Cell: prefix SPU files with spu_

This commit is contained in:
Brian 2008-01-12 10:33:50 -07:00
parent a9a8467472
commit 2e469775b3
6 changed files with 0 additions and 1744 deletions

View file

@ -1,553 +0,0 @@
/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/* main() for Cell SPU code */
#include <stdio.h>
#include <libmisc.h>
#include <spu_mfcio.h>
#include "main.h"
#include "tri.h"
#include "tile.h"
#include "pipe/cell/common.h"
#include "pipe/p_defines.h"
/*
helpful headers:
/usr/lib/gcc/spu/4.1.1/include/spu_mfcio.h
/opt/ibm/cell-sdk/prototype/sysroot/usr/include/libmisc.h
*/
static boolean Debug = FALSE;
volatile struct cell_init_info init;
struct framebuffer fb;
void
wait_on_mask(unsigned tagMask)
{
mfc_write_tag_mask( tagMask );
/* wait for completion of _any_ DMAs specified by tagMask */
mfc_read_tag_status_any();
}
static void
wait_on_mask_all(unsigned tagMask)
{
mfc_write_tag_mask( tagMask );
/* wait for completion of _any_ DMAs specified by tagMask */
mfc_read_tag_status_all();
}
/**
* For tiles whose status is TILE_STATUS_CLEAR, write solid-filled
* tiles back to the main framebuffer.
*/
static void
really_clear_tiles(uint surfaceIndex)
{
const uint num_tiles = fb.width_tiles * fb.height_tiles;
uint i, j;
if (surfaceIndex == 0) {
for (i = 0; i < TILE_SIZE; i++)
for (j = 0; j < TILE_SIZE; j++)
ctile[i][j] = fb.color_clear_value;
for (i = init.id; i < num_tiles; i += init.num_spus) {
uint tx = i % fb.width_tiles;
uint ty = i / fb.width_tiles;
if (tile_status[ty][tx] == TILE_STATUS_CLEAR) {
put_tile(&fb, tx, ty, (uint *) ctile, TAG_SURFACE_CLEAR, 0);
}
}
}
else {
for (i = 0; i < TILE_SIZE; i++)
for (j = 0; j < TILE_SIZE; j++)
ztile[i][j] = fb.depth_clear_value;
for (i = init.id; i < num_tiles; i += init.num_spus) {
uint tx = i % fb.width_tiles;
uint ty = i / fb.width_tiles;
if (tile_status_z[ty][tx] == TILE_STATUS_CLEAR)
put_tile(&fb, tx, ty, (uint *) ctile, TAG_SURFACE_CLEAR, 1);
}
}
#if 0
wait_on_mask(1 << TAG_SURFACE_CLEAR);
#endif
}
static void
cmd_clear_surface(const struct cell_command_clear_surface *clear)
{
const uint num_tiles = fb.width_tiles * fb.height_tiles;
uint i, j;
if (Debug)
printf("SPU %u: CLEAR SURF %u to 0x%08x\n", init.id,
clear->surface, clear->value);
#define CLEAR_OPT 1
#if CLEAR_OPT
/* set all tile's status to CLEAR */
if (clear->surface == 0) {
memset(tile_status, TILE_STATUS_CLEAR, sizeof(tile_status));
fb.color_clear_value = clear->value;
}
else {
memset(tile_status_z, TILE_STATUS_CLEAR, sizeof(tile_status_z));
fb.depth_clear_value = clear->value;
}
return;
#endif
if (clear->surface == 0) {
for (i = 0; i < TILE_SIZE; i++)
for (j = 0; j < TILE_SIZE; j++)
ctile[i][j] = clear->value;
}
else {
for (i = 0; i < TILE_SIZE; i++)
for (j = 0; j < TILE_SIZE; j++)
ztile[i][j] = clear->value;
}
/*
printf("SPU: %s num=%d w=%d h=%d\n",
__FUNCTION__, num_tiles, fb.width_tiles, fb.height_tiles);
*/
for (i = init.id; i < num_tiles; i += init.num_spus) {
uint tx = i % fb.width_tiles;
uint ty = i / fb.width_tiles;
if (clear->surface == 0)
put_tile(&fb, tx, ty, (uint *) ctile, TAG_SURFACE_CLEAR, 0);
else
put_tile(&fb, tx, ty, (uint *) ztile, TAG_SURFACE_CLEAR, 1);
/* XXX we don't want this here, but it fixes bad tile results */
}
#if 0
wait_on_mask(1 << TAG_SURFACE_CLEAR);
#endif
}
/**
* Given a rendering command's bounding box (in pixels) compute the
* location of the corresponding screen tile bounding box.
*/
static INLINE void
tile_bounding_box(const struct cell_command_render *render,
uint *txmin, uint *tymin,
uint *box_num_tiles, uint *box_width_tiles)
{
#if 1
/* Debug: full-window bounding box */
uint txmax = fb.width_tiles - 1;
uint tymax = fb.height_tiles - 1;
*txmin = 0;
*tymin = 0;
*box_num_tiles = fb.width_tiles * fb.height_tiles;
*box_width_tiles = fb.width_tiles;
(void) render;
(void) txmax;
(void) tymax;
#else
uint txmax, tymax, box_height_tiles;
*txmin = (uint) render->xmin / TILE_SIZE;
*tymin = (uint) render->ymin / TILE_SIZE;
txmax = (uint) render->xmax / TILE_SIZE;
tymax = (uint) render->ymax / TILE_SIZE;
*box_width_tiles = txmax - *txmin + 1;
box_height_tiles = tymax - *tymin + 1;
*box_num_tiles = *box_width_tiles * box_height_tiles;
#endif
#if 0
printf("Render bounds: %g, %g ... %g, %g\n",
render->xmin, render->ymin, render->xmax, render->ymax);
printf("Render tiles: %u, %u .. %u, %u\n", *txmin, *tymin, txmax, tymax);
#endif
}
static void
cmd_render(const struct cell_command_render *render)
{
/* we'll DMA into these buffers */
ubyte vertex_data[CELL_MAX_VBUF_SIZE] ALIGN16_ATTRIB;
ushort indexes[CELL_MAX_VBUF_INDEXES] ALIGN16_ATTRIB;
uint i, j, vertex_size, vertex_bytes, index_bytes;
if (Debug)
printf("SPU %u: RENDER prim %u, indices: %u, nr_vert: %u\n",
init.id,
render->prim_type,
render->num_verts,
render->num_indexes);
ASSERT_ALIGN16(render->vertex_data);
ASSERT_ALIGN16(render->index_data);
vertex_size = render->num_attribs * 4 * sizeof(float);
/* how much vertex data */
vertex_bytes = render->num_verts * vertex_size;
index_bytes = render->num_indexes * sizeof(ushort);
if (index_bytes < 8)
index_bytes = 8;
else
index_bytes = (index_bytes + 15) & ~0xf; /* multiple of 16 */
/*
printf("VBUF: indices at %p, vertices at %p vertex_bytes %u ind_bytes %u\n",
render->index_data, render->vertex_data, vertex_bytes, index_bytes);
*/
/* get vertex data from main memory */
mfc_get(vertex_data, /* dest */
(unsigned int) render->vertex_data, /* src */
vertex_bytes, /* size */
TAG_VERTEX_BUFFER,
0, /* tid */
0 /* rid */);
/* get index data from main memory */
mfc_get(indexes, /* dest */
(unsigned int) render->index_data, /* src */
index_bytes,
TAG_INDEX_BUFFER,
0, /* tid */
0 /* rid */);
wait_on_mask_all((1 << TAG_VERTEX_BUFFER) |
(1 << TAG_INDEX_BUFFER));
/* find tiles which intersect the prim bounding box */
uint txmin, tymin, box_width_tiles, box_num_tiles;
#if 0
tile_bounding_box(render, &txmin, &tymin,
&box_num_tiles, &box_width_tiles);
#else
txmin = 0;
tymin = 0;
box_num_tiles = fb.width_tiles * fb.height_tiles;
box_width_tiles = fb.width_tiles;
#endif
/* make sure any pending clears have completed */
wait_on_mask(1 << TAG_SURFACE_CLEAR);
/* loop over tiles */
for (i = init.id; i < box_num_tiles; i += init.num_spus) {
const uint tx = txmin + i % box_width_tiles;
const uint ty = tymin + i / box_width_tiles;
ASSERT(tx < fb.width_tiles);
ASSERT(ty < fb.height_tiles);
/* Start fetching color/z tiles. We'll wait for completion when
* we need read/write to them later in triangle rasterization.
*/
if (fb.depth_format == PIPE_FORMAT_Z16_UNORM) {
if (tile_status_z[ty][tx] != TILE_STATUS_CLEAR) {
get_tile(&fb, tx, ty, (uint *) ztile, TAG_READ_TILE_Z, 1);
}
}
if (tile_status[ty][tx] != TILE_STATUS_CLEAR) {
get_tile(&fb, tx, ty, (uint *) ctile, TAG_READ_TILE_COLOR, 0);
}
ASSERT(render->prim_type == PIPE_PRIM_TRIANGLES);
/* loop over tris */
for (j = 0; j < render->num_indexes; j += 3) {
const float *v0, *v1, *v2;
v0 = (const float *) (vertex_data + indexes[j+0] * vertex_size);
v1 = (const float *) (vertex_data + indexes[j+1] * vertex_size);
v2 = (const float *) (vertex_data + indexes[j+2] * vertex_size);
tri_draw(v0, v1, v2, tx, ty);
}
/* write color/z tiles back to main framebuffer, if dirtied */
if (tile_status[ty][tx] == TILE_STATUS_DIRTY) {
put_tile(&fb, tx, ty, (uint *) ctile, TAG_WRITE_TILE_COLOR, 0);
tile_status[ty][tx] = TILE_STATUS_DEFINED;
}
if (fb.depth_format == PIPE_FORMAT_Z16_UNORM) {
if (tile_status_z[ty][tx] == TILE_STATUS_DIRTY) {
put_tile(&fb, tx, ty, (uint *) ztile, TAG_WRITE_TILE_Z, 1);
tile_status_z[ty][tx] = TILE_STATUS_DEFINED;
}
}
/* XXX move these... */
wait_on_mask(1 << TAG_WRITE_TILE_COLOR);
if (fb.depth_format == PIPE_FORMAT_Z16_UNORM) {
wait_on_mask(1 << TAG_WRITE_TILE_Z);
}
}
}
static void
cmd_framebuffer(const struct cell_command_framebuffer *cmd)
{
if (Debug)
printf("SPU %u: FRAMEBUFFER: %d x %d at %p, cformat 0x%x zformat 0x%x\n",
init.id,
cmd->width,
cmd->height,
cmd->color_start,
cmd->color_format,
cmd->depth_format);
fb.color_start = cmd->color_start;
fb.depth_start = cmd->depth_start;
fb.color_format = cmd->color_format;
fb.depth_format = cmd->depth_format;
fb.width = cmd->width;
fb.height = cmd->height;
fb.width_tiles = (fb.width + TILE_SIZE - 1) / TILE_SIZE;
fb.height_tiles = (fb.height + TILE_SIZE - 1) / TILE_SIZE;
}
static void
cmd_finish(void)
{
if (Debug)
printf("SPU %u: FINISH\n", init.id);
really_clear_tiles(0);
/* wait for all outstanding DMAs to finish */
mfc_write_tag_mask(~0);
mfc_read_tag_status_all();
/* send mbox message to PPU */
spu_write_out_mbox(CELL_CMD_FINISH);
}
/**
* Execute a batch of commands
* The opcode param encodes the location of the buffer and its size.
*/
static void
cmd_batch(uint opcode)
{
const uint buf = (opcode >> 8) & 0xff;
uint size = (opcode >> 16);
uint buffer[CELL_BATCH_BUFFER_SIZE / 4] ALIGN16_ATTRIB;
const uint usize = size / sizeof(uint);
uint pos;
if (Debug)
printf("SPU %u: BATCH buffer %u, len %u, from %p\n",
init.id, buf, size, init.batch_buffers[buf]);
ASSERT((opcode & CELL_CMD_OPCODE_MASK) == CELL_CMD_BATCH);
ASSERT_ALIGN16(init.batch_buffers[buf]);
size = (size + 0xf) & ~0xf;
mfc_get(buffer, /* dest */
(unsigned int) init.batch_buffers[buf], /* src */
size,
TAG_BATCH_BUFFER,
0, /* tid */
0 /* rid */);
wait_on_mask(1 << TAG_BATCH_BUFFER);
for (pos = 0; pos < usize; /* no incr */) {
switch (buffer[pos]) {
case CELL_CMD_FRAMEBUFFER:
{
struct cell_command_framebuffer *fb
= (struct cell_command_framebuffer *) &buffer[pos];
cmd_framebuffer(fb);
pos += sizeof(*fb) / 4;
}
break;
case CELL_CMD_CLEAR_SURFACE:
{
struct cell_command_clear_surface *clr
= (struct cell_command_clear_surface *) &buffer[pos];
cmd_clear_surface(clr);
pos += sizeof(*clr) / 4;
}
break;
case CELL_CMD_RENDER:
{
struct cell_command_render *render
= (struct cell_command_render *) &buffer[pos];
cmd_render(render);
pos += sizeof(*render) / 4;
}
break;
case CELL_CMD_FINISH:
cmd_finish();
pos += 1;
break;
default:
printf("SPU %u: bad opcode: 0x%x\n", init.id, buffer[pos]);
ASSERT(0);
break;
}
}
if (Debug)
printf("SPU %u: BATCH complete\n", init.id);
}
/**
* Temporary/simple main loop for SPEs: Get a command, execute it, repeat.
*/
static void
main_loop(void)
{
struct cell_command cmd;
int exitFlag = 0;
if (Debug)
printf("SPU %u: Enter main loop\n", init.id);
ASSERT((sizeof(struct cell_command) & 0xf) == 0);
ASSERT_ALIGN16(&cmd);
while (!exitFlag) {
unsigned opcode;
int tag = 0;
if (Debug)
printf("SPU %u: Wait for cmd...\n", init.id);
/* read/wait from mailbox */
opcode = (unsigned int) spu_read_in_mbox();
if (Debug)
printf("SPU %u: got cmd 0x%x\n", init.id, opcode);
/* command payload */
mfc_get(&cmd, /* dest */
(unsigned int) init.cmd, /* src */
sizeof(struct cell_command), /* bytes */
tag,
0, /* tid */
0 /* rid */);
wait_on_mask( 1 << tag );
switch (opcode & CELL_CMD_OPCODE_MASK) {
case CELL_CMD_EXIT:
if (Debug)
printf("SPU %u: EXIT\n", init.id);
exitFlag = 1;
break;
case CELL_CMD_FRAMEBUFFER:
cmd_framebuffer(&cmd.fb);
break;
case CELL_CMD_CLEAR_SURFACE:
cmd_clear_surface(&cmd.clear);
break;
case CELL_CMD_RENDER:
cmd_render(&cmd.render);
break;
case CELL_CMD_BATCH:
cmd_batch(opcode);
break;
case CELL_CMD_FINISH:
cmd_finish();
break;
default:
printf("Bad opcode!\n");
}
}
if (Debug)
printf("SPU %u: Exit main loop\n", init.id);
}
static void
one_time_init(void)
{
memset(tile_status, TILE_STATUS_DEFINED, sizeof(tile_status));
memset(tile_status_z, TILE_STATUS_DEFINED, sizeof(tile_status_z));
}
/**
* SPE entrypoint.
* Note: example programs declare params as 'unsigned long long' but
* that doesn't work.
*/
int
main(unsigned long speid, unsigned long argp)
{
int tag = 0;
(void) speid;
one_time_init();
if (Debug)
printf("SPU: main() speid=%lu\n", speid);
mfc_get(&init, /* dest */
(unsigned int) argp, /* src */
sizeof(struct cell_init_info), /* bytes */
tag,
0, /* tid */
0 /* rid */);
wait_on_mask( 1 << tag );
main_loop();
return 0;
}

View file

@ -1,78 +0,0 @@
/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#ifndef MAIN_H
#define MAIN_H
#include "pipe/cell/common.h"
extern volatile struct cell_init_info init;
struct framebuffer {
void *color_start; /**< addr of color surface in main memory */
void *depth_start; /**< addr of depth surface in main memory */
enum pipe_format color_format;
enum pipe_format depth_format;
uint width, height; /**< size in pixels */
uint width_tiles, height_tiles; /**< width and height in tiles */
uint color_clear_value;
uint depth_clear_value;
};
/* XXX Collect these globals in a struct: */
extern struct framebuffer fb;
/* DMA TAGS */
#define TAG_SURFACE_CLEAR 10
#define TAG_VERTEX_BUFFER 11
#define TAG_READ_TILE_COLOR 12
#define TAG_READ_TILE_Z 13
#define TAG_WRITE_TILE_COLOR 14
#define TAG_WRITE_TILE_Z 15
#define TAG_INDEX_BUFFER 16
#define TAG_BATCH_BUFFER 17
/** The standard assert macro doesn't seem to work on SPUs */
#define ASSERT(x) \
if (!(x)) { \
fprintf(stderr, "SPU %d: %s:%d: %s(): assertion %s failed.\n", \
init.id, __FILE__, __LINE__, __FUNCTION__, #x); \
exit(1); \
}
void
wait_on_mask(unsigned tag);
#endif /* MAIN_H */

View file

@ -1,115 +0,0 @@
/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "tile.h"
uint ctile[TILE_SIZE][TILE_SIZE] ALIGN16_ATTRIB;
ushort ztile[TILE_SIZE][TILE_SIZE] ALIGN16_ATTRIB;
ubyte tile_status[MAX_HEIGHT/TILE_SIZE][MAX_WIDTH/TILE_SIZE] ALIGN16_ATTRIB;
ubyte tile_status_z[MAX_HEIGHT/TILE_SIZE][MAX_WIDTH/TILE_SIZE] ALIGN16_ATTRIB;
void
get_tile(const struct framebuffer *fb, uint tx, uint ty, uint *tile,
int tag, int zBuf)
{
const uint offset = ty * fb->width_tiles + tx;
const uint bytesPerTile = TILE_SIZE * TILE_SIZE * (zBuf ? 2 : 4);
const ubyte *src = zBuf ? fb->depth_start : fb->color_start;
src += offset * bytesPerTile;
ASSERT(tx < fb->width_tiles);
ASSERT(ty < fb->height_tiles);
ASSERT_ALIGN16(tile);
/*
printf("get_tile: dest: %p src: 0x%x size: %d\n",
tile, (unsigned int) src, bytesPerTile);
*/
mfc_get(tile, /* dest in local memory */
(unsigned int) src, /* src in main memory */
bytesPerTile,
tag,
0, /* tid */
0 /* rid */);
}
void
put_tile(const struct framebuffer *fb, uint tx, uint ty, const uint *tile,
int tag, int zBuf)
{
const uint offset = ty * fb->width_tiles + tx;
const uint bytesPerTile = TILE_SIZE * TILE_SIZE * (zBuf ? 2 : 4);
ubyte *dst = zBuf ? fb->depth_start : fb->color_start;
dst += offset * bytesPerTile;
ASSERT(tx < fb->width_tiles);
ASSERT(ty < fb->height_tiles);
ASSERT_ALIGN16(tile);
/*
printf("put_tile: src: %p dst: 0x%x size: %d\n",
tile, (unsigned int) dst, bytesPerTile);
*/
mfc_put((void *) tile, /* src in local memory */
(unsigned int) dst, /* dst in main memory */
bytesPerTile,
tag,
0, /* tid */
0 /* rid */);
}
void
clear_tile(uint tile[TILE_SIZE][TILE_SIZE], uint value)
{
uint i, j;
for (i = 0; i < TILE_SIZE; i++) {
for (j = 0; j < TILE_SIZE; j++) {
tile[i][j] = value;
}
}
}
void
clear_tile_z(ushort tile[TILE_SIZE][TILE_SIZE], uint value)
{
uint i, j;
for (i = 0; i < TILE_SIZE; i++) {
for (j = 0; j < TILE_SIZE; j++) {
tile[i][j] = value;
}
}
}

View file

@ -1,69 +0,0 @@
/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#ifndef TILE_H
#define TILE_H
#include <libmisc.h>
#include <spu_mfcio.h>
#include "main.h"
#include "pipe/cell/common.h"
#define MAX_WIDTH 1024
#define MAX_HEIGHT 1024
extern uint ctile[TILE_SIZE][TILE_SIZE] ALIGN16_ATTRIB;
extern ushort ztile[TILE_SIZE][TILE_SIZE] ALIGN16_ATTRIB;
#define TILE_STATUS_CLEAR 1
#define TILE_STATUS_DEFINED 2 /**< defined pixel data */
#define TILE_STATUS_DIRTY 3 /**< modified, but not put back yet */
extern ubyte tile_status[MAX_HEIGHT/TILE_SIZE][MAX_WIDTH/TILE_SIZE] ALIGN16_ATTRIB;
extern ubyte tile_status_z[MAX_HEIGHT/TILE_SIZE][MAX_WIDTH/TILE_SIZE] ALIGN16_ATTRIB;
void
get_tile(const struct framebuffer *fb, uint tx, uint ty, uint *tile,
int tag, int zBuf);
void
put_tile(const struct framebuffer *fb, uint tx, uint ty, const uint *tile,
int tag, int zBuf);
void
clear_tile(uint tile[TILE_SIZE][TILE_SIZE], uint value);
void
clear_tile_z(ushort tile[TILE_SIZE][TILE_SIZE], uint value);
#endif /* TILE_H */

View file

@ -1,892 +0,0 @@
/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* Triangle rendering within a tile.
*/
#include "pipe/p_compiler.h"
#include "pipe/p_format.h"
#include "pipe/p_util.h"
#include "main.h"
#include "tile.h"
#include "tri.h"
/**
* Simplified types taken from other parts of Gallium
*/
struct vertex_header {
float data[2][4]; /* pos and color */
};
struct prim_header {
struct vertex_header *v[3];
};
#if 1
/* XXX fix this */
#undef CEILF
#define CEILF(X) ((float) (int) ((X) + 0.99999))
#define QUAD_TOP_LEFT 0
#define QUAD_TOP_RIGHT 1
#define QUAD_BOTTOM_LEFT 2
#define QUAD_BOTTOM_RIGHT 3
#define MASK_TOP_LEFT (1 << QUAD_TOP_LEFT)
#define MASK_TOP_RIGHT (1 << QUAD_TOP_RIGHT)
#define MASK_BOTTOM_LEFT (1 << QUAD_BOTTOM_LEFT)
#define MASK_BOTTOM_RIGHT (1 << QUAD_BOTTOM_RIGHT)
#define MASK_ALL 0xf
#define PIPE_MAX_SHADER_INPUTS 8 /* XXX temp */
#endif
#define DEBUG_VERTS 0
/**
* Triangle edge info
*/
struct edge {
float dx; /**< X(v1) - X(v0), used only during setup */
float dy; /**< Y(v1) - Y(v0), used only during setup */
float dxdy; /**< dx/dy */
float sx, sy; /**< first sample point coord */
int lines; /**< number of lines on this edge */
};
struct interp_coef
{
float a0[4];
float dadx[4];
float dady[4];
};
/**
* Triangle setup info (derived from draw_stage).
* Also used for line drawing (taking some liberties).
*/
struct setup_stage {
/* Vertices are just an array of floats making up each attribute in
* turn. Currently fixed at 4 floats, but should change in time.
* Codegen will help cope with this.
*/
const struct vertex_header *vmax;
const struct vertex_header *vmid;
const struct vertex_header *vmin;
const struct vertex_header *vprovoke;
struct edge ebot;
struct edge etop;
struct edge emaj;
float oneoverarea;
uint tx, ty;
int cliprect_minx, cliprect_maxx, cliprect_miny, cliprect_maxy;
#if 0
struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
#else
struct interp_coef coef[PIPE_MAX_SHADER_INPUTS];
#endif
#if 0
struct quad_header quad;
#endif
struct {
int left[2]; /**< [0] = row0, [1] = row1 */
int right[2];
int y;
unsigned y_flags;
unsigned mask; /**< mask of MASK_BOTTOM/TOP_LEFT/RIGHT bits */
} span;
};
#if 0
/**
* Basically a cast wrapper.
*/
static INLINE struct setup_stage *setup_stage( struct draw_stage *stage )
{
return (struct setup_stage *)stage;
}
#endif
#if 0
/**
* Clip setup->quad against the scissor/surface bounds.
*/
static INLINE void
quad_clip(struct setup_stage *setup)
{
const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
const int minx = (int) cliprect->minx;
const int maxx = (int) cliprect->maxx;
const int miny = (int) cliprect->miny;
const int maxy = (int) cliprect->maxy;
if (setup->quad.x0 >= maxx ||
setup->quad.y0 >= maxy ||
setup->quad.x0 + 1 < minx ||
setup->quad.y0 + 1 < miny) {
/* totally clipped */
setup->quad.mask = 0x0;
return;
}
if (setup->quad.x0 < minx)
setup->quad.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
if (setup->quad.y0 < miny)
setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
if (setup->quad.x0 == maxx - 1)
setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
if (setup->quad.y0 == maxy - 1)
setup->quad.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
}
#endif
#if 0
/**
* Emit a quad (pass to next stage) with clipping.
*/
static INLINE void
clip_emit_quad(struct setup_stage *setup)
{
quad_clip(setup);
if (setup->quad.mask) {
struct softpipe_context *sp = setup->softpipe;
sp->quad.first->run(sp->quad.first, &setup->quad);
}
}
#endif
/**
* Evaluate attribute coefficients (plane equations) to compute
* attribute values for the four fragments in a quad.
* Eg: four colors will be compute.
*/
static INLINE void
eval_coeff( struct setup_stage *setup, uint slot,
float x, float y, float result[4][4])
{
uint i;
const float *dadx = setup->coef[slot].dadx;
const float *dady = setup->coef[slot].dady;
/* loop over XYZW comps */
for (i = 0; i < 4; i++) {
result[QUAD_TOP_LEFT][i] = setup->coef[slot].a0[i] + x * dadx[i] + y * dady[i];
result[QUAD_TOP_RIGHT][i] = result[0][i] + dadx[i];
result[QUAD_BOTTOM_LEFT][i] = result[0][i] + dady[i];
result[QUAD_BOTTOM_RIGHT][i] = result[0][i] + dadx[i] + dady[i];
}
}
static INLINE void
eval_z( struct setup_stage *setup,
float x, float y, float result[4])
{
uint slot = 0;
uint i = 2;
const float *dadx = setup->coef[slot].dadx;
const float *dady = setup->coef[slot].dady;
result[QUAD_TOP_LEFT] = setup->coef[slot].a0[i] + x * dadx[i] + y * dady[i];
result[QUAD_TOP_RIGHT] = result[0] + dadx[i];
result[QUAD_BOTTOM_LEFT] = result[0] + dady[i];
result[QUAD_BOTTOM_RIGHT] = result[0] + dadx[i] + dady[i];
}
static INLINE uint
pack_color(const float color[4])
{
uint r = (uint) (color[0] * 255.0);
uint g = (uint) (color[1] * 255.0);
uint b = (uint) (color[2] * 255.0);
uint a = (uint) (color[3] * 255.0);
switch (fb.color_format) {
case PIPE_FORMAT_A8R8G8B8_UNORM:
return (a << 24) | (r << 16) | (g << 8) | b;
case PIPE_FORMAT_B8G8R8A8_UNORM:
return (b << 24) | (g << 16) | (r << 8) | a;
default:
ASSERT(0);
return 0;
}
}
/**
* Emit a quad (pass to next stage). No clipping is done.
*/
static INLINE void
emit_quad( struct setup_stage *setup, int x, int y, unsigned mask )
{
#if 0
struct softpipe_context *sp = setup->softpipe;
setup->quad.x0 = x;
setup->quad.y0 = y;
setup->quad.mask = mask;
sp->quad.first->run(sp->quad.first, &setup->quad);
#else
/* Cell: "write" quad fragments to the tile by setting prim color */
int ix = x - setup->cliprect_minx;
int iy = y - setup->cliprect_miny;
float colors[4][4];
uint z;
eval_coeff(setup, 1, (float) x, (float) y, colors);
if (fb.depth_format == PIPE_FORMAT_Z16_UNORM) {
float zvals[4];
eval_z(setup, (float) x, (float) y, zvals);
if (tile_status_z[setup->ty][setup->tx] == TILE_STATUS_CLEAR) {
/* now, _really_ clear the tile */
clear_tile_z(ztile, fb.depth_clear_value);
}
else {
/* make sure we've got the tile from main mem */
wait_on_mask(1 << TAG_READ_TILE_Z);
}
tile_status_z[setup->ty][setup->tx] = TILE_STATUS_DIRTY;
if (mask & MASK_TOP_LEFT) {
z = (uint) (zvals[0] * 65535.0);
if (z < ztile[iy][ix])
ztile[iy][ix] = z;
else
mask &= ~MASK_TOP_LEFT;
}
if (mask & MASK_TOP_RIGHT) {
z = (uint) (zvals[1] * 65535.0);
if (z < ztile[iy][ix+1])
ztile[iy][ix+1] = z;
else
mask &= ~MASK_TOP_RIGHT;
}
if (mask & MASK_BOTTOM_LEFT) {
z = (uint) (zvals[2] * 65535.0);
if (z < ztile[iy+1][ix])
ztile[iy+1][ix] = z;
else
mask &= ~MASK_BOTTOM_LEFT;
}
if (mask & MASK_BOTTOM_RIGHT) {
z = (uint) (zvals[3] * 65535.0);
if (z < ztile[iy+1][ix+1])
ztile[iy+1][ix+1] = z;
else
mask &= ~MASK_BOTTOM_RIGHT;
}
}
if (mask) {
if (tile_status[setup->ty][setup->tx] == TILE_STATUS_CLEAR) {
/* now, _really_ clear the tile */
clear_tile(ctile, fb.color_clear_value);
}
else {
/* make sure we've got the tile from main mem */
wait_on_mask(1 << TAG_READ_TILE_COLOR);
}
tile_status[setup->ty][setup->tx] = TILE_STATUS_DIRTY;
if (mask & MASK_TOP_LEFT)
ctile[iy][ix] = pack_color(colors[QUAD_TOP_LEFT]);
if (mask & MASK_TOP_RIGHT)
ctile[iy][ix+1] = pack_color(colors[QUAD_TOP_RIGHT]);
if (mask & MASK_BOTTOM_LEFT)
ctile[iy+1][ix] = pack_color(colors[QUAD_BOTTOM_LEFT]);
if (mask & MASK_BOTTOM_RIGHT)
ctile[iy+1][ix+1] = pack_color(colors[QUAD_BOTTOM_RIGHT]);
}
#endif
}
/**
* Given an X or Y coordinate, return the block/quad coordinate that it
* belongs to.
*/
static INLINE int block( int x )
{
return x & ~1;
}
/**
* Compute mask which indicates which pixels in the 2x2 quad are actually inside
* the triangle's bounds.
*
* this is pretty nasty... may need to rework flush_spans again to
* fix it, if possible.
*/
static unsigned calculate_mask( struct setup_stage *setup, int x )
{
unsigned mask = 0x0;
if (x >= setup->span.left[0] && x < setup->span.right[0])
mask |= MASK_TOP_LEFT;
if (x >= setup->span.left[1] && x < setup->span.right[1])
mask |= MASK_BOTTOM_LEFT;
if (x+1 >= setup->span.left[0] && x+1 < setup->span.right[0])
mask |= MASK_TOP_RIGHT;
if (x+1 >= setup->span.left[1] && x+1 < setup->span.right[1])
mask |= MASK_BOTTOM_RIGHT;
return mask;
}
/**
* Render a horizontal span of quads
*/
static void flush_spans( struct setup_stage *setup )
{
int minleft, maxright;
int x;
switch (setup->span.y_flags) {
case 0x3:
/* both odd and even lines written (both quad rows) */
minleft = MIN2(setup->span.left[0], setup->span.left[1]);
maxright = MAX2(setup->span.right[0], setup->span.right[1]);
break;
case 0x1:
/* only even line written (quad top row) */
minleft = setup->span.left[0];
maxright = setup->span.right[0];
break;
case 0x2:
/* only odd line written (quad bottom row) */
minleft = setup->span.left[1];
maxright = setup->span.right[1];
break;
default:
return;
}
/* XXX this loop could be moved into the above switch cases and
* calculate_mask() could be simplified a bit...
*/
for (x = block(minleft); x <= block(maxright); x += 2) {
emit_quad( setup, x, setup->span.y,
calculate_mask( setup, x ) );
}
setup->span.y = 0;
setup->span.y_flags = 0;
setup->span.right[0] = 0;
setup->span.right[1] = 0;
}
#if DEBUG_VERTS
static void print_vertex(const struct setup_stage *setup,
const struct vertex_header *v)
{
int i;
fprintf(stderr, "Vertex: (%p)\n", v);
for (i = 0; i < setup->quad.nr_attrs; i++) {
fprintf(stderr, " %d: %f %f %f %f\n", i,
v->data[i][0], v->data[i][1], v->data[i][2], v->data[i][3]);
}
}
#endif
static boolean setup_sort_vertices( struct setup_stage *setup,
const struct prim_header *prim )
{
const struct vertex_header *v0 = prim->v[0];
const struct vertex_header *v1 = prim->v[1];
const struct vertex_header *v2 = prim->v[2];
#if DEBUG_VERTS
fprintf(stderr, "Triangle:\n");
print_vertex(setup, v0);
print_vertex(setup, v1);
print_vertex(setup, v2);
#endif
setup->vprovoke = v2;
/* determine bottom to top order of vertices */
{
float y0 = v0->data[0][1];
float y1 = v1->data[0][1];
float y2 = v2->data[0][1];
if (y0 <= y1) {
if (y1 <= y2) {
/* y0<=y1<=y2 */
setup->vmin = v0;
setup->vmid = v1;
setup->vmax = v2;
}
else if (y2 <= y0) {
/* y2<=y0<=y1 */
setup->vmin = v2;
setup->vmid = v0;
setup->vmax = v1;
}
else {
/* y0<=y2<=y1 */
setup->vmin = v0;
setup->vmid = v2;
setup->vmax = v1;
}
}
else {
if (y0 <= y2) {
/* y1<=y0<=y2 */
setup->vmin = v1;
setup->vmid = v0;
setup->vmax = v2;
}
else if (y2 <= y1) {
/* y2<=y1<=y0 */
setup->vmin = v2;
setup->vmid = v1;
setup->vmax = v0;
}
else {
/* y1<=y2<=y0 */
setup->vmin = v1;
setup->vmid = v2;
setup->vmax = v0;
}
}
}
/* Check if triangle is completely outside the tile bounds */
if (setup->vmin->data[0][1] > setup->cliprect_maxy)
return FALSE;
if (setup->vmax->data[0][1] < setup->cliprect_miny)
return FALSE;
if (setup->vmin->data[0][0] < setup->cliprect_minx &&
setup->vmid->data[0][0] < setup->cliprect_minx &&
setup->vmax->data[0][0] < setup->cliprect_minx)
return FALSE;
if (setup->vmin->data[0][0] > setup->cliprect_maxx &&
setup->vmid->data[0][0] > setup->cliprect_maxx &&
setup->vmax->data[0][0] > setup->cliprect_maxx)
return FALSE;
setup->ebot.dx = setup->vmid->data[0][0] - setup->vmin->data[0][0];
setup->ebot.dy = setup->vmid->data[0][1] - setup->vmin->data[0][1];
setup->emaj.dx = setup->vmax->data[0][0] - setup->vmin->data[0][0];
setup->emaj.dy = setup->vmax->data[0][1] - setup->vmin->data[0][1];
setup->etop.dx = setup->vmax->data[0][0] - setup->vmid->data[0][0];
setup->etop.dy = setup->vmax->data[0][1] - setup->vmid->data[0][1];
/*
* Compute triangle's area. Use 1/area to compute partial
* derivatives of attributes later.
*
* The area will be the same as prim->det, but the sign may be
* different depending on how the vertices get sorted above.
*
* To determine whether the primitive is front or back facing we
* use the prim->det value because its sign is correct.
*/
{
const float area = (setup->emaj.dx * setup->ebot.dy -
setup->ebot.dx * setup->emaj.dy);
setup->oneoverarea = 1.0f / area;
/*
_mesa_printf("%s one-over-area %f area %f det %f\n",
__FUNCTION__, setup->oneoverarea, area, prim->det );
*/
}
#if 0
/* We need to know if this is a front or back-facing triangle for:
* - the GLSL gl_FrontFacing fragment attribute (bool)
* - two-sided stencil test
*/
setup->quad.facing = (prim->det > 0.0) ^ (setup->softpipe->rasterizer->front_winding == PIPE_WINDING_CW);
#endif
return TRUE;
}
#if 0
/**
* Compute a0 for a constant-valued coefficient (GL_FLAT shading).
* The value value comes from vertex->data[slot][i].
* The result will be put into setup->coef[slot].a0[i].
* \param slot which attribute slot
* \param i which component of the slot (0..3)
*/
static void const_coeff( struct setup_stage *setup,
unsigned slot,
unsigned i )
{
assert(slot < PIPE_MAX_SHADER_INPUTS);
assert(i <= 3);
setup->coef[slot].dadx[i] = 0;
setup->coef[slot].dady[i] = 0;
/* need provoking vertex info!
*/
setup->coef[slot].a0[i] = setup->vprovoke->data[slot][i];
}
#endif
/**
* Compute a0, dadx and dady for a linearly interpolated coefficient,
* for a triangle.
*/
static void tri_linear_coeff( struct setup_stage *setup,
uint slot, uint firstComp, uint lastComp )
{
uint i;
for (i = firstComp; i < lastComp; i++) {
float botda = setup->vmid->data[slot][i] - setup->vmin->data[slot][i];
float majda = setup->vmax->data[slot][i] - setup->vmin->data[slot][i];
float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
ASSERT(slot < PIPE_MAX_SHADER_INPUTS);
setup->coef[slot].dadx[i] = a * setup->oneoverarea;
setup->coef[slot].dady[i] = b * setup->oneoverarea;
/* calculate a0 as the value which would be sampled for the
* fragment at (0,0), taking into account that we want to sample at
* pixel centers, in other words (0.5, 0.5).
*
* this is neat but unfortunately not a good way to do things for
* triangles with very large values of dadx or dady as it will
* result in the subtraction and re-addition from a0 of a very
* large number, which means we'll end up loosing a lot of the
* fractional bits and precision from a0. the way to fix this is
* to define a0 as the sample at a pixel center somewhere near vmin
* instead - i'll switch to this later.
*/
setup->coef[slot].a0[i] = (setup->vmin->data[slot][i] -
(setup->coef[slot].dadx[i] * (setup->vmin->data[0][0] - 0.5f) +
setup->coef[slot].dady[i] * (setup->vmin->data[0][1] - 0.5f)));
}
/*
_mesa_printf("attr[%d].%c: %f dx:%f dy:%f\n",
slot, "xyzw"[i],
setup->coef[slot].a0[i],
setup->coef[slot].dadx[i],
setup->coef[slot].dady[i]);
*/
}
#if 0
/**
* Compute a0, dadx and dady for a perspective-corrected interpolant,
* for a triangle.
* We basically multiply the vertex value by 1/w before computing
* the plane coefficients (a0, dadx, dady).
* Later, when we compute the value at a particular fragment position we'll
* divide the interpolated value by the interpolated W at that fragment.
*/
static void tri_persp_coeff( struct setup_stage *setup,
unsigned slot,
unsigned i )
{
/* premultiply by 1/w:
*/
float mina = setup->vmin->data[slot][i] * setup->vmin->data[0][3];
float mida = setup->vmid->data[slot][i] * setup->vmid->data[0][3];
float maxa = setup->vmax->data[slot][i] * setup->vmax->data[0][3];
float botda = mida - mina;
float majda = maxa - mina;
float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
/*
printf("tri persp %d,%d: %f %f %f\n", slot, i,
setup->vmin->data[slot][i],
setup->vmid->data[slot][i],
setup->vmax->data[slot][i]
);
*/
assert(slot < PIPE_MAX_SHADER_INPUTS);
assert(i <= 3);
setup->coef[slot].dadx[i] = a * setup->oneoverarea;
setup->coef[slot].dady[i] = b * setup->oneoverarea;
setup->coef[slot].a0[i] = (mina -
(setup->coef[slot].dadx[i] * (setup->vmin->data[0][0] - 0.5f) +
setup->coef[slot].dady[i] * (setup->vmin->data[0][1] - 0.5f)));
}
#endif
/**
* Compute the setup->coef[] array dadx, dady, a0 values.
* Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
*/
static void setup_tri_coefficients( struct setup_stage *setup )
{
#if 0
const enum interp_mode *interp = setup->softpipe->vertex_info.interp_mode;
unsigned slot, j;
/* z and w are done by linear interpolation:
*/
tri_linear_coeff(setup, 0, 2);
tri_linear_coeff(setup, 0, 3);
/* setup interpolation for all the remaining attributes:
*/
for (slot = 1; slot < setup->quad.nr_attrs; slot++) {
switch (interp[slot]) {
case INTERP_CONSTANT:
for (j = 0; j < NUM_CHANNELS; j++)
const_coeff(setup, slot, j);
break;
case INTERP_LINEAR:
for (j = 0; j < NUM_CHANNELS; j++)
tri_linear_coeff(setup, slot, j);
break;
case INTERP_PERSPECTIVE:
for (j = 0; j < NUM_CHANNELS; j++)
tri_persp_coeff(setup, slot, j);
break;
default:
/* invalid interp mode */
assert(0);
}
}
#else
tri_linear_coeff(setup, 0, 2, 3); /* slot 0, z */
tri_linear_coeff(setup, 1, 0, 4); /* slot 1, color */
#endif
}
static void setup_tri_edges( struct setup_stage *setup )
{
float vmin_x = setup->vmin->data[0][0] + 0.5f;
float vmid_x = setup->vmid->data[0][0] + 0.5f;
float vmin_y = setup->vmin->data[0][1] - 0.5f;
float vmid_y = setup->vmid->data[0][1] - 0.5f;
float vmax_y = setup->vmax->data[0][1] - 0.5f;
setup->emaj.sy = CEILF(vmin_y);
setup->emaj.lines = (int) CEILF(vmax_y - setup->emaj.sy);
setup->emaj.dxdy = setup->emaj.dx / setup->emaj.dy;
setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
setup->etop.sy = CEILF(vmid_y);
setup->etop.lines = (int) CEILF(vmax_y - setup->etop.sy);
setup->etop.dxdy = setup->etop.dx / setup->etop.dy;
setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
setup->ebot.sy = CEILF(vmin_y);
setup->ebot.lines = (int) CEILF(vmid_y - setup->ebot.sy);
setup->ebot.dxdy = setup->ebot.dx / setup->ebot.dy;
setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
}
/**
* Render the upper or lower half of a triangle.
* Scissoring/cliprect is applied here too.
*/
static void subtriangle( struct setup_stage *setup,
struct edge *eleft,
struct edge *eright,
unsigned lines )
{
const int minx = setup->cliprect_minx;
const int maxx = setup->cliprect_maxx;
const int miny = setup->cliprect_miny;
const int maxy = setup->cliprect_maxy;
int y, start_y, finish_y;
int sy = (int)eleft->sy;
ASSERT((int)eleft->sy == (int) eright->sy);
/* clip top/bottom */
start_y = sy;
finish_y = sy + lines;
if (start_y < miny)
start_y = miny;
if (finish_y > maxy)
finish_y = maxy;
start_y -= sy;
finish_y -= sy;
/*
_mesa_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
*/
for (y = start_y; y < finish_y; y++) {
/* avoid accumulating adds as floats don't have the precision to
* accurately iterate large triangle edges that way. luckily we
* can just multiply these days.
*
* this is all drowned out by the attribute interpolation anyway.
*/
int left = (int)(eleft->sx + y * eleft->dxdy);
int right = (int)(eright->sx + y * eright->dxdy);
/* clip left/right */
if (left < minx)
left = minx;
if (right > maxx)
right = maxx;
if (left < right) {
int _y = sy + y;
if (block(_y) != setup->span.y) {
flush_spans(setup);
setup->span.y = block(_y);
}
setup->span.left[_y&1] = left;
setup->span.right[_y&1] = right;
setup->span.y_flags |= 1<<(_y&1);
}
}
/* save the values so that emaj can be restarted:
*/
eleft->sx += lines * eleft->dxdy;
eright->sx += lines * eright->dxdy;
eleft->sy += lines;
eright->sy += lines;
}
/**
* Do setup for triangle rasterization, then render the triangle.
*/
static void
setup_tri(struct setup_stage *setup, struct prim_header *prim)
{
if (!setup_sort_vertices( setup, prim )) {
return; /* totally clipped */
}
setup_tri_coefficients( setup );
setup_tri_edges( setup );
#if 0
setup->quad.prim = PRIM_TRI;
#endif
setup->span.y = 0;
setup->span.y_flags = 0;
setup->span.right[0] = 0;
setup->span.right[1] = 0;
/* setup->span.z_mode = tri_z_mode( setup->ctx ); */
/* init_constant_attribs( setup ); */
if (setup->oneoverarea < 0.0) {
/* emaj on left:
*/
subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
}
else {
/* emaj on right:
*/
subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
}
flush_spans( setup );
}
/**
* Draw triangle into tile at (tx, ty) (tile coords)
* The tile data should have already been fetched.
*/
void
tri_draw(const float *v0, const float *v1, const float *v2, uint tx, uint ty)
{
struct prim_header tri;
struct setup_stage setup;
tri.v[0] = (struct vertex_header *) v0;
tri.v[1] = (struct vertex_header *) v1;
tri.v[2] = (struct vertex_header *) v2;
setup.tx = tx;
setup.ty = ty;
/* set clipping bounds to tile bounds */
setup.cliprect_minx = tx * TILE_SIZE;
setup.cliprect_miny = ty * TILE_SIZE;
setup.cliprect_maxx = (tx + 1) * TILE_SIZE;
setup.cliprect_maxy = (ty + 1) * TILE_SIZE;
setup_tri(&setup, &tri);
}

View file

@ -1,37 +0,0 @@
/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#ifndef TRI_H
#define TRI_H
extern void
tri_draw(const float *v0, const float *v1, const float *v2, uint tx, uint ty);
#endif /* TRI_H */