nir/loop_analyze: Add a function to evaluate an ALU as constant

...with a substitution. This function is largely a copy-and-paste of
try_fold_alu (nir_opt_constant_folding.c), and an argument could be made
that this function belongs in that file.

v2: Some changes were mistakenly squashed in to "nir/loop_analyze: Use
try_eval_const_alu and induction variable basis info" that should have
been here.

Reviewed-by: Timothy Arceri <tarceri@itsqueeze.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/3445>
This commit is contained in:
Ian Romanick 2023-02-13 17:23:14 -08:00 committed by Marge Bot
parent 2e942909c8
commit 30879a760c

View file

@ -705,6 +705,122 @@ eval_const_binop(nir_op op, unsigned bit_size,
return dest;
}
static int
find_replacement(const nir_ssa_def **originals, const nir_ssa_def *key,
unsigned num_replacements)
{
for (int i = 0; i < num_replacements; i++) {
if (originals[i] == key)
return i;
}
return -1;
}
/**
* Try to evaluate an ALU instruction as a constant with a replacement
*
* Much like \c nir_opt_constant_folding.c:try_fold_alu, this method attempts
* to evaluate an ALU instruction as a constant. There are two significant
* differences.
*
* First, this method performs the evaluation recursively. If any source of
* the ALU instruction is not itself a constant, it is first evaluated.
*
* Second, if the SSA value \c original is encountered as a source of the ALU
* instruction, the value \c replacement is substituted.
*
* The intended purpose of this function is to evaluate an arbitrary
* expression involving a loop induction variable. In this case, \c original
* would be the phi node associated with the induction variable, and
* \c replacement is the initial value of the induction variable.
*
* \returns true if the ALU instruction can be evaluated as constant (after
* applying the previously described substitution) or false otherwise.
*/
static bool
try_eval_const_alu(nir_const_value *dest, nir_alu_instr *alu,
const nir_ssa_def **originals,
const nir_const_value **replacements,
unsigned num_replacements, unsigned execution_mode)
{
nir_const_value src[NIR_MAX_VEC_COMPONENTS][NIR_MAX_VEC_COMPONENTS];
if (!alu->dest.dest.is_ssa)
return false;
/* In the case that any outputs/inputs have unsized types, then we need to
* guess the bit-size. In this case, the validator ensures that all
* bit-sizes match so we can just take the bit-size from first
* output/input with an unsized type. If all the outputs/inputs are sized
* then we don't need to guess the bit-size at all because the code we
* generate for constant opcodes in this case already knows the sizes of
* the types involved and does not need the provided bit-size for anything
* (although it still requires to receive a valid bit-size).
*/
unsigned bit_size = 0;
if (!nir_alu_type_get_type_size(nir_op_infos[alu->op].output_type))
bit_size = alu->dest.dest.ssa.bit_size;
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
if (!alu->src[i].src.is_ssa)
return false;
if (bit_size == 0 &&
!nir_alu_type_get_type_size(nir_op_infos[alu->op].input_types[i]))
bit_size = alu->src[i].src.ssa->bit_size;
nir_instr *src_instr = alu->src[i].src.ssa->parent_instr;
if (src_instr->type == nir_instr_type_load_const) {
nir_load_const_instr *load_const = nir_instr_as_load_const(src_instr);
for (unsigned j = 0; j < nir_ssa_alu_instr_src_components(alu, i);
j++) {
src[i][j] = load_const->value[alu->src[i].swizzle[j]];
}
} else {
int r = find_replacement(originals, alu->src[i].src.ssa,
num_replacements);
if (r >= 0) {
for (unsigned j = 0; j < nir_ssa_alu_instr_src_components(alu, i);
j++) {
src[i][j] = replacements[r][alu->src[i].swizzle[j]];
}
} else if (src_instr->type == nir_instr_type_alu) {
memset(src[i], 0, sizeof(src[i]));
if (!try_eval_const_alu(src[i], nir_instr_as_alu(src_instr),
originals, replacements, num_replacements,
execution_mode))
return false;
} else {
return false;
}
}
/* We shouldn't have any source modifiers in the optimization loop. */
assert(!alu->src[i].abs && !alu->src[i].negate);
}
if (bit_size == 0)
bit_size = 32;
/* We shouldn't have any saturate modifiers in the optimization loop. */
assert(!alu->dest.saturate);
nir_const_value *srcs[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; ++i)
srcs[i] = src[i];
nir_eval_const_opcode(alu->op, dest, alu->dest.dest.ssa.num_components,
bit_size, srcs, execution_mode);
return true;
}
static int32_t
get_iteration(nir_op cond_op, nir_const_value initial, nir_const_value step,
nir_const_value limit, unsigned bit_size,