i965: old VS: Use brw_vue_map instead of implicit assumptions about VUE structure.

Reviewed-by: Eric Anholt <eric@anholt.net>
This commit is contained in:
Paul Berry 2011-08-31 15:04:42 -07:00
parent 7bb2dbfc97
commit 3c17efd148
2 changed files with 71 additions and 111 deletions

View file

@ -63,9 +63,9 @@ struct brw_vs_compile {
GLuint nr_inputs;
struct brw_vue_map vue_map;
GLuint first_output;
GLuint nr_outputs;
GLuint first_overflow_output; /**< VERT_ATTRIB_x */
GLuint last_scratch;
GLuint first_tmp;

View file

@ -132,6 +132,40 @@ clear_current_const(struct brw_vs_compile *c)
}
}
/* The message length for all SEND messages is restricted to [1,15]. This
* includes 1 for the header, so anything in slots 14 and above needs to be
* placed in a general-purpose register and emitted using a second URB write.
*/
#define MAX_SLOTS_IN_FIRST_URB_WRITE 14
/**
* Determine whether the given vertex output can be written directly to a MRF
* or whether it has to be stored in a general-purpose register.
*/
static inline bool can_use_direct_mrf(int vert_result,
int first_reladdr_output, int slot)
{
if (vert_result == VERT_RESULT_HPOS || vert_result == VERT_RESULT_PSIZ) {
/* These never go straight into MRF's. They are placed in the MRF by
* epilog code.
*/
return false;
}
if (first_reladdr_output <= vert_result && vert_result < VERT_RESULT_MAX) {
/* Relative addressing might be used to access this vert_result, so it
* needs to go into a general-purpose register.
*/
return false;
}
if (slot >= MAX_SLOTS_IN_FIRST_URB_WRITE) {
/* This output won't go out until the second URB write so it must be
* stored in a general-purpose register until then.
*/
return false;
}
return true;
}
/**
* Preallocate GRF register before code emit.
* Do things as simply as possible. Allocate and populate all regs
@ -140,13 +174,11 @@ clear_current_const(struct brw_vs_compile *c)
static void brw_vs_alloc_regs( struct brw_vs_compile *c )
{
struct intel_context *intel = &c->func.brw->intel;
GLuint i, reg = 0, mrf, j;
GLuint i, reg = 0, slot;
int attributes_in_vue;
int first_reladdr_output;
int max_constant;
int constant = 0;
int vert_result_reoder[VERT_RESULT_MAX];
int bfc = 0;
struct brw_vertex_program *vp = c->vp;
const struct gl_program_parameter_list *params = vp->program.Base.Parameters;
@ -293,88 +325,20 @@ static void brw_vs_alloc_regs( struct brw_vs_compile *c )
/* Allocate outputs. The non-position outputs go straight into message regs.
*/
c->nr_outputs = 0;
brw_compute_vue_map(&c->vue_map, intel, c->key.nr_userclip,
c->key.two_side_color, c->prog_data.outputs_written);
c->first_output = reg;
c->first_overflow_output = 0;
if (intel->gen >= 6) {
mrf = 3;
if (c->key.nr_userclip)
mrf += 2;
} else if (intel->gen == 5)
mrf = 8;
else
mrf = 4;
first_reladdr_output = get_first_reladdr_output(&c->vp->program);
for (i = 0; i < VERT_RESULT_MAX; i++)
vert_result_reoder[i] = i;
/* adjust attribute order in VUE for BFC0/BFC1 on Gen6+ */
if (intel->gen >= 6 && c->key.two_side_color) {
if ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_COL1)) &&
(c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC1))) {
assert(c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_COL0));
assert(c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC0));
bfc = 2;
} else if ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_COL0)) &&
(c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC0)))
bfc = 1;
if (bfc) {
for (i = 0; i < bfc; i++) {
vert_result_reoder[VERT_RESULT_COL0 + i * 2 + 0] = VERT_RESULT_COL0 + i;
vert_result_reoder[VERT_RESULT_COL0 + i * 2 + 1] = VERT_RESULT_BFC0 + i;
}
for (i = VERT_RESULT_COL0 + bfc * 2; i < VERT_RESULT_BFC0 + bfc; i++) {
vert_result_reoder[i] = i - bfc;
}
}
}
for (j = 0; j < VERT_RESULT_MAX; j++) {
i = vert_result_reoder[j];
if (c->prog_data.outputs_written & BITFIELD64_BIT(i)) {
c->nr_outputs++;
assert(i < Elements(c->regs[PROGRAM_OUTPUT]));
if (i == VERT_RESULT_HPOS) {
c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
reg++;
}
else if (i == VERT_RESULT_PSIZ) {
c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
reg++;
}
else {
/* Two restrictions on our compute-to-MRF here. The
* message length for all SEND messages is restricted to
* [1,15], so we can't use mrf 15, as that means a length
* of 16.
*
* Additionally, URB writes are aligned to URB rows, so we
* need to put an even number of registers of URB data in
* each URB write so that the later write is aligned. A
* message length of 15 means 1 message header reg plus 14
* regs of URB data.
*
* For attributes beyond the compute-to-MRF, we compute to
* GRFs and they will be written in the second URB_WRITE.
*/
if (first_reladdr_output > i && mrf < 15) {
c->regs[PROGRAM_OUTPUT][i] = brw_message_reg(mrf);
mrf++;
}
else {
if (mrf >= 15 && !c->first_overflow_output)
c->first_overflow_output = i;
c->regs[PROGRAM_OUTPUT][i] = brw_vec8_grf(reg, 0);
reg++;
mrf++;
}
}
for (slot = 0; slot < c->vue_map.num_slots; slot++) {
int vert_result = c->vue_map.slot_to_vert_result[slot];
assert(vert_result < Elements(c->regs[PROGRAM_OUTPUT]));
if (can_use_direct_mrf(vert_result, first_reladdr_output, slot)) {
c->regs[PROGRAM_OUTPUT][vert_result] = brw_message_reg(slot + 1);
} else {
c->regs[PROGRAM_OUTPUT][vert_result] = brw_vec8_grf(reg, 0);
reg++;
}
}
@ -1582,8 +1546,9 @@ static void emit_vertex_write( struct brw_vs_compile *c)
struct brw_reg ndc;
int eot;
GLuint len_vertex_header = 2;
int next_mrf, i;
int i;
int msg_len;
int slot;
if (c->key.copy_edgeflag) {
brw_MOV(p,
@ -1730,31 +1695,26 @@ static void emit_vertex_write( struct brw_vs_compile *c)
}
/* Move variable-addressed, non-overflow outputs to their MRFs. */
next_mrf = 2 + len_vertex_header;
for (i = 0; i < VERT_RESULT_MAX; i++) {
if (c->first_overflow_output > 0 && i >= c->first_overflow_output)
break;
if (!(c->prog_data.outputs_written & BITFIELD64_BIT(i)))
continue;
if (i == VERT_RESULT_PSIZ)
continue;
for (slot = len_vertex_header; slot < c->vue_map.num_slots; ++slot) {
if (slot >= MAX_SLOTS_IN_FIRST_URB_WRITE)
break;
if (i >= VERT_RESULT_TEX0 &&
c->regs[PROGRAM_OUTPUT][i].file == BRW_GENERAL_REGISTER_FILE) {
brw_MOV(p, brw_message_reg(next_mrf), c->regs[PROGRAM_OUTPUT][i]);
next_mrf++;
} else if (c->regs[PROGRAM_OUTPUT][i].file == BRW_MESSAGE_REGISTER_FILE) {
next_mrf = c->regs[PROGRAM_OUTPUT][i].nr + 1;
int mrf = slot + 1;
int vert_result = c->vue_map.slot_to_vert_result[slot];
if (c->regs[PROGRAM_OUTPUT][vert_result].file ==
BRW_GENERAL_REGISTER_FILE) {
brw_MOV(p, brw_message_reg(mrf),
c->regs[PROGRAM_OUTPUT][vert_result]);
}
}
eot = (c->first_overflow_output == 0);
eot = (slot >= c->vue_map.num_slots);
/* Message header, plus VUE header, plus the (first set of) outputs. */
msg_len = 1 + len_vertex_header + c->nr_outputs;
/* Message header, plus the (first part of the) VUE. */
msg_len = 1 + slot;
msg_len = align_interleaved_urb_mlen(brw, msg_len);
/* Any outputs beyond BRW_MAX_MRF should be past first_overflow_output */
msg_len = MIN2(msg_len, (BRW_MAX_MRF - 1)),
/* Any outputs beyond BRW_MAX_MRF should be in the second URB write */
assert (msg_len <= BRW_MAX_MRF - 1);
brw_urb_WRITE(p,
brw_null_reg(), /* dest */
@ -1769,18 +1729,18 @@ static void emit_vertex_write( struct brw_vs_compile *c)
0, /* urb destination offset */
BRW_URB_SWIZZLE_INTERLEAVE);
if (c->first_overflow_output > 0) {
if (slot < c->vue_map.num_slots) {
/* Not all of the vertex outputs/results fit into the MRF.
* Move the overflowed attributes from the GRF to the MRF and
* issue another brw_urb_WRITE().
*/
GLuint i, mrf = 1;
for (i = c->first_overflow_output; i < VERT_RESULT_MAX; i++) {
if (c->prog_data.outputs_written & BITFIELD64_BIT(i)) {
/* move from GRF to MRF */
brw_MOV(p, brw_message_reg(mrf), c->regs[PROGRAM_OUTPUT][i]);
mrf++;
}
GLuint mrf = 1;
for (; slot < c->vue_map.num_slots; ++slot) {
int vert_result = c->vue_map.slot_to_vert_result[slot];
/* move from GRF to MRF */
brw_MOV(p, brw_message_reg(mrf),
c->regs[PROGRAM_OUTPUT][vert_result]);
mrf++;
}
brw_urb_WRITE(p,
@ -1793,7 +1753,7 @@ static void emit_vertex_write( struct brw_vs_compile *c)
0, /* response len */
1, /* eot */
1, /* writes complete */
14 / 2, /* urb destination offset */
MAX_SLOTS_IN_FIRST_URB_WRITE / 2, /* urb destination offset */
BRW_URB_SWIZZLE_INTERLEAVE);
}
}