llvmpipe: native rasterization for lines

Rasterize lines directly by treating them as 4-sided polygons.
Still need to check the exact pixel rasteration.
This commit is contained in:
Hui Qi Tay 2010-07-19 15:23:09 +01:00 committed by Keith Whitwell
parent c95ca04b63
commit 5286dd7016
11 changed files with 685 additions and 22 deletions

View file

@ -157,7 +157,7 @@ llvmpipe_create_context( struct pipe_screen *screen, void *priv )
/* convert points and lines into triangles: */
draw_wide_point_threshold(llvmpipe->draw, 0.0);
draw_wide_line_threshold(llvmpipe->draw, 0.0);
draw_wide_line_threshold(llvmpipe->draw, 10000.0);
#if USE_DRAW_STAGE_PSTIPPLE
/* Do polygon stipple w/ texture map + frag prog? */

View file

@ -120,7 +120,7 @@ struct lp_rast_triangle {
float v[3][2];
#endif
struct lp_rast_plane plane[7]; /* NOTE: may allocate fewer planes */
struct lp_rast_plane plane[8]; /* NOTE: may allocate fewer planes */
};
@ -236,6 +236,8 @@ void lp_rast_triangle_6( struct lp_rasterizer_task *,
const union lp_rast_cmd_arg );
void lp_rast_triangle_7( struct lp_rasterizer_task *,
const union lp_rast_cmd_arg );
void lp_rast_triangle_8( struct lp_rasterizer_task *,
const union lp_rast_cmd_arg );
void lp_rast_shade_tile( struct lp_rasterizer_task *,
const union lp_rast_cmd_arg );

View file

@ -157,6 +157,10 @@ build_mask_linear(int c, int dcdx, int dcdy)
#define NR_PLANES 7
#include "lp_rast_tri_tmp.h"
#define TAG(x) x##_8
#define NR_PLANES 8
#include "lp_rast_tri_tmp.h"
/* Special case for 3 plane triangle which is contained entirely
* within a 16x16 block.

View file

@ -32,7 +32,7 @@
/**
* Prototype for a 7 plane rasterizer function. Will codegenerate
* Prototype for a 8 plane rasterizer function. Will codegenerate
* several of these.
*
* XXX: Varients for more/fewer planes.

View file

@ -485,7 +485,14 @@ lp_setup_set_triangle_state( struct lp_setup_context *setup,
}
}
void
lp_setup_set_line_state( struct lp_setup_context *setup,
float line_width)
{
LP_DBG(DEBUG_SETUP, "%s\n", __FUNCTION__);
setup->line_width = line_width;
}
void
lp_setup_set_fs_inputs( struct lp_setup_context *setup,

View file

@ -100,6 +100,10 @@ lp_setup_set_triangle_state( struct lp_setup_context *setup,
boolean scissor,
boolean gl_rasterization_rules );
void
lp_setup_set_line_state( struct lp_setup_context *setup,
float line_width);
void
lp_setup_set_fs_inputs( struct lp_setup_context *setup,
const struct lp_shader_input *interp,

View file

@ -91,6 +91,7 @@ struct lp_setup_context
boolean scissor_test;
unsigned cullmode;
float pixel_offset;
float line_width;
struct pipe_framebuffer_state fb;
struct u_rect framebuffer;
@ -170,5 +171,42 @@ lp_setup_print_vertex(struct lp_setup_context *setup,
const char *name,
const float (*v)[4]);
/** shared code between lp_setup_line and lp_setup_tri */
extern lp_rast_cmd lp_rast_tri_tab[];
void
do_triangle_ccw_whole_tile(struct lp_setup_context *setup,
struct lp_scene *scene,
struct lp_rast_triangle *tri,
int x, int y,
boolean opaque,
int *is_blit);
void
lp_setup_tri_coefficients( struct lp_setup_context *setup,
struct lp_rast_triangle *tri,
float oneoverarea,
const float (*v1)[4],
const float (*v2)[4],
const float (*v3)[4],
boolean frontface);
struct lp_rast_triangle *
lp_setup_alloc_triangle(struct lp_scene *scene,
unsigned nr_inputs,
unsigned nr_planes,
unsigned *tri_size);
void
lp_setup_fragcoord_coef(struct lp_setup_context *setup,
struct lp_rast_triangle *tri,
float oneoverarea,
unsigned slot,
const float (*v1)[4],
const float (*v2)[4],
const float (*v3)[4],
unsigned usage_mask);
#endif

View file

@ -29,19 +29,624 @@
* Binning code for lines
*/
#include "util/u_math.h"
#include "util/u_memory.h"
#include "lp_perf.h"
#include "lp_setup_context.h"
#include "lp_rast.h"
#include "lp_state_fs.h"
static void line_nop( struct lp_setup_context *setup,
const float (*v0)[4],
const float (*v1)[4] )
#define NUM_CHANNELS 4
static const int step_scissor_minx[16] = {
0, 1, 0, 1,
2, 3, 2, 3,
0, 1, 0, 1,
2, 3, 2, 3
};
static const int step_scissor_maxx[16] = {
0, -1, 0, -1,
-2, -3, -2, -3,
0, -1, 0, -1,
-2, -3, -2, -3
};
static const int step_scissor_miny[16] = {
0, 0, 1, 1,
0, 0, 1, 1,
2, 2, 3, 3,
2, 2, 3, 3
};
static const int step_scissor_maxy[16] = {
0, 0, -1, -1,
0, 0, -1, -1,
-2, -2, -3, -3,
-2, -2, -3, -3
};
/**
* Compute a0 for a constant-valued coefficient (GL_FLAT shading).
*/
static void constant_coef( struct lp_setup_context *setup,
struct lp_rast_triangle *tri,
unsigned slot,
const float value,
unsigned i )
{
tri->inputs.a0[slot][i] = value;
tri->inputs.dadx[slot][i] = 0.0f;
tri->inputs.dady[slot][i] = 0.0f;
}
void
lp_setup_choose_line( struct lp_setup_context *setup )
/**
* Compute a0, dadx and dady for a linearly interpolated coefficient,
* for a triangle.
*/
static void linear_coef( struct lp_setup_context *setup,
struct lp_rast_triangle *tri,
float oneoverarea,
unsigned slot,
const float (*v1)[4],
const float (*v2)[4],
unsigned vert_attr,
unsigned i)
{
setup->line = line_nop;
float a1 = v1[vert_attr][i];
float a2 = v2[vert_attr][i];
float da21 = a1 - a2;
float dadx = da21 * tri->dx * oneoverarea;
float dady = da21 * tri->dy * oneoverarea;
tri->inputs.dadx[slot][i] = dadx;
tri->inputs.dady[slot][i] = dady;
tri->inputs.a0[slot][i] = (a1 -
(dadx * (v1[0][0] - setup->pixel_offset) +
dady * (v1[0][1] - setup->pixel_offset)));
}
/**
* Compute a0, dadx and dady for a perspective-corrected interpolant,
* for a triangle.
* We basically multiply the vertex value by 1/w before computing
* the plane coefficients (a0, dadx, dady).
* Later, when we compute the value at a particular fragment position we'll
* divide the interpolated value by the interpolated W at that fragment.
*/
static void perspective_coef( struct lp_setup_context *setup,
struct lp_rast_triangle *tri,
float oneoverarea,
unsigned slot,
const float (*v1)[4],
const float (*v2)[4],
unsigned vert_attr,
unsigned i)
{
/* premultiply by 1/w (v[0][3] is always 1/w):
*/
float a1 = v1[vert_attr][i] * v1[0][3];
float a2 = v2[vert_attr][i] * v2[0][3];
float da21 = a1 - a2;
float dadx = da21 * tri->dx * oneoverarea;
float dady = da21 * tri->dy * oneoverarea;
tri->inputs.dadx[slot][i] = dadx;
tri->inputs.dady[slot][i] = dady;
tri->inputs.a0[slot][i] = (a1 -
(dadx * (v1[0][0] - setup->pixel_offset) +
dady * (v1[0][1] - setup->pixel_offset)));
}
/**
* Compute the tri->coef[] array dadx, dady, a0 values.
*/
static void setup_line_coefficients( struct lp_setup_context *setup,
struct lp_rast_triangle *tri,
float oneoverarea,
const float (*v1)[4],
const float (*v2)[4])
{
unsigned fragcoord_usage_mask = TGSI_WRITEMASK_XYZ;
unsigned slot;
/* setup interpolation for all the remaining attributes:
*/
for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
unsigned vert_attr = setup->fs.input[slot].src_index;
unsigned usage_mask = setup->fs.input[slot].usage_mask;
unsigned i;
switch (setup->fs.input[slot].interp) {
case LP_INTERP_CONSTANT:
if (setup->flatshade_first) {
for (i = 0; i < NUM_CHANNELS; i++)
if (usage_mask & (1 << i))
constant_coef(setup, tri, slot+1, v1[vert_attr][i], i);
}
else {
for (i = 0; i < NUM_CHANNELS; i++)
if (usage_mask & (1 << i))
constant_coef(setup, tri, slot+1, v2[vert_attr][i], i);
}
break;
case LP_INTERP_LINEAR:
for (i = 0; i < NUM_CHANNELS; i++)
if (usage_mask & (1 << i))
linear_coef(setup, tri, oneoverarea, slot+1, v1, v2, vert_attr, i);
break;
case LP_INTERP_PERSPECTIVE:
for (i = 0; i < NUM_CHANNELS; i++)
if (usage_mask & (1 << i))
perspective_coef(setup, tri, oneoverarea, slot+1, v1, v2, vert_attr, i);
fragcoord_usage_mask |= TGSI_WRITEMASK_W;
break;
case LP_INTERP_POSITION:
/*
* The generated pixel interpolators will pick up the coeffs from
* slot 0, so all need to ensure that the usage mask is covers all
* usages.
*/
fragcoord_usage_mask |= usage_mask;
break;
default:
assert(0);
}
}
/* The internal position input is in slot zero:
*/
lp_setup_fragcoord_coef(setup, tri, oneoverarea, 0, v1, v2, v2,
fragcoord_usage_mask);
}
static INLINE int subpixel_snap( float a )
{
return util_iround(FIXED_ONE * a);
}
/**
* Print line vertex attribs (for debug).
*/
static void
print_line(struct lp_setup_context *setup,
const float (*v1)[4],
const float (*v2)[4])
{
uint i;
debug_printf("llvmpipe line\n");
for (i = 0; i < 1 + setup->fs.nr_inputs; i++) {
debug_printf(" v1[%d]: %f %f %f %f\n", i,
v1[i][0], v1[i][1], v1[i][2], v1[i][3]);
}
for (i = 0; i < 1 + setup->fs.nr_inputs; i++) {
debug_printf(" v2[%d]: %f %f %f %f\n", i,
v2[i][0], v2[i][1], v2[i][2], v2[i][3]);
}
}
static void
lp_setup_line( struct lp_setup_context *setup,
const float (*v1)[4],
const float (*v2)[4])
{
struct lp_scene *scene = lp_setup_get_current_scene(setup);
struct lp_rast_triangle *line;
float oneoverarea;
float half_width = setup->line_width / 2;
int minx, maxx, miny, maxy;
int ix0, ix1, iy0, iy1;
unsigned tri_bytes;
int x[4];
int y[4];
int i;
int nr_planes = 4;
boolean opaque;
if (0)
print_line(setup, v1, v2);
if (setup->scissor_test) {
nr_planes = 8;
}
else {
nr_planes = 4;
}
line = lp_setup_alloc_triangle(scene,
setup->fs.nr_inputs,
nr_planes,
&tri_bytes);
if (!line)
return;
#ifndef DEBUG
line->v[0][0] = v1[0][0];
line->v[1][0] = v2[0][0];
line->v[0][1] = v1[0][1];
line->v[1][1] = v2[0][1];
#endif
/* pre-calculation(based on given vertices) to determine if line is
* more horizontal or more vertical
*/
line->dx = v1[0][0] - v2[0][0];
line->dy = v1[0][1] - v2[0][1];
/* x-major line */
if (fabsf(line->dx) >= fabsf(line->dy)) {
if (line->dx < 0) {
/* if v2 is to the right of v1, swap pointers */
const float (*temp)[4] = v1;
v1 = v2;
v2 = temp;
line->dx = -line->dx;
line->dy = -line->dy;
}
/* x/y positions in fixed point */
x[0] = subpixel_snap(v1[0][0] - setup->pixel_offset);
x[1] = subpixel_snap(v2[0][0] - setup->pixel_offset);
x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
x[3] = subpixel_snap(v1[0][0] - setup->pixel_offset);
y[0] = subpixel_snap(v1[0][1] - half_width - setup->pixel_offset);
y[1] = subpixel_snap(v2[0][1] - half_width - setup->pixel_offset);
y[2] = subpixel_snap(v2[0][1] + half_width - setup->pixel_offset);
y[3] = subpixel_snap(v1[0][1] + half_width - setup->pixel_offset);
}
else{
/* y-major line */
if (line->dy > 0) {
/* if v2 is on top of v1, swap pointers */
const float (*temp)[4] = v1;
v1 = v2;
v2 = temp;
line->dx = -line->dx;
line->dy = -line->dy;
}
x[0] = subpixel_snap(v1[0][0] - half_width - setup->pixel_offset);
x[1] = subpixel_snap(v2[0][0] - half_width - setup->pixel_offset);
x[2] = subpixel_snap(v2[0][0] + half_width - setup->pixel_offset);
x[3] = subpixel_snap(v1[0][0] + half_width - setup->pixel_offset);
y[0] = subpixel_snap(v1[0][1] - setup->pixel_offset);
y[1] = subpixel_snap(v2[0][1] - setup->pixel_offset);
y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
y[3] = subpixel_snap(v1[0][1] - setup->pixel_offset);
}
/* calculate the deltas */
line->plane[0].dcdy = x[0] - x[1];
line->plane[1].dcdy = x[1] - x[2];
line->plane[2].dcdy = x[2] - x[3];
line->plane[3].dcdy = x[3] - x[0];
line->plane[0].dcdx = y[0] - y[1];
line->plane[1].dcdx = y[1] - y[2];
line->plane[2].dcdx = y[2] - y[3];
line->plane[3].dcdx = y[3] - y[0];
LP_COUNT(nr_tris);
/* Bounding rectangle (in pixels) */
{
/* Yes this is necessary to accurately calculate bounding boxes
* with the two fill-conventions we support. GL (normally) ends
* up needing a bottom-left fill convention, which requires
* slightly different rounding.
*/
int adj = (setup->pixel_offset != 0) ? 1 : 0;
minx = (MIN4(x[0], x[1], x[2], x[3]) + (FIXED_ONE-1)) >> FIXED_ORDER;
maxx = (MAX4(x[0], x[1], x[2], x[3]) + (FIXED_ONE-1)) >> FIXED_ORDER;
miny = (MIN4(y[0], y[1], y[3], y[3]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
maxy = (MAX4(y[0], y[1], y[3], y[3]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
}
if (setup->scissor_test) {
minx = MAX2(minx, setup->scissor.current.minx);
maxx = MIN2(maxx, setup->scissor.current.maxx);
miny = MAX2(miny, setup->scissor.current.miny);
maxy = MIN2(maxy, setup->scissor.current.maxy);
}
else {
minx = MAX2(minx, 0);
miny = MAX2(miny, 0);
maxx = MIN2(maxx, scene->fb.width);
maxy = MIN2(maxy, scene->fb.height);
}
if (miny >= maxy || minx >= maxx) {
lp_scene_putback_data( scene, tri_bytes );
return;
}
oneoverarea = 1.0f / (line->dx * line->dx + line->dy * line->dy);
/* Setup parameter interpolants:
*/
setup_line_coefficients( setup, line, oneoverarea, v1, v2);
for (i = 0; i < 4; i++) {
struct lp_rast_plane *plane = &line->plane[i];
/* half-edge constants, will be interated over the whole render
* target.
*/
plane->c = plane->dcdx * x[i] - plane->dcdy * y[i];
/* correct for top-left vs. bottom-left fill convention.
*
* note that we're overloading gl_rasterization_rules to mean
* both (0.5,0.5) pixel centers *and* bottom-left filling
* convention.
*
* GL actually has a top-left filling convention, but GL's
* notion of "top" differs from gallium's...
*
* Also, sometimes (in FBO cases) GL will render upside down
* to its usual method, in which case it will probably want
* to use the opposite, top-left convention.
*/
if (plane->dcdx < 0) {
/* both fill conventions want this - adjust for left edges */
plane->c++;
}
else if (plane->dcdx == 0) {
if (setup->pixel_offset == 0) {
/* correct for top-left fill convention:
*/
if (plane->dcdy > 0) plane->c++;
}
else {
/* correct for bottom-left fill convention:
*/
if (plane->dcdy < 0) plane->c++;
}
}
plane->dcdx *= FIXED_ONE;
plane->dcdy *= FIXED_ONE;
/* find trivial reject offsets for each edge for a single-pixel
* sized block. These will be scaled up at each recursive level to
* match the active blocksize. Scaling in this way works best if
* the blocks are square.
*/
plane->eo = 0;
if (plane->dcdx < 0) plane->eo -= plane->dcdx;
if (plane->dcdy > 0) plane->eo += plane->dcdy;
/* Calculate trivial accept offsets from the above.
*/
plane->ei = plane->dcdy - plane->dcdx - plane->eo;
plane->step = line->step[i];
/* Fill in the inputs.step[][] arrays.
* We've manually unrolled some loops here.
*/
#define SETUP_STEP(j, x, y) \
line->step[i][j] = y * plane->dcdy - x * plane->dcdx
SETUP_STEP(0, 0, 0);
SETUP_STEP(1, 1, 0);
SETUP_STEP(2, 0, 1);
SETUP_STEP(3, 1, 1);
SETUP_STEP(4, 2, 0);
SETUP_STEP(5, 3, 0);
SETUP_STEP(6, 2, 1);
SETUP_STEP(7, 3, 1);
SETUP_STEP(8, 0, 2);
SETUP_STEP(9, 1, 2);
SETUP_STEP(10, 0, 3);
SETUP_STEP(11, 1, 3);
SETUP_STEP(12, 2, 2);
SETUP_STEP(13, 3, 2);
SETUP_STEP(14, 2, 3);
SETUP_STEP(15, 3, 3);
#undef STEP
}
/*
* When rasterizing scissored tris, use the intersection of the
* triangle bounding box and the scissor rect to generate the
* scissor planes.
*
* This permits us to cut off the triangle "tails" that are present
* in the intermediate recursive levels caused when two of the
* triangles edges don't diverge quickly enough to trivially reject
* exterior blocks from the triangle.
*
* It's not really clear if it's worth worrying about these tails,
* but since we generate the planes for each scissored tri, it's
* free to trim them in this case.
*
* Note that otherwise, the scissor planes only vary in 'C' value,
* and even then only on state-changes. Could alternatively store
* these planes elsewhere.
*/
if (nr_planes == 8) {
line->plane[4].step = step_scissor_maxx;
line->plane[4].dcdx = 1;
line->plane[4].dcdy = 0;
line->plane[4].c = maxx;
line->plane[4].ei = -1;
line->plane[4].eo = 0;
line->plane[5].step = step_scissor_miny;
line->plane[5].dcdx = 0;
line->plane[5].dcdy = 1;
line->plane[5].c = 1-miny;
line->plane[5].ei = 0;
line->plane[5].eo = 1;
line->plane[6].step = step_scissor_maxy;
line->plane[6].dcdx = 0;
line->plane[6].dcdy = -1;
line->plane[6].c = maxy;
line->plane[6].ei = -1;
line->plane[6].eo = 0;
line->plane[7].step = step_scissor_minx;
line->plane[7].dcdx = -1;
line->plane[7].dcdy = 0;
line->plane[7].c = 1-minx;
line->plane[7].ei = 0;
line->plane[7].eo = 1;
}
/*
* All fields of 'tri' are now set. The remaining code here is
* concerned with binning.
*/
/* Convert to tile coordinates, and inclusive ranges:
*/
ix0 = minx / TILE_SIZE;
iy0 = miny / TILE_SIZE;
ix1 = (maxx-1) / TILE_SIZE;
iy1 = (maxy-1) / TILE_SIZE;
/*
* Clamp to framebuffer size
*/
assert(ix0 == MAX2(ix0, 0));
assert(iy0 == MAX2(iy0, 0));
assert(ix1 == MIN2(ix1, scene->tiles_x - 1));
assert(iy1 == MIN2(iy1, scene->tiles_y - 1));
/* Determine which tile(s) intersect the triangle's bounding box
*/
if (iy0 == iy1 && ix0 == ix1)
{
/* Triangle is contained in a single tile:
*/
lp_scene_bin_command( scene, ix0, iy0,
lp_rast_tri_tab[nr_planes],
lp_rast_arg_triangle(line, (1<<nr_planes)-1) );
}
else
{
int c[8];
int ei[8];
int eo[8];
int xstep[8];
int ystep[8];
int x, y;
int is_blit = -1; /* undetermined */
for (i = 0; i < nr_planes; i++) {
c[i] = (line->plane[i].c +
line->plane[i].dcdy * iy0 * TILE_SIZE -
line->plane[i].dcdx * ix0 * TILE_SIZE);
ei[i] = line->plane[i].ei << TILE_ORDER;
eo[i] = line->plane[i].eo << TILE_ORDER;
xstep[i] = -(line->plane[i].dcdx << TILE_ORDER);
ystep[i] = line->plane[i].dcdy << TILE_ORDER;
}
/* Test tile-sized blocks against the triangle.
* Discard blocks fully outside the tri. If the block is fully
* contained inside the tri, bin an lp_rast_shade_tile command.
* Else, bin a lp_rast_triangle command.
*/
for (y = iy0; y <= iy1; y++)
{
boolean in = FALSE; /* are we inside the triangle? */
int cx[8];
for (i = 0; i < nr_planes; i++)
cx[i] = c[i];
for (x = ix0; x <= ix1; x++)
{
int out = 0;
int partial = 0;
for (i = 0; i < nr_planes; i++) {
int planeout = cx[i] + eo[i];
int planepartial = cx[i] + ei[i] - 1;
out |= (planeout >> 31);
partial |= (planepartial >> 31) & (1<<i);
}
if (out) {
/* do nothing */
if (in)
break; /* exiting triangle, all done with this row */
LP_COUNT(nr_empty_64);
}
else if (partial) {
/* Not trivially accepted by at least one plane -
* rasterize/shade partial tile
*/
int count = util_bitcount(partial);
in = TRUE;
lp_scene_bin_command( scene, x, y,
lp_rast_tri_tab[count],
lp_rast_arg_triangle(line, partial) );
LP_COUNT(nr_partially_covered_64);
}
else {
/* triangle covers the whole tile- shade whole tile */
LP_COUNT(nr_fully_covered_64);
in = TRUE;
/* leverages on existing code in lp_setup_tri.c */
do_triangle_ccw_whole_tile(setup, scene, line, x, y,
opaque, &is_blit);
}
/* Iterate cx values across the region:
*/
for (i = 0; i < nr_planes; i++)
cx[i] += xstep[i];
}
/* Iterate c values down the region:
*/
for (i = 0; i < nr_planes; i++)
c[i] += ystep[i];
}
}
}
void lp_setup_choose_line( struct lp_setup_context *setup )
{
setup->line = lp_setup_line;
}

View file

@ -31,7 +31,7 @@
#include "lp_setup_context.h"
static void point_nop( struct lp_setup_context *setup,
static void lp_setup_point( struct lp_setup_context *setup,
const float (*v0)[4] )
{
}
@ -40,7 +40,7 @@ static void point_nop( struct lp_setup_context *setup,
void
lp_setup_choose_point( struct lp_setup_context *setup )
{
setup->point = point_nop;
setup->point = lp_setup_point;
}

View file

@ -68,11 +68,11 @@ fixed_to_float(int a)
* \param nr_inputs number of fragment shader inputs
* \return pointer to triangle space
*/
static INLINE struct lp_rast_triangle *
alloc_triangle(struct lp_scene *scene,
unsigned nr_inputs,
unsigned nr_planes,
unsigned *tri_size)
struct lp_rast_triangle *
lp_setup_alloc_triangle(struct lp_scene *scene,
unsigned nr_inputs,
unsigned nr_planes,
unsigned *tri_size)
{
unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
struct lp_rast_triangle *tri;
@ -160,7 +160,7 @@ lp_setup_print_triangle(struct lp_setup_context *setup,
}
lp_rast_cmd lp_rast_tri_tab[8] = {
lp_rast_cmd lp_rast_tri_tab[9] = {
NULL, /* should be impossible */
lp_rast_triangle_1,
lp_rast_triangle_2,
@ -168,7 +168,8 @@ lp_rast_cmd lp_rast_tri_tab[8] = {
lp_rast_triangle_4,
lp_rast_triangle_5,
lp_rast_triangle_6,
lp_rast_triangle_7
lp_rast_triangle_7,
lp_rast_triangle_8
};
/**
@ -254,10 +255,10 @@ do_triangle_ccw(struct lp_setup_context *setup,
u_rect_find_intersection(&setup->draw_region, &bbox);
tri = alloc_triangle(scene,
setup->fs.nr_inputs,
nr_planes,
&tri_bytes);
tri = lp_setup_alloc_triangle(scene,
setup->fs.nr_inputs,
nr_planes,
&tri_bytes);
if (!tri)
return;

View file

@ -73,6 +73,8 @@ llvmpipe_bind_rasterizer_state(struct pipe_context *pipe, void *handle)
llvmpipe->rasterizer->gl_rasterization_rules);
lp_setup_set_flatshade_first( llvmpipe->setup,
llvmpipe->rasterizer->flatshade_first);
lp_setup_set_line_state( llvmpipe->setup,
llvmpipe->rasterizer->line_width);
}
llvmpipe->dirty |= LP_NEW_RASTERIZER;