i965/blorp: Add initial support for NIR-based blit shaders

Many of the more complex cases still fall back to the old shader builder.

Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com>
This commit is contained in:
Jason Ekstrand 2016-04-29 12:52:00 -07:00
parent b0275ad0c9
commit 4bdace0791

View file

@ -25,6 +25,8 @@
#include "main/teximage.h"
#include "main/fbobject.h"
#include "compiler/nir/nir_builder.h"
#include "intel_fbo.h"
#include "brw_blorp.h"
@ -332,6 +334,230 @@ enum sampler_message_arg
SAMPLER_MESSAGE_ARG_ZERO_INT,
};
struct brw_blorp_blit_vars {
/* Uniforms values from brw_blorp_wm_push_constants */
nir_variable *u_dst_x0;
nir_variable *u_dst_x1;
nir_variable *u_dst_y0;
nir_variable *u_dst_y1;
nir_variable *u_rect_grid_x1;
nir_variable *u_rect_grid_y1;
struct {
nir_variable *multiplier;
nir_variable *offset;
} u_x_transform, u_y_transform;
nir_variable *u_src_z;
/* gl_FragCoord */
nir_variable *frag_coord;
/* gl_FragColor */
nir_variable *color_out;
};
static void
brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
const struct brw_blorp_blit_prog_key *key)
{
#define LOAD_UNIFORM(name, type)\
v->u_##name = nir_variable_create(b->shader, nir_var_uniform, type, #name); \
v->u_##name->data.location = \
offsetof(struct brw_blorp_wm_push_constants, name);
LOAD_UNIFORM(dst_x0, glsl_uint_type())
LOAD_UNIFORM(dst_x1, glsl_uint_type())
LOAD_UNIFORM(dst_y0, glsl_uint_type())
LOAD_UNIFORM(dst_y1, glsl_uint_type())
LOAD_UNIFORM(rect_grid_x1, glsl_float_type())
LOAD_UNIFORM(rect_grid_y1, glsl_float_type())
LOAD_UNIFORM(x_transform.multiplier, glsl_float_type())
LOAD_UNIFORM(x_transform.offset, glsl_float_type())
LOAD_UNIFORM(y_transform.multiplier, glsl_float_type())
LOAD_UNIFORM(y_transform.offset, glsl_float_type())
LOAD_UNIFORM(src_z, glsl_uint_type())
#undef DECL_UNIFORM
v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
glsl_vec4_type(), "gl_FragCoord");
v->frag_coord->data.location = VARYING_SLOT_POS;
v->frag_coord->data.origin_upper_left = true;
v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
glsl_vec4_type(), "gl_FragColor");
v->color_out->data.location = FRAG_RESULT_COLOR;
}
nir_ssa_def *
blorp_blit_get_frag_coords(nir_builder *b,
const struct brw_blorp_blit_prog_key *key,
struct brw_blorp_blit_vars *v)
{
nir_ssa_def *coord = nir_f2i(b, nir_load_var(b, v->frag_coord));
if (key->persample_msaa_dispatch) {
return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
nir_load_system_value(b, nir_intrinsic_load_sample_id, 0));
} else {
return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
}
}
/**
* Emit code to translate from destination (X, Y) coordinates to source (X, Y)
* coordinates.
*/
nir_ssa_def *
blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
struct brw_blorp_blit_vars *v)
{
nir_ssa_def *offset = nir_vec2(b, nir_load_var(b, v->u_x_transform.offset),
nir_load_var(b, v->u_y_transform.offset));
nir_ssa_def *mul = nir_vec2(b, nir_load_var(b, v->u_x_transform.multiplier),
nir_load_var(b, v->u_y_transform.multiplier));
nir_ssa_def *pos = nir_ffma(b, src_pos, mul, offset);
if (src_pos->num_components == 3) {
/* Leave the sample id alone */
pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
nir_channel(b, src_pos, 2));
}
return pos;
}
static nir_tex_instr *
blorp_create_nir_tex_instr(nir_shader *shader, nir_texop op,
nir_ssa_def *pos, unsigned num_srcs,
enum brw_reg_type dst_type)
{
nir_tex_instr *tex = nir_tex_instr_create(shader, num_srcs);
tex->op = op;
switch (dst_type) {
case BRW_REGISTER_TYPE_F:
tex->dest_type = nir_type_float;
break;
case BRW_REGISTER_TYPE_D:
tex->dest_type = nir_type_int;
break;
case BRW_REGISTER_TYPE_UD:
tex->dest_type = nir_type_uint;
break;
default:
unreachable("Invalid texture return type");
}
tex->is_array = false;
tex->is_shadow = false;
/* Blorp only has one texture and it's bound at unit 0 */
tex->texture = NULL;
tex->sampler = NULL;
tex->texture_index = 0;
tex->sampler_index = 0;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
return tex;
}
static nir_ssa_def *
blorp_nir_tex(nir_builder *b, nir_ssa_def *pos, enum brw_reg_type dst_type)
{
nir_tex_instr *tex =
blorp_create_nir_tex_instr(b->shader, nir_texop_tex, pos, 2, dst_type);
assert(pos->num_components == 2);
tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
tex->coord_components = 2;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(pos);
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
static nir_ssa_def *
blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
nir_ssa_def *pos, enum brw_reg_type dst_type)
{
nir_tex_instr *tex =
blorp_create_nir_tex_instr(b->shader, nir_texop_txf, pos, 2, dst_type);
/* In order to properly handle 3-D textures, we pull the Z component from
* a uniform. TODO: This is a bit magic; we should probably make this
* more explicit in the future.
*/
assert(pos->num_components == 2);
pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
nir_load_var(b, v->u_src_z));
tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
tex->coord_components = 3;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(pos);
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
static nir_ssa_def *
blorp_nir_txf_ms(nir_builder *b, nir_ssa_def *pos, nir_ssa_def *mcs,
enum brw_reg_type dst_type)
{
nir_tex_instr *tex =
blorp_create_nir_tex_instr(b->shader, nir_texop_txf_ms, pos,
mcs != NULL ? 3 : 2, dst_type);
tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
tex->coord_components = 2;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(pos);
tex->src[1].src_type = nir_tex_src_ms_index;
if (pos->num_components == 2) {
tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
} else {
assert(pos->num_components == 3);
tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
}
if (mcs) {
tex->src[2].src_type = nir_tex_src_ms_mcs;
tex->src[2].src = nir_src_for_ssa(mcs);
}
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
static nir_ssa_def *
blorp_nir_txf_ms_mcs(nir_builder *b, nir_ssa_def *pos)
{
nir_tex_instr *tex =
blorp_create_nir_tex_instr(b->shader, nir_texop_txf_ms_mcs,
pos, 1, BRW_REGISTER_TYPE_D);
tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
tex->coord_components = 2;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(pos);
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
/**
* Generator for WM programs used in BLORP blits.
*
@ -471,6 +697,161 @@ enum sampler_message_arg
* (In these formulas, pitch is the number of bytes occupied by a single row
* of samples).
*/
static nir_shader *
brw_blorp_build_nir_shader(struct brw_context *brw,
const brw_blorp_blit_prog_key *key,
struct brw_blorp_prog_data *prog_data)
{
nir_ssa_def *src_pos, *dst_pos, *color;
/* Sanity checks */
if (key->dst_tiled_w && key->rt_samples > 0) {
/* If the destination image is W tiled and multisampled, then the thread
* must be dispatched once per sample, not once per pixel. This is
* necessary because after conversion between W and Y tiling, there's no
* guarantee that all samples corresponding to a single pixel will still
* be together.
*/
assert(key->persample_msaa_dispatch);
}
if (key->blend) {
/* We are blending, which means we won't have an opportunity to
* translate the tiling and sample count for the texture surface. So
* the surface state for the texture must be configured with the correct
* tiling and sample count.
*/
assert(!key->src_tiled_w);
assert(key->tex_samples == key->src_samples);
assert(key->tex_layout == key->src_layout);
assert(key->tex_samples > 0);
}
if (key->persample_msaa_dispatch) {
/* It only makes sense to do persample dispatch if the render target is
* configured as multisampled.
*/
assert(key->rt_samples > 0);
}
/* Make sure layout is consistent with sample count */
assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
(key->tex_samples == 0));
assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
(key->rt_samples == 0));
assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
(key->src_samples == 0));
assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
(key->dst_samples == 0));
/* Set up prog_data */
brw_blorp_prog_data_init(prog_data);
nir_builder b;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
struct brw_blorp_blit_vars v;
brw_blorp_blit_vars_init(&b, &v, key);
dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
/* Render target and texture hardware don't support W tiling until Gen8. */
const bool rt_tiled_w = false;
const bool tex_tiled_w = brw->gen >= 8 && key->src_tiled_w;
/* The address that data will be written to is determined by the
* coordinates supplied to the WM thread and the tiling and sample count of
* the render target, according to the formula:
*
* (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
*
* If the actual tiling and sample count of the destination surface are not
* the same as the configuration of the render target, then these
* coordinates are wrong and we have to adjust them to compensate for the
* difference.
*/
if (rt_tiled_w != key->dst_tiled_w ||
key->rt_samples != key->dst_samples ||
key->rt_layout != key->dst_layout) {
goto fail;
}
/* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
*
* That is: X, Y and S now contain the true coordinates and sample index of
* the data that the WM thread should output.
*
* If we need to kill pixels that are outside the destination rectangle,
* now is the time to do it.
*/
if (key->use_kill)
goto fail;
src_pos = blorp_blit_apply_transform(&b, nir_i2f(&b, dst_pos), &v);
if (key->blit_scaled && key->blend) {
goto fail;
} else if (!key->bilinear_filter) {
/* We're going to use a texelFetch, so we need integers */
src_pos = nir_f2i(&b, src_pos);
}
/* X, Y, and S are now the coordinates of the pixel in the source image
* that we want to texture from. Exception: if we are blending, then S is
* irrelevant, because we are going to fetch all samples.
*/
if (key->blend && !key->blit_scaled) {
goto fail;
} else if (key->blend && key->blit_scaled) {
goto fail;
} else {
/* We aren't blending, which means we just want to fetch a single sample
* from the source surface. The address that we want to fetch from is
* related to the X, Y and S values according to the formula:
*
* (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
*
* If the actual tiling and sample count of the source surface are not
* the same as the configuration of the texture, then we need to adjust
* the coordinates to compensate for the difference.
*/
if ((tex_tiled_w != key->src_tiled_w ||
key->tex_samples != key->src_samples ||
key->tex_layout != key->src_layout) &&
!key->bilinear_filter) {
goto fail;
}
if (key->bilinear_filter) {
color = blorp_nir_tex(&b, src_pos, key->texture_data_type);
} else {
/* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
*
* In other words: X, Y, and S now contain values which, when passed to
* the texturing unit, will cause data to be read from the correct
* memory location. So we can fetch the texel now.
*/
if (key->src_samples == 0) {
color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
} else {
nir_ssa_def *mcs = NULL;
if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
mcs = blorp_nir_txf_ms_mcs(&b, src_pos);
color = blorp_nir_txf_ms(&b, src_pos, mcs, key->texture_data_type);
}
}
}
nir_store_var(&b, v.color_out, color, 0xf);
return b.shader;
fail:
ralloc_free(b.shader);
return NULL;
}
class brw_blorp_blit_program : public brw_blorp_eu_emitter
{
public:
@ -1307,25 +1688,6 @@ brw_blorp_blit_program::clamp_tex_coords(struct brw_reg regX,
emit_min(regY, regY, clampY1);
}
/**
* Emit code to transform the X and Y coordinates as needed for blending
* together the different samples in an MSAA texture.
*/
void
brw_blorp_blit_program::single_to_blend()
{
/* When looking up samples in an MSAA texture using the SAMPLE message,
* Gen6 requires the texture coordinates to be odd integers (so that they
* correspond to the center of a 2x2 block representing the four samples
* that maxe up a pixel). So we need to multiply our X and Y coordinates
* each by 2 and then add 1.
*/
emit_shl(t1, X, brw_imm_w(1));
emit_shl(t2, Y, brw_imm_w(1));
emit_add(Xp, t1, brw_imm_w(1));
emit_add(Yp, t2, brw_imm_w(1));
SWAP_XY_AND_XPYP();
}
/**
@ -1747,14 +2109,33 @@ brw_blorp_get_blit_kernel(struct brw_context *brw,
&params->wm_prog_kernel, &params->wm_prog_data))
return;
brw_blorp_blit_program prog(brw, prog_key);
GLuint program_size;
const GLuint *program = prog.compile(brw, INTEL_DEBUG & DEBUG_BLORP,
&program_size);
const unsigned *program;
unsigned program_size;
struct brw_blorp_prog_data prog_data;
/* Try and compile with NIR first. If that fails, fall back to the old
* method of building shaders manually.
*/
nir_shader *nir = brw_blorp_build_nir_shader(brw, prog_key, &prog_data);
if (nir) {
struct brw_wm_prog_key wm_key;
brw_blorp_init_wm_prog_key(&wm_key);
wm_key.tex.compressed_multisample_layout_mask =
prog_key->tex_layout == INTEL_MSAA_LAYOUT_CMS;
wm_key.multisample_fbo = prog_key->rt_samples > 1;
program = brw_blorp_compile_nir_shader(brw, nir, &wm_key, false,
&prog_data, &program_size);
} else {
brw_blorp_blit_program prog(brw, prog_key);
program = prog.compile(brw, INTEL_DEBUG & DEBUG_BLORP, &program_size);
prog_data = prog.prog_data;
}
brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
prog_key, sizeof(*prog_key),
program, program_size,
&prog.prog_data, sizeof(prog.prog_data),
&prog_data, sizeof(prog_data),
&params->wm_prog_kernel, &params->wm_prog_data);
}