h"
#include "main/uniforms.h"
#include "program/prog_parameter.h"
#include "program/prog_print.h"
#include "program/prog_optimize.h"
#include "program/register_allocate.h"
#include "program/sampler.h"
#include "program/hash_table.h"
#include "brw_context.h"
#include "brw_eu.h"
#include "brw_wm.h"
#include "talloc.h"
}
#include "brw_fs.h"
#include "../glsl/glsl_types.h"
#include "../glsl/ir_optimization.h"
#include "../glsl/ir_print_visitor.h"
static void
assign_reg(int *reg_hw_locations, fs_reg *reg)
{
if (reg->file == GRF && reg->reg != 0) {
assert(reg->reg_offset >= 0);
reg->hw_reg = reg_hw_locations[reg->reg] + reg->reg_offset;
reg->reg = 0;
}
}
void
fs_visitor::assign_regs_trivial()
{
int last_grf = 0;
int hw_reg_mapping[this->virtual_grf_next];
int i;
hw_reg_mapping[0] = 0;
hw_reg_mapping[1] = this->first_non_payload_grf;
for (i = 2; i < this->virtual_grf_next; i++) {
hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
this->virtual_grf_sizes[i - 1]);
}
last_grf = hw_reg_mapping[i - 1] + this->virtual_grf_sizes[i - 1];
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
assign_reg(hw_reg_mapping, &inst->dst);
assign_reg(hw_reg_mapping, &inst->src[0]);
assign_reg(hw_reg_mapping, &inst->src[1]);
}
this->grf_used = last_grf + 1;
}
void
fs_visitor::assign_regs()
{
int last_grf = 0;
int hw_reg_mapping[this->virtual_grf_next + 1];
int base_reg_count = BRW_MAX_GRF - this->first_non_payload_grf;
int class_sizes[base_reg_count];
int class_count = 0;
int aligned_pair_class = -1;
/* Set up the register classes.
*
* The base registers store a scalar value. For texture samples,
* we get virtual GRFs composed of 4 contiguous hw register. For
* structures and arrays, we store them as contiguous larger things
* than that, though we should be able to do better most of the
* time.
*/
class_sizes[class_count++] = 1;
if (brw->has_pln && intel->gen < 6) {
/* Always set up the (unaligned) pairs for gen5, so we can find
* them for making the aligned pair class.
*/
class_sizes[class_count++] = 2;
}
for (int r = 1; r < this->virtual_grf_next; r++) {
int i;
for (i = 0; i < class_count; i++) {
if (class_sizes[i] == this->virtual_grf_sizes[r])
break;
}
if (i == class_count) {
if (this->virtual_grf_sizes[r] >= base_reg_count) {
fprintf(stderr, "Object too large to register allocate.\n");
this->fail = true;
}
class_sizes[class_count++] = this->virtual_grf_sizes[r];
}
}
int ra_reg_count = 0;
int class_base_reg[class_count];
int class_reg_count[class_count];
int classes[class_count + 1];
for (int i = 0; i < class_count; i++) {
class_base_reg[i] = ra_reg_count;
class_reg_count[i] = base_reg_count - (class_sizes[i] - 1);
ra_reg_count += class_reg_count[i];
}
struct ra_regs *regs = ra_alloc_reg_set(ra_reg_count);
for (int i = 0; i < class_count; i++) {
classes[i] = ra_alloc_reg_class(regs);
for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
ra_class_add_reg(regs, classes[i], class_base_reg[i] + i_r);
}
/* Add conflicts between our contiguous registers aliasing
* base regs and other register classes' contiguous registers
* that alias base regs, or the base regs themselves for classes[0].
*/
for (int c = 0; c <= i; c++) {
for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
for (int c_r = MAX2(0, i_r - (class_sizes[c] - 1));
c_r < MIN2(class_reg_count[c], i_r + class_sizes[i]);
c_r++) {
if (0) {
printf("%d/%d conflicts %d/%d\n",
class_sizes[i], this->first_non_payload_grf + i_r,
class_sizes[c], this->first_non_payload_grf + c_r);
}
ra_add_reg_conflict(regs,
class_base_reg[i] + i_r,
class_base_reg[c] + c_r);
}
}
}
}
/* Add a special class for aligned pairs, which we'll put delta_x/y
* in on gen5 so that we can do PLN.
*/
if (brw->has_pln && intel->gen < 6) {
int reg_count = (base_reg_count - 1) / 2;
int unaligned_pair_class = 1;
assert(class_sizes[unaligned_pair_class] == 2);
aligned_pair_class = class_count;
classes[aligned_pair_class] = ra_alloc_reg_class(regs);
class_sizes[aligned_pair_class] = 2;
class_base_reg[aligned_pair_class] = 0;
class_reg_count[aligned_pair_class] = 0;
int start = (this->first_non_payload_grf & 1) ? 1 : 0;
for (int i = 0; i < reg_count; i++) {
ra_class_add_reg(regs, classes[aligned_pair_class],
class_base_reg[unaligned_pair_class] + i * 2 + start);
}
class_count++;
}
ra_set_finalize(regs);
struct ra_graph *g = ra_alloc_interference_graph(regs,
this->virtual_grf_next);
/* Node 0 is just a placeholder to keep virtual_grf[] mapping 1:1
* with nodes.
*/
ra_set_node_class(g, 0, classes[0]);
for (int i = 1; i < this->virtual_grf_next; i++) {
for (int c = 0; c < class_count; c++) {
if (class_sizes[c] == this->virtual_grf_sizes[i]) {
if (aligned_pair_class >= 0 &&
this->delta_x.reg == i) {
ra_set_node_class(g, i, classes[aligned_pair_class]);
} else {
ra_set_node_class(g, i, classes[c]);
}
break;
}
}
for (int j = 1; j < i; j++) {
if (virtual_grf_interferes(i, j)) {
ra_add_node_interference(g, i, j);
}
}
}
/* FINISHME: Handle spilling */
if (!ra_allocate_no_spills(g)) {
fprintf(stderr, "Failed to allocate registers.\n");
this->fail = true;
return;
}
/* Get the chosen virtual registers for each node, and map virtual
* regs in the register classes back down to real hardware reg
* numbers.
*/
hw_reg_mapping[0] = 0; /* unused */
for (int i = 1; i < this->virtual_grf_next; i++) {
int reg = ra_get_node_reg(g, i);
int hw_reg = -1;
for (int c = 0; c < class_count; c++) {
if (reg >= class_base_reg[c] &&
reg < class_base_reg[c] + class_reg_count[c]) {
hw_reg = reg - class_base_reg[c];
break;
}
}
assert(hw_reg >= 0);
hw_reg_mapping[i] = this->first_non_payload_grf + hw_reg;
last_grf = MAX2(last_grf,
hw_reg_mapping[i] + this->virtual_grf_sizes[i] - 1);
}
foreach_iter(exec_list_iterator, iter, this->instructions) {
fs_inst *inst = (fs_inst *)iter.get();
assign_reg(hw_reg_mapping, &inst->dst);
assign_reg(hw_reg_mapping, &inst->src[0]);
assign_reg(hw_reg_mapping, &inst->src[1]);
}
this->grf_used = last_grf + 1;
talloc_free(g);
talloc_free(regs);
}